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A B S T R A C T   

Air is a major conduit for the dispersal of organisms at the local and the global scale. Most research has focused 
on the dispersal of plants, vertebrates and human disease agents. However, the air represents a key dispersal 
medium also for bacteria, fungi and protists. Many of those represent potential pathogens of animals and plants 
and have until now gone largely unrecorded. Here we studied the turnover in composition of the entire aero-
biome, the collective diversity of airborne microorganisms. For that we performed daily analyses of all pro-
karyotes and eukaryotes (including plants) using multi-marker high-throughput sequencing for a total of three 
weeks. We linked the resulting communities to local weather conditions, to assess determinants of aerobiome 
composition and distribution. We observed hundreds of microbial taxa, mostly belonging to spore-forming or-
ganisms including fungi, but also protists. Additionally, we detected many potential human- and plant- 
pathogens. Community composition fluctuated on a daily basis and was linked to concurrent weather condi-
tions, particularly air pressure and temperature. Using network analyses, we identified taxonomically diverse 
groups of organisms with correlated temporal dynamics. In part, this was due to co-variation with environmental 
conditions, while we could also detect specific host-parasite interactions. This study provides the first full in-
ventory of the aerobiome and identifies putative drivers of its dynamics in terms of taxon composition. This 
knowledge can help develop early warning systems against pathogens and improve our understanding of mi-
crobial dispersal.   

1. Introduction 

The atmosphere is arguably the most important medium of dispersal 
for many terrestrial organisms (Adams et al. 2013; Muñoz et al. 2004), 
as well as for plant pollination (Frankel and Galun 2012). While mi-
croorganisms dominate the Earth’s soils and waters in numbers, biomass 
(Bar-On et al. 2018) and diversity (Hawksworth and Lucking 2017), 
most research on capabilities for aerial dispersal has been restricted to 
land plants and macroscopic animals (Clobert et al., 2001). Neverthe-
less, understanding microbial dispersal is of vital importance. Many 
bacteria, fungi and protists are potential plant- and animal-pathogens or 
beneficial symbionts, thereby influencing agricultural yields and animal 

health. Besides, airborne fungal spores and bacteria can drive rainfall 
patterns, by acting as nuclei around which water droplets and ice 
crystals are formed (Möhler et al. 2007). Changing climatic conditions 
are altering the dispersal of microbes, which in turn affects disease 
epidemiology (Fisher et al. 2012) as well as local community composi-
tion. Thus, a more complete understanding of aerial dispersal of mi-
crobes, and how this depends on weather conditions, is a critical 
component of better predictions of pathogenic colonization and popu-
lation dynamics (Brown and Hovmøller 2002; Fröhlich-Nowoisky et al. 
2009), and thereby potential (agro-)economic and health risks. 

Hitherto, studies of airborne microbes have focused on bacteria and/ 
or fungi, while the entire microbial diversity in the air including protists 
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and micro-sized plant material and flying arthropods, which we 
collectively designate as the aerobiome, has not yet been targeted. Most 
previous studies investigated abundances and community compositions 
of individual groups, particularly fungi (Bowers et al. 2013; Fröhlich- 
Nowoisky et al. 2009; Yamamoto et al. 2012) and bacteria (Bowers et al. 
2013; Bowers et al. 2011a). Integrated assessments of the full aerobiome 
diversity is important as taxonomically diverse microbes may disperse 
together, either through physical attachment or via a shared set of 
conditions conducive to dispersal (Bass et al. 2019). As such, one key 
microbiome part is always missing in contemporary aerial and most non- 
aerial microbiome studies: protists. So far, protists have only been tar-
geted in a few studies focusing solely on potential human-pathogenic 
organisms and using low-throughput culture-based analyses (Astorga 
et al. 2011; Rivera et al. 1992). A key protistan group is often considered 
separately, as it was traditionally considered to be fungal-like: the often 
plant pathogenic Oomycetes (Genitsaris et al. 2014). Molecular methods 
have now made it possible to study protistan diversity. For example, 
high throughput sequencing (HTS) approaches have revealed the pres-
ence of a largely unknown diversity of protists in e.g. water (de Vargas 
et al. 2015) and soils (Mahé et al. 2017), while complete microbiome 
analyses including bacteria, fungi and protists have also recently started 
to be explored together (Xiong et al. 2020). However, the full range of 
airborne prokaryotic and eukaryotic organisms from across the tree of 
life (i.e. the aerobiome) including potential links between them remain 
unknown. 

While the data are still scant, it is now clear that microbial distri-
bution patterns do not follow the commonly cited “everything is 
everywhere” hypothesis (Baas-Becking 1934; Foissner 2006; Rout and 
Callaway 2012). The data suggest that despite their small sizes, even 
dispersal via air currents does not guarantee transportation of all mi-
crobes equivalently to all environments (Foissner 2008) and that arrival 
frequencies are sufficiently low to be outpaced by local diversification 
through natural selection (Hellweger et al. 2014). Next to direct uplift 
and transport via wind, co-dispersal with other organisms can add 
importantly to the dispersal capability of microorganisms. For instance, 
co-dispersal can enable free-living bacteria to reach suitable establish-
ment sites when moving along with amoeba predators (Brock et al. 
2011), and micro-sized plant material (fragments, pollen or seeds) may 
take along (facultative) endophytes (Greub and Raoult 2004; Schardl 
et al. 2004). Co-dispersal may be particularly important as symbiotic 
and antagonistic effects can be severely aggravated by co-infections with 
multiple micro-organisms (Morris et al. 2007). However, the abiotic and 
biotic factors that facilitate airborne dispersal have yet to be 
disentangled. 

Here we applied high-throughput sequencing using a combination of 
multiple DNA metabarcoding markers and characterized the aerobiome 
targeting prokaryotes (16S rRNA gene: bacteria and archaea) and eu-
karyotes (18S rRNA gene to target fungi, protists and animals; rbcL 
cpDNA gene to target plants). We sampled airborne particles up to 10 
mm in size continuously for three consecutive weeks in autumn 2015, 
using two automated samplers on top of a 12 m high building located 
amidst a mixed urban and agricultural landscape in the center of the 
Netherlands. Combining the sequencing data for all three markers with 
meteorological measurements via indicator analyses and network ap-
proaches, we aimed to gain further insights in dispersal mechanisms that 
govern the airborne microbiome composition. 

2. Methods 

2.1. Sampling 

In October 2015, air sampling was conducted on the roof top (~12 m 
above ground level) of a building at the campus of Wageningen Uni-
versity & Research, Wageningen, the Netherlands (51◦59′ N 5◦40′ E). 
Within a circle of 1 km distance from the building, the direct sur-
roundings include both urban area to the south (Wageningen campus 

and town) and east (Bennekom) and agricultural area to the north and 
west (mostly arable crop production, some cattle). A large area of de-
ciduous forest is present further eastwards (>1 km). 

Two sampling devices were placed at the western and eastern outer 
edge of the rooftop respectively, separated by a distance of 50 m. We 
used a Hirst Volumetric Spore Sampler (BS02225; Burkard Scientific 
Ltd.), which is collecting airborne particles by sucking in air through a 2 
× 14 mm opening at a rate of 10 L / min, and trapping the particles onto 
a 2 cm wide adhesive tape. This tape was prepared within a flow cabinet, 
by applying a petroleum jelly liquefied with xylene as a thin layer on the 
standard transparent plastic tape provided with the spore sampler by the 
supplier (Lacey and West 2007). The tape was then mounted on a drum 
that is rotating at a fixed speed and makes one full round in 7 days. As a 
result, the mounted piece of tape represents a continuous air sample 
covering a period of 7 days. Both samplers were started at the same day, 
and tapes were replaced after 7 and 14 days, resulting in simultaneous 
measurements from two locations for a period covering 21 days. Each 
tape was cut into seven equal pieces, each representing a 1-day sampling 
period. Every piece was then divided into two equal parts; one half was 
mounted on a slide for inspection under a microscope for visual in-
spection under a binocular, while the other half was put into a sterile 
Eppendorf tube and stored at − 4 ◦C until molecular analysis. 

Preparation of the tapes was performed inside a laminar flow cabinet 
to avoid contamination as far as possible. To check for any remaining 
contamination, an extra piece of adhesive tape was prepared as a 
negative control, following the same procedure as above but being cut 
and stored directly after preparation without being placed in the 
sampler. As with the other tapes, the control tape was cut into seven 
equal pieces, included as separate control samples in all further analyses. 

2.2. Molecular analysis 

DNA extraction of all 49 tape samples was performed using a Pow-
erPlant® DNA Isolation Pro Kit (Mobio Laboratories Inc.), using a 
modified protocol. Samples were inserted into the Eppendorf tube in a 
spiraling manner, so that the tape was wound along the tube wall with 
the adhesive size facing inwards. We then added 600 µL of B1 buffer 
solution + Nonidet P40 substitute (0.2 M sodium phosphate, pH 8.0, 
with 1 µL/ml Nonidet P40 and 3 µL RNase). Samples were homogenized 
by adding Ballotini Zirkonia/Silica beads (1.0 mm diameter; 0.6 g per 
tube) and shaking the tube on a Ribolyzer at 6000 rpm for two periods of 
40 s with 2 min cooling on ice in between. From that point onwards, 
DNA extraction was then continued by following step 6–18 of the 
standard protocol as supplied by the kit’s manufacturer. 

Per DNA extract, PCR amplification was performed using three 
different primer sets that together cover the entire range of prokaryotic 
and eukaryotic diversity: 1) primers 341F and 805R (Herlemann et al. 
2011) targeting the V3 + V4 subregions of the 16S rRNA gene in order to 
cover the bacterial community, primers Euk_1391f and EukB targeting 
the V4 subregion of the 18S rRNA gene in order to cover the eukaryotic 
community (Amaral-Zettler et al. 2009), and primers 1F (Fay et al. 
1997) and 432R (Little and Barrington 2003) targeting the chloroplast 
rbcL gene in order to zoom in on the plant community at a finer taxo-
nomic resolution. While we acknowledge the possibility of adding 
additional markers to increase the resolution also for other groups (e.g. 
ITS to increase species-level resolution for fungi), and we encourage 
their use in future studies to test hypotheses for specific groups of or-
ganisms, we did not consider this to be essential for our current 
explorative study. We chose to increase the resolution for plants as we 
observed small plant fragments by visual examination of the tapes and 
were interested in exploring their potential role as dispersal vectors for 
microbes. 

All primers were flanked by the Nextera indexing adapters (Illumina, 
San Diego, CA, USA). PCR conditions were identical for all three 
markers. Reactions were performed in a final volume of 25 ul, consisting 
of 4 µL of undiluted DNA extract, 0.6 U Platinum Taq (Invitrogen), 1x 
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PCR Buffer, 2.5 mM MgCl2, 5% Trehalose, 200 ng/µl BSA, 50 µM dNTP 
and 250 nM of each NXT primer. Cycling conditions consisted of 94 ◦C 
for 2 min, followed by 5 cycles of 94 ◦C for 40 s, 55 ◦C for 40 s and 72 ◦C 
for 60 s, followed by 30 cycles of 94 ◦C for 40 s, 61 ◦C for 40 s and 72 ◦C 
for 60 s, and a final step of 72 ◦C for 5 min. 

All 147 amplicons (49 samples × 3 markers) were prepared for 
paired-end sequencing on an Illumina MiSeq platform. PCR, index se-
quences and sequencing adapters were added to the first PCR products 
using a Nextera XT index kit (Illumina, San Diego, CA, USA). Dual index 
tags were added to each sample to build a library for each sample, 
resulting in 147 libraries with unique pairs of dual indexes. Dual indexes 
were added by PCR in a 28 µL system with 12 µL AccuPrime SuperMix II 
(Invitrogen, Eugene, OR, USA), 2 µL index primer P5, 2 µL index primer 
P7, 5 µL PCR product from first PCR and 7 µL PCR-grade H2O (Sigma- 
Aldrich). The amplification was performed under the following thermal 
cycler condition: 98 ◦C for 1 min, followed by 13 cycles of denaturation 
at 98 ◦C for 10 s, annealing at 55 ◦C for 20 s, and extension at 68 ◦C for 
40 s. Cycling was completed at 68 ◦C for 5 min. The PCR products were 
purified using HighPrep™ PCR (Magbio Genomics Inc., Gaithersburg, 
Maryland, US) beads. Libraries were equimolarly pooled following 
quantification using a Qubit®2.0 fluorometer (Thermo Fisher Scientific, 
Waltham, USA) and sequenced at Aarhus University on an Illumina 
Miseq platform using the 250 bp PE MiSeq version 2 reagent kit (Illu-
mina, San Diego, CA, USA). To avoid template termination of some 
clusters, the number of cycles were set to only 2 × 230. 

2.3. Bioinformatics 

We used the USEARCH/UPARSE Illumina paired-end pipeline (Edgar 
2013). First sequences were trimmed, merged and quality filtered 
(maxEE 0.5). Subsequently the sequence data was dereplicated, sorted 
by abundance, chimeras removed, clustered (OTU radius 3%) into OTUs 
and singletons removed. Finally merged raw reads were mapped to a de 
novo OTU database at 97% similarity. OTUs for the 18S rRNA gene and 
rbcL gene datasets were pre-assigned to a rough taxonomic classification 
taking the top hit of a Basic Local Alignment Search Tool (BLAST; al-
gorithm v 2.2.23; (Altschul et al. 1990)) search against the NCBI data-
base using an e-value cut-off of 1e_5, an identity cut-off of 96% and a 
coverage cut-off of 90% of the query sequence covered in the align-
ments. All assigned eukaryotic 18S rRNA gene sequences were then 
manually verified by BLASTn searches against the NCBI GenBank nt 
database for correct taxonomic assignments. For that, the best 50 hits 
were analysed and OTUs conservatively classified if resulting hits 
showed consistent taxonomic patterns. OTUs for the 16S rRNA gene 
dataset were assigned using an automated procedure as described 
(Ramirez et al. 2019). 

2.4. Statistical analysis 

To avoid false detections due to PCR or sequencing errors, we deleted 
all OTUs that occupied a read count less than 0.001% of the total read 
count across all samples. In both the 16S and 18S rRNA gene datasets 
significant numbers of OTUs were observed for the control samples 
(fragments of a tape that was prepared in the lab but not placed in the 
sampler). To rigorously avoid any false positives produced by potential 
contamination in the lab, we used a conservative approach. For each 
OTU, we calculated an average relative abundance among the control 
samples, as well as among the ‘true’ samples (those actually collected 
from the air samplers), and excluded all OTUs for which the average 
abundance in the controls was more than half of the average abundance 
in the true samples. All analyses were based on relative abundances per 
OTU per sample to correct for variation in sequencing depth among 
samples. 

2.4.1. Relations with weather conditions 
Daily records of meteorological conditions were available for the 

entire sampling period from a weather station located a few kilometres 
west of the sampling locations (https://www.wur.nl/en/show/Weath 
er-Station-De-Veenkampen.htm). Data for the following variables were 
obtained and used in the analyses: temperature (◦C; daily average, 
minimum and maximum), wind speed (m/s; daily average and 
maximum), air humidity (% moisture content; daily average), air pres-
sure (kPa; daily average), solar radiation (W/m2; daily sum), rainfall 
(mm; daily sum), wind direction (4 categories of 90 compass degrees, 
0 is due north) and sunshine duration (minutes; daily sum). 

To test how the weather variables influenced aerobiome composition 
we conducted Multiple-Response Permutation Procedures (PERMA-
NOVA) for each marker. All weather variables were included as pre-
dictors and their significance was assessed by testing their marginal 
contribution to the model (i.e. SS type 3 in ANOVA terminology). Per-
mutations were restricted within sampling station and sampling dates 
were treated as a series within the sampling station using the ‘how()’ 
function from the permute v. 0.9–0 package (Simpson, 2016). For each 
analysis we ran a full enumeration of all possible permutations (here 440 
permutations). 

Sampling days were clustered into three clusters using k-means 
clustering with 10 random starts using the ‘kmeans()’ function. Subse-
quently we conducted indicator analysis on the identified taxa (16S 
rRNA gene order, 18S rRNA gene order, RbcL gene family levels 
respectively), using ‘multipatt()’ function in the indicspecies v. 1.7.6. 
package (De Cáceres and Legendre 2009), following (De Cáceres et al. 
2010). We used the group weighted point biserial correlation coefficient 
on log-transformed relative abundances as our test statistic and tested 
for significant taxon to cluster associations using permutation tests. 
These permutations were constrained as above. 

For each taxon that was identified as an indicator for differences in 
weather conditions, we modelled its responses to the weather variables. 
For each taxon we fitted using maximum-likelihood a linear mixed 
model to the log-transformed relative abundances with sampling station 
as a random effect and included weather variables as fixed factors. We 
only included those weather variables that had an absolute correlation 
smaller than r = 0.8 with the other weather variables (Additional file A). 
We fitted models, with the same random effects structure, with all 
possible combinations of the included fixed effects (all subsets regres-
sion), including an intercept-only model (the null-model), and ranked 
them based on AICc (Burnham and Anderson 2004; Grueber et al. 2011). 
We selected all models that were within two AICc units from the optimal 
model (the model with the lowest AICc score). We performed model 
averaging (Lukacs et al. 2009) on the selected models and evaluated the 
importance of each weather variable based on the standardized regres-
sion coefficients (using partial standard deviation (Bring 1994), which 
accounts for collinearity among predictors). Linear mixed models were 
fitted using nlme v3.1–131 (Pinheiro et al. 2013) and model selection 
and model averaging was done in package MuMIn v. 1.15.6 (Barton and 
Barton 2015). The statistical analyses were conducted in R v. 3.3.3 (R 
Core Team, 2019). 

2.4.2. Co-abundance network analysis 
To make the co-response network visualization, the relative abun-

dance tables of the three datasets, 16S, rRNA, 18S rRNA and rbcL gene 
were combined. OTUs present in < 10 samples were discarded. Next, 
using R (R Core Team, 2019) the Spearman correlations were calculated 
for each pair of OTUs and between each OTU and the measured weather 
variables. For visualisation using Cytoscape (Shannon et al. 2003) pairs 
with a correlation ≥ 0.8 were exported, together with the relative 
abundance of the nodes and the correlations of each OTU with the 
weather measurements. 
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3. Results 

3.1. Communities were taxonomically and functionally diverse, including 
many pathogens and parasites 

Bacterial reads dominated the aerobiome’s prokaryotic 16S rRNA 
gene reads (mean 95.71%), but also plant-derived chloroplast (mean 
3.18%) and archaea (mean 0.06%) sequences were found. The dominant 
phylum was Firmicutes, representing 62.9% of all 16S rRNA gene reads. 
Among the most abundant orders were Clostridiales, Bacillales, Lacto-
bacillales and Erysipelotrichales (Firmicutes) and Sphingomonadales 
(Proteobacteria) (Fig. 1A). The vast majority of eukaryotic 18S rRNA 
gene reads (Fig. 1B) were assigned as fungi (98.91%), largely composed 
of Basidiomycota (80.50%) and Ascomycota (18.18%), and a small 
fraction of insect-pathogenic Entomophthoromycota (0.21%). The 
remaining reads were highly diverse, being placed into 21 classes, 
including arthropods (0.39%; mainly a drain fly (Clogmia sp.), plants 
(0.02%) and a taxonomically and functionally diverse collection of 
protists (68 OTUs belonging to 19 classes): The protist diversity included 
potential plant pathogens, such as Oomycota (24 OTUs; mostly Phy-
tophthora), and invertebrate (endo)parasites belonging to the Apicom-
plexa (10 OTUs) and Opalinata (1 OTU). Apart from these potential 
endoparasites (together representing on average 0.05% of the reads), all 
identified fungal and protist taxa were identified as spore-producing. 
The dataset for the rbcL cpDNA gene revealed 29 plant families. All 
were phanerogams (seed producing plants; dominant taxa shown in 
Fig. 1C) and the majority of reads (68.5%) were assigned to taxa that 
were likely releasing pollen during our sampling period: e.g. members of 
the Urticaceae (28.3%), Pinaceae (12.5%) and Euphorbiaceae (10.9%) 
(Additional file B). Nevertheless, part of the reads (27.6%) originated 
from taxa that cannot have been flowering during the sampling period. 
These were either tree species (22.3%; e.g. Quercus robur, Alnus sp.) that 
occurred nearby and likely released small fragments (e.g. leaf hairs) or 
crop species harvested from nearby fields during the time of sampling 

(4.3%, Glycine max, Solanum tuberosum). 

3.2. Weather conditions drive presence of dominant prokaryotes, while 
affecting only some eukaryotes 

Multivariate permutation tests (PERMANOVA) showed significant 
relations between the overall community composition per marker 
dataset and multiple meteorological variables (Table 1). Air pressure 
was consistently related to community composition in all three markers. 
This was also the case for temperature, although prokaryotic (16S) and 
plant (rbcL) communities mainly related to daily minimum temperature, 
while the eukaryotic community (18S) as a whole related to daily 
maximum temperature, along with levels of radiation and rainfall 
(Table 1). Wind direction was important for both the prokaryotic and 
eukaryotic communities (as determined based on 16S and 18S respec-
tively, Table 1). 

Using k-means clustering, we grouped the 21 sampling days into 
three main weather types (Additional file C): dry sunny days with little 
wind (cluster A), wet cloudy days with low temperatures and relatively 
little wind (B) and wet cloudy days with higher temperatures and rela-
tively strong wind (C). We then identified indicator taxa for these 
clusters and tested for significant relations between the relative abun-
dances of these taxa and specific meteorological parameters (Additional 
file D). Of the dominant prokaryotes (i.e. top 10 orders with highest 
average relative abundances depicted in Fig. 1A), Clostridiales and 
Erysipelotrichales were particularly abundant in cluster B. Both groups 
were significantly enriched on days with a high air pressure, north-
easterly winds and infrequent periods of sunshine (Fig. 2). Furthermore, 
Erysipelotrichales were more abundant on days with high humidity. In 
contrast, Cytophagales were most abundant in cluster C and signifi-
cantly enriched on days with low air pressure and high radiation. 

The dominant eukaryotes were not associated to particular weather 
cluster(s), with a clear exception for the Oomycetes (cluster A and C), 
which were positively related to temperature and low humidity (Fig. 2). 
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Two subdominant groups, Ichthyosporea (cluster A) and Acanthamoe-
bidae (associated with clusters A and C) correlated with daily sunshine 
duration and less strongly with air pressure. None of the major plant 
families were affected by weather conditions, while the less abundant 
Boraginaceae (cluster B), Cupressaceae and Sapindaceae (clusters B and 

C) were indicative of relatively low temperatures and high humidity. 

Table 1 
Results of multivariate permutation tests (PERMANOVA) testing for effects of meteorological parameters on aerobiome composition.    

16S (Prokaryotes) 18S (Eukaryotes) rbcL (Plants) 

Parameter d.f. Pseudo-F P Pseudo-F P Pseudo-F P 

Temperature (mean) 1 1.73 0.045 1.57 0.154 2.02 0.072 
Temperature (minimum) 1 4.12 0.002 0.59 0.438 3.15 0.002 
Temperature (maximum) 1 1.03 0.206 2.52 0.043 1.90 0.086 
Radiation 1 0.97 0.510 4.12 0.007 1.21 0.311 
Sunshine 1 1.70 0.045 0.50 0.583 0.54 0.819 
Air humidity 1 1.58 0.156 1.82 0.141 0.92 0.517 
Rainfall 1 1.43 0.138 2.75 0.045 1.46 0.222 
Air pressure 1 2.44 0.039 4.87 0.014 4.13 0.005 
Wind mean 1 1.51 0.056 0.14 0.941 1.17 0.218 
Wind max 1 1.47 0.088 0.89 0.317 0.97 0.390 
Wind direction (NE, SE, SW, NW) 3 2.15 0.014 2.09 0.048 1.38 0.093 
Residual 28       
R2

adj  38.0%  30.7%  21.0%  

The effects of meteorological predictors on the taxonomic composition of the 16S rRNA gene, 18S rRNA gene and rbcL gene datasets were analyzed separately. In order 
to isolate unique effects of predictors F-tests were constructed using the marginal sums of squares. See methods for further details. Bold face is used to highlight 
significant predictors (p < 0.05). 
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3.3. Clusters of co-occurring taxa reveal dispersal of pathogens and 
parasites with their most likely hosts 

Network analysis, combining all OTUs from the three marker data-
sets, identified eight ‘co-response clusters’ of OTUs with tightly corre-
lated abundance patterns along the 21 sampling days (Fig. 3A; 
Additional File E). Clusters 2, 3 and 6 are dominated by bacteria, with 
especially cluster 3 and 6 containing a variety of obligate gut-related 
taxa (Fig. 3C; dominant OTUs belonging to Clostridiales, Bacillales, 
Lactobacillales and Erysipelotrichales). Among these gut bacteria, a few 
highly abundant OTUs identified as Clostridia sp. grouped particularly 
closely together (upper right corner in Fig. 3C). The majority of asco-
mycete and basidiomycete fungi (Fig. 3B) grouped together in cluster 4, 
5, 7 and to some extent 8 (Fig. 3A), with cluster 7 also containing a suite 
of bacteria belonging to the Actinomycetales. The drain fly OTU clus-
tered in a subsection of group 8 that stands apart from the fungal clusters 
in Fig. 3A, and that also contains the majority of (endo)parasites 
(Fig. 3D), such as known insect-related parasitic protists (Apicomplexa) 
and pathogenic fungi (Entomophthoromycota), as well as nine of the less 
abundant Oomycete OTUs. Five dominant Oomycete OTUs (represent-
ing 47% of the Oomycete sequences) grouped together without 
connection to the main network as did most of the plant OTUs (group 1 
in Fig. 3B). Plotting correlations between OTUs and average daily 
temperature (Fig. 3E), highlights the existence of co-occurrence groups 
with similar responses to weather conditions, while confirming the 
differences in response between e.g. Clostridia sp. and other (gut-related) 

bacteria. 

4. Discussion 

Here, we provide the first full inventory of the aerobiome, and show 
that next to bacteria and fungi, a taxonomically and functionally diverse 
community of protists is dispersed by means of air currents. Further-
more, we provide new insights in how weather variables, as well as co- 
dispersal via insects, pollen and plant fragments may affect the potential 
of microbes to be air-dispersed. 

Our results of the community composition of bacteria (Bowers et al. 
2013; Bowers et al. 2011a) and fungi (Bowers et al. 2013; Fröhlich- 
Nowoisky et al. 2009; Yamamoto et al. 2012) are in line with previous 
studies confirming that airborne microbial communities do not entirely 
resemble those in soils, aquatic and other studied environments, but 
rather are composed of taxa from a variety of source environments with 
composition depending on local land use (Bowers et al. 2011a). The 
bacterial groups in our samples, were dominated by the phylum Firmi-
cutes, composed of members of the two dominant orders Clostridiales 
and Erysipelotrichales, as well as the abundant Bacteriodales, which all 
frequently occur in mammalian gut and feces (Bowers et al. 2011b). This 
dominance of fecal-associated organisms is indicative of organic manure 
application and a general enrichment of these taxa early in fertilizer 
application periods (Bowers et al. 2013), but also with a relatively high 
abundance of these groups in suburban areas (Bowers et al. 2011a), as 
present here. Likewise, the observed list of plant taxa included both 

Fig. 3. Co-response network visualizing groups of OTUs with correlated abundance patterns. Correlations were based on the total set of OTUs obtained from 
three combined marker datasets, indicated with different symbols (see panel A for symbol legend; symbol size scales with increasing average relative abundance in 
the dataset). Lines represent positive correlations (Spearman r > 0.8) between pairs of OTUs; with shorter lines corresponding to higher correlations. OTUs without 
any such correlation are not shown. Panel A highlights eight main co-response groups based on k-means clustering (see methods); Panel B highlights the main 
taxonomic kingdoms; Panel C highlights OTUs of gut-related bacterial orders; Panel D highlights OTUs of taxa identified as (endo)parasites; Panel E shows corre-
lations of all OTUs with mean temperatures per sampling day. 
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locally grown crop species (e.g. Solanum tuberosum) and species from 
local gardens (e.g. Cedrus atlantica) and nearby green roofs (Sedum 
album). 

The dominance of the gram-positive Firmicutes among bacteria is 
attributed to their thick cell wall making them tolerant to adverse 
conditions such as high UV radiation levels and low moisture conditions. 
As expected, we found that particularly spore forming organisms are 
dominating the aerobiome, which is illustrated by the dominance of 
Clostridiales and Bacillales bacteria, basidiomycete and ascomycete 
fungi and spore-forming protists. Particularly for plant pathogenic 
oomycetes there could be positive selection for airborne dispersal as this 
will facilitate them to reach new hosts. These fungi-like protists are 
major pathogens of agricultural crops responsible for profound yield- 
losses, such as in potato (e.g. Phytophthora) (Brown and Hovmøller 
2002; Judelson and Blanco 2005). 

Our results suggest that weather parameters are important deter-
minant of the aerobiome community composition. While given the 
limited sample size of our current study observed relations should be 
interpreted with caution, we did identify some putative drivers that 
deserve further exploration. For instance, the relative abundance of 
oomycetes in air increased with temperature and decreased with hu-
midity and wind speed, suggesting that the relatively large spores of 
oomycetes, in comparison to fungal spores, are more dependent on 
suitable weather conditions to spread. Interestingly, only microbial taxa 
appeared to be directly affected by weather conditions, indicating that 
the metazoan and plant taxa recorded are airborne independent of 
weather conditions and that only few groups determine the overall 
differences in composition between distinct weather conditions. 

We uncovered several unexpected members of the aerobiome, 
including animal parasites (Apicomplexans, Entomophthoromycota and 
Opalinata). The strong link between these microbial clades with animals 
provides additional support that these taxa, that are often found in 
environmental sequencing efforts in both aquatic systems (de Vargas 
et al. 2015) and soils (Geisen et al. 2015; Mahé et al. 2017), actually 
parasitize animals. Our correlation networks support the link between 
parasites and a host, suggesting that many correlations in HTS-based 
analyses actually depict species interactions. This potential makes ap-
proaches such as ours particularly useful to decipher the entire aero-
biome, as it allows determining co-dispersal of species. 

Differences in airborne bacterial and fungal communities are known 
to be present at different heights (Robinson et al. 2020) and between 
geographical regions (Barberán et al. 2015; Flies et al. 2020), and likely 
such differences are also present for other groups of eukaryotes. It must 
therefore be noted that, given the fact that our data were obtained at a 
local scale, within a period of 21 days and at a single height, our findings 
are not easily transferable to other aerobiomes. We see our study as a 
proof of principle for integrative microbiome inventories showing 
weather-dependent daily variations in aerobiome composition. Clearly, 
additional studies of this kind, ideally based on larger sample sizes, will 
be needed to determine how aerobiome communities respond to 
weather conditions across time and space and eventually derive more 
general conclusions on dominant factors shaping their composition. 

5. Conclusions 

Using a three-marker high-throughput sequencing approach, our 
study uncovered a high diversity of temporally fluctuating, co-occurring 
microorganisms that collectively form the aerobiome. Our data high-
light that spore-formation serves as a successful dispersal strategy also in 
little-studied groups such as protists, as all non-parasitic protists in our 
dataset were spore-forming. Furthermore, network analyses identified 
tight associations among aerobiome members, including host-symbiont 
interactions. Finally, the automated sampling protocol combined with 
metabarcoding might be transformed to validate and improve epide-
miological models, and to establish early warning systems in bio-
monitoring approaches when focusing on plant pathogens, but also 

animal and human pathogens. 
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