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Abstract: Since the late 1960s, a reform in mathematics education, which is currently known under
the name Realistic Mathematics Education (RME), has been taking place in the Netherlands. Charac-
teristic for this approach to mathematics education is that mathematics is not seen as ready-made
knowledge but as an activity of the learner. Although much has been written about the big ideas
and intentions of RME, and multiple RME-oriented textbooks have been published, up to now the
development of this approach to mathematics education has not been thoroughly investigated. In
the research reported in this article, we traced how RME has evolved over the years. The focus in
our study was on early addition and subtraction in primary school. For this, we studied RME core
curriculum documents and analyzed RME-oriented textbooks that have been published between
the onset of RME and the present. We found that the big ideas and teaching principles of RME were
clearly reflected in the learning facilitators for learning early addition and subtraction and were
steadily present in curriculum documents over the years, although some were made concrete in
further detail. Furthermore, we found all RME learning facilitators also to be present in all RME-
oriented textbooks, though in some cases in other ways than originally intended. Our research shows
the complexity of a curriculum reform process and its implementation in textbooks.

Keywords: mathematics curriculum reform; Realistic Mathematics Education; primary school;
textbooks; early addition and subtraction

1. Introduction

Making decisions about what and how to teach forms the core of teaching mathemat-
ics. At a general level, the leading resource for making these decisions is the intended
curriculum, which includes the aims, goals, and intentions of education [1,2]. At school
level, guidelines for making decisions about these activities and eliciting the required
learning processes can in particular be found in textbooks. These often serve as the main
resource for the daily lessons in classrooms [3]. Since textbooks form an intermediate layer
between the intended curriculum and the implemented curriculum, they are considered
the potentially implemented curriculum [1]. Ideally, the intended and the potentially
implemented curriculum are closely aligned with each other, but this is not self-evident.
Several studies have shown examples of lacking coherence between these curriculum levels
in mathematics education [4–6]. There are numerous factors that can cause differences
between the intended and the potentially implemented curriculum, such as interpretations
of goals, aims, and intentions by textbook authors, and commercial considerations from
publishers.

Furthermore, the intended curriculum itself can be subject to change. Decisions
regarding what is intended are largely based on what is believed to be good education
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and these beliefs are not a fixed given. Ideas on what mathematics should be taught and
how this could be taught best, can differ significantly between countries [7,8]. Moreover,
within countries, seen over time, new views on mathematics education can emerge and
approaches to teaching mathematics can change [9–11].

The Netherlands too, has a history of mathematics education reform. Starting in
the late 1960s, under guidance of the mathematician Hans Freudenthal, an approach to
mathematics education has been developed, which over time became known as Realistic
Mathematics Education (RME) [12]. Although much has been written about the intentions
and ideas of RME, and publishers have released multiple RME-oriented textbooks, up to
now the development of this approach to mathematics education has not been thoroughly
researched. In fact, little is known about how particular RME ideas on the what and how
of teaching mathematics have evolved in the past half century. The same can be said about
how the RME reform can be found in textbooks. After the study “Wiskobas in methoden”
(Wiskobas in textbooks) in the 1980s [13], no other systematic research has been carried out
to investigate this.

The purpose of the current research was to contribute to closing this knowledge gap, to
trace how the RME reform evolved, and to unravel the relationship between the intentions
of the RME reform and its implementation in textbooks. To this end, we studied RME
designs and their underlying ideas from the onset of RME up to the current day, and we
examined how these designs and ideas ended up in textbooks over the years. To clearly
bring into view the in-depth characteristics of RME as they are laid down in instructional
materials, we focused on one key primary school mathematics domain: early addition and
subtraction.

2. Background of the Study and Research Questions
2.1. The Origin of RME

In the late 1950s, a need was felt in many western countries for “radical changes and
improvements in the teaching of mathematics” [14] (p. 11). There were many reasons for
this, varying from the increasing importance of mathematics and its applications for society
to new insights on learning and teaching mathematics [15,16]. The case and proposals
for reform were addressed at the conference held at the Centre Culturel de Royaumont
in Asnière-sur-Oise (France) in 1959 [14]. This conference was the commencement of
the world-wide impact of the New Math reform movement [15,17]. In the Netherlands
however, under guidance of the “leading dissident” Freudenthal [18] (p. 1495), New Math
would not gain a foothold. Instead, another direction was chosen, which eventually led to
RME [19].

As a consequence of the Royaumont conference, in 1961 the Dutch government
installed the Commissie Modernisering Leerplan Wiskunde (Commission Modernization
Mathematics Curriculum) (CMLW), of which Freudenthal was a member and of which,
in 1969, he became the chairman. The CMLW was commissioned to investigate what
reform of content and didactics was needed in the Netherlands [20]. Originally, the focus
was only on secondary education, but in 1968, with the establishment of the Wiskobas
project as part of the CMLW, primary education also came into the picture. Wiskobas is
an acronym for “wiskunde op de basisschool”, which means “mathematics in primary
school”. The inception of the Wiskobas project marks the start of the development of RME.
From 1971 on, the work of CMLW and Wiskobas continued in the newly founded Instituut
voor Ontwikkeling van het Wiskundeonderwijs (Institute for Development of Mathematics
Education), with Freudenthal as its first director. In 1991, the successor of this institute was
renamed the Freudenthal Institute.

2.2. The Big Ideas and Principles of RME

Having a project named Wiskobas indicated a break with the past. Traditionally,
in Dutch primary schools, mathematics as a subject was called “rekenen”, i.e., arith-
metic. Wiskobas wanted to bring a more mathematical perspective into primary education.
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Around 1970, the prevailing approach to arithmetic education in the Netherlands was
rather mechanistic [21,22]. It had a characteristic focus on teaching fixed procedures
in a step-by-step manner, with the teacher demonstrating how to proceed in each step.
Real-world problems were only used for the application of previously learned calculation
procedures, and little or no attention was paid to developing insight into the underlying
mathematics of these procedures [12,13]. New Math was not considered a suitable alterna-
tive. In the words of Freudenthal [23] (p. 141), New Math took “the wrong perspective [...]
of replacing the learner’s insight by the adult mathematician’s insight.” The mathematics
that Wiskobas had in mind was of another nature, namely, mathematics as an activity
of the learner. Freudenthal [24,25] considered mathematics as an activity instead of as
ready-made knowledge. The latter refers to the already created system of mathematics of
which Freudenthal [25] said that students, when it is offered to them, can only reproduce
it. For him, in the first place, mathematics means mathematizing reality. Therefore, in his
view, mathematics education should not be about transmitting ready-made mathematics
to students, but about the activity of mathematizing [23].

This big idea of mathematics as the human activity of mathematizing became an
important notion underlying the work of Wiskobas and the further development of RME.
Treffers, one of the leading persons in the development of RME, later on made the distinc-
tion between horizontal and vertical mathematizing. Horizontal mathematizing refers to
transforming real-world problems into mathematical terms, whereas vertical mathematiz-
ing refers to using mathematical means to solve the problems, generalizing the solution
process, and achieving a higher level of formalization [22].

In RME, reality is seen as a starting point for learning processes. This important role
of reality is expressed in the term “realistic”. However, in RME, realistic also has a broader
connotation. As well as using reality as a source for mathematics education, it refers to
the Dutch verb “zich realiseren”, which means to realize and to imagine what is going
on [26–29]. In RME, students are offered problems which they can imagine, including prob-
lems from the fantasy world of fairy tales and the formal world of mathematics. Providing
students with such problems implies a proactive role of the teacher, which is expressed in
Freudenthal’s other big idea [30], guided reinvention. According to Freudenthal the “re” in
reinvention refers to the steps in learning processes, while the adjective “guided” points
to the instructional environment of the learning processes. Guiding reinvention implies
a balance between, on the one hand, letting students think and invent things, and on the
other hand providing guidance that provokes reflective thinking. Treffers [22] underlined
this view by emphasizing that students’ own constructions and own productions have a
decisive influence on the learning process. According to him, stimulating students to come
up with self-made solutions when solving problems or making up problems themselves is
a crucial element of RME and “the basis of everything” [31] (p. 72).

These big ideas of RME (“the human activity of mathematizing” in connection with
“horizontal and vertical mathematization” and “guided reinvention” in connection with
“own constructions and own productions”) that stem from the work of Wiskobas have
been repeatedly formulated and specified in different ways. Treffers [21,22] characterized
the Wiskobas approach in eight starting points, which included three didactical principles
(activity, differentiation, and vertical planning) and five mathematical principles (structure,
language, applicability, dynamics, and a specific approach), which he summarized in his
1987 publication as the four starting points of realistically oriented mathematics educa-
tion: paying much attention to reinvention, various levels of concreteness and abstraction,
historical-genetic (vertical) planning, and reality-bound, meaningful (mathematically rich)
instruction. Additionally, Treffers [22] defined five instruction principles that guide pro-
gressive mathematizing: phenomenological exploration, bridging by vertical instruments,
self-reliance: students’ own constructions and productions, interactivity, and intertwin-
ing. In a later publication [32], these instruction principles were reformulated as the five
fundamental learning principles of the reconstruction didactics: constructing and con-
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cretizing, levels and models, reflection and own production, social context and interaction,
structuring, and intertwining.

The beginning years of RME were clearly ones of continuously reconceptualizing what
the reformed mathematics education stood for. Several starting points and principles had
much in common but were reworded from time to time. Van den Heuvel-Panhuizen [33]
summarized these RME characteristics and identified the following six principles: the ac-
tivity, the reality, the level, the intertwinement, the interactivity, and the guidance principle.
We follow these principles here. The activity principle refers to the concept of mathematics
as a human activity. Students, instead of being the receivers of ready-made mathematics,
are treated as active participants in the learning process in which they are stimulated to
develop mathematical tools and insights. The reality principle emphasizes that learning
mathematics is considered as originating in mathematizing reality. This means starting
from meaningful, mathematically rich context situations, which offers opportunities to
attach meaning to mathematical concepts. The level principle underlines that learning
mathematics implies that students pass through various levels of understanding: from
starting at the level of using informal context-related solutions, via making various short-
cuts and schematizations, to being able to use formal procedures. Models serve as an
important device for bridging between concrete situations and formal mathematics. The
intertwinement principle means that related learning strands are taught in integration. The
interactivity principle signifies that learning mathematics is not only an individual activity
but also a social one. Through whole-class discussions and group work, students can learn
from each other’s strategies and insights. The guidance principle signifies the importance
of offering students a guided opportunity to re-invent mathematics. In RME, the teachers,
supported by long-term teaching-learning trajectories and textbooks, have a crucial role in
steering the learning process by providing the students with a learning environment which
enables that they can develop mathematical understanding.

2.3. RME and Textbooks

Over the years, RME has made a considerable impact on the textbook market in the
Netherlands. Periodic studies by Cito, the Dutch institute for educational measurement,
indicate an increasing market share of RME-oriented textbooks from around 15 percent in
the mid-1980s to 75 percent in the 1990s [34] and further to 100 percent around 2003 [35].

After 2007, due to a debate criticizing the RME approach in favor of a return to the tra-
ditional mechanistic approach [36,37], the textbook market became more diverse again [38].
Moreover, new editions of textbooks that were originally presented by their publishers as
RME-oriented, were no longer labeled as such. Of course, the approach to mathematics
education that is attributed to a textbook does not tell the whole story. Textbooks that
are no longer presented as RME-oriented may still include RME characteristics, just as
textbooks positioned as RME-oriented do not necessarily include all RME features.

The latter was demonstrated by De Jong [13] in his study “Wiskobas in methoden”.
He analyzed textbooks in use from 1970 to 1985 and found that not all textbooks that were
presented by their authors or publishers as based on Wiskobas could actually be classified
as such. His study showed a steadily growing market share of textbooks that included RME
characteristics, but also revealed that these characteristics rather varied in their degree of
alignment with the intentions as articulated by Wiskobas at that time. Since the De Jong’s
study, no more research has been carried out to investigate how RME-oriented textbooks
are in line with the original ideas of RME.

2.4. Research Questions

In addition to what is known from De Jong’s study, no other knowledge is available
regarding the relationship between the intentions of RME and its implementation in
textbooks. The aim of the current research was to get a more complete and up-to-date
view on this relationship, taking into account both the original ideas of Wiskobas and the
evolvement of RME ideas since that time period. This implied that we had to carry out two
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studies: a study into the intentions in Wiskobas and RME and their evolvement over time,
and a study into how, from the Wiskobas years to the present, these intentions ended up in
RME-oriented textbooks.

To investigate this on a detailed level, we focused on one domain of primary school
mathematics: early addition and subtraction. We chose this domain for two reasons. First,
it is a core domain of mathematics that serves as a basis for all other primary school
mathematical domains. Second, in the Wiskobas time, this domain was worked on from
the very beginning, which gave us the opportunity to investigate how the approach to this
domain evolved within RME. Our research questions for the respective studies were:

1. How did the RME approach on early addition and subtraction evolve? (Study 1)
2. How was the RME approach on early addition and subtraction implemented in

consecutive generations of RME-oriented textbooks? (Study 2)

We specified “early addition and subtraction” as: addition and subtraction in the
lower grades of primary school, from the moment that these operations are introduced,
and before written algorithmic calculation is introduced.

In both studies we answered the research questions by document analyses. In Study 1
we choose RME curriculum documents for this and in Study 2 we analyzed RME-oriented
textbook series.

Study 1: The RME way of teaching early addition and subtraction as intended

3. Method Study 1
3.1. Selection of RME Documents

To answer our first research question, we analyzed the core RME curriculum docu-
ments that address early addition and subtraction. These documents are:

• the first Wiskobas overview of primary school mathematics education published in
1975 [39]: Part 1: Scenes of mathematics education in the lower grades, pp. 13–120;

• “Proeve van een nationaal programma voor het reken-wiskundeonderwijs op de
basisschool” (Design of a national program for mathematics education in primary
school) (hereafter called Proeve), published in 1990 [40]: Part 1: Basic operations pp.
9–173;

• the TAL (Teaching and learning trajectory) document meant for teaching mathematics
in the lower grades of primary school, published in 1999 [41] which has also been
published in English [42]: Calculation up to 20 and Calculation up to 100, pp. 43–74.

3.2. Analysis Procedure

In our analysis, we first detected all suggestions that these documents offer for fa-
cilitating the learning of early addition and subtraction. We classified these suggestions
into categories of learning facilitators based upon the big ideas and principles of RME.
These categories are (1) the use of reality, (2) the use of models, (3) the use of students’
own input, and (4) the use of non-routine problems. Finally, we compared and related
the suggested learning facilitators and their intended use to each other and created a
chronological overview.

4. Results Study 1
4.1. Use of Reality

In the Wiskobas document, addition and subtraction are introduced by using the bus
context as the reality-related starting point. This means that the students play a bus game.
One student acts as the bus driver and the other students are the passengers. At bus stops
situated throughout the classroom students get on and off the bus, which gives them a first
meaning for addition and subtraction. The students keep track of how many passengers
get on and off the bus and how many are on the bus after a bus stop. From the beginning
on, one situation is used for carrying out multiple calculations. Further, addition and
subtraction are introduced simultaneously. This arises naturally from the fact that people
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can get both into and out of a bus. Figuring out what happens gives students opportunities
for mathematical reasoning:

“What may have happened, when the bus drives away from the bus stop with
three passengers more than it arrived with? Did three passengers get on or did
perhaps five people get on and two off the bus?” [39] (p. 36).

After the physical experiences of the bus game, similar situations are also presented
on worksheets (Figure 1).

Figure 1. The bus context in Wiskobas. [39] (p. 41).

Directly at the start, arrow language is used as a symbolic representation that refers
to reality. It is used to let students describe that “something is happening” [39] (p. 39).
They have to put into words what is happening in a situation and write this down in
arrow language. They do so in all kinds of situations, which provides them with multiple
meanings of addition and subtraction. Moreover, interpreting particular situations in
different ways underlines the relationship between addition and subtraction (Figure 2).

Figure 2. Arrow language in Wiskobas [39] (p. 40).

The Proeve document does not address the initial introduction of addition and sub-
traction and does not mention the bus context. However, Proeve makes it clear that to
develop understanding of addition and subtraction, students have to be provided with
varied context situations. Arrow language is used to express what is happening in these
context situations, but Proeve does not suggest letting students write down arrow language,
nor to use it to relate addition and subtraction.

In TAL, various context situations are used for giving meaning to addition and sub-
traction, including the bus context. Addition and subtraction are not jointly introduced
in one situation. Carrying out multiple calculations in one particular situation is also not
described. Arrow language is mentioned for expressing what is happening in a situation.

4.2. Use of Models

The core documents describe several models. The most prominently present are the
number line, the one hundred square and the arithmetic rack.
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The number line that is used in Wiskobas is segmented. This number line is introduced
for calculations beyond ten, when students experience that counting on their fingers is no
longer sufficient. The segmented number line is used to support calculating by counting
and moving forward (for addition) and backward (for subtraction). It is also used for
positioning numbers, which means identifying where particular numbers are located
(Figure 3). Furthermore, in combination with bars, it is used for laying the relationship
between addition and subtraction (Figure 4).

Figure 3. Positioning numbers on a segmented number line in Wiskobas [39] (p. 40).

Figure 4. Relating addition and subtraction on a segmented number line in Wiskobas [39] (p. 88).

In Proeve and TAL, the number line has a different appearance: it is now an empty
number line. It is emphasized that a number line with no or only a few marked points
stimulates the use of number relations (e.g., 19 is near 20 and 10 is in the middle between
0 and 20). To introduce this number line, both documents suggest a string of beads. The
alternating pattern of colors (Figure 5, above) provides students with a ten-structure, which
helps them to apply shortened counting with tens. A pin placed on the bead string indicates
the number of beads before that particular point. This representation of numbers is also
used for the empty number line (Figure 5, below).

Figure 5. The bead string and the empty number line in Proeve ([40] (p. 51–52).

In Proeve and TAL, the empty number line is also applied for acting out variously-
structured calculation procedures to solve addition and subtraction problems. For example,
the subtraction 65 − 38 can be calculated by stringing, first by making jumps of ten, (65
− 10 − 10 − 10 − 8, Figure 6a) and later by making fewer jumps (e.g., 65 − 30 − 5 − 3,
Figure 6b). Moreover, varying strategies are possible, such as a shortened approach via
a nearby round number (65 − 40 + 2, Figure 6c) or an adding on strategy (38 + . . . = 65,
Figure 6d). This latter strategy is the only case in Proeve and TAL in which the relationship
between addition and subtraction is brought to the fore.
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Figure 6. Calculating 65 − 38 on the empty number line by doing (a) 65 – 10 −10 – 10 – 8, (b) 65 – 30 –
5 – 3, (c) 65 – 40 + 2 and (d) 38 + . . . = 65 in Proeve [40] (p. 54–55).

Proeve also describes the splitting strategy in which the tens and ones are processed
separately (e.g., 27 + 38 calculating as 20 + 30 and 7 + 8). For this strategy, not the number
line, but 10-blocks and 1-blocks are suggested. TAL turns away from the decimal splitting
strategy and suggests not to emphasize it because it can easily lead to mistakes in the case
of subtraction.

The second model is the one hundred square. This is a ten-by-ten frame in which the
numbers 1 to 100 are placed. In Wiskobas, this model is a kind of extension of the segmented
number line up to 100 (Figure 7). The one hundred square can be used completely or partly
filled with numbers, and as both the whole square and fragments. It is employed for all
kinds of exploratory activities (Figure 8) and for practicing addition and subtraction by
moving on the square. For example, three steps to the left mean subtracting three and two
steps downward represent adding twenty.

Figure 7. The one hundred square as an extension of the number line in Wiskobas [39] (p. 60).

Figure 8. An exploratory activity with the one hundred square in Wiskobas [39] (p. 61).

In Proeve, it is said that the one hundred square is hard to understand and to use
for many children. One reason that is mentioned is that jumps of one (to the right or
left) and jumps of ten (downward or upward) on the one hundred square look as if they
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have the same value (each is a move of one cell), while in fact they have not. In TAL, the
one hundred square is largely absent. It is mentioned only once as a model to represent
numbers, and it is argued to be not very suitable to use for addition and subtraction.

The third model is the arithmetic rack for addition and subtraction up to twenty. This
arithmetic rack, in Dutch called ”rekenrek”, has two lines of ten beads, each divided in
two sets of five beads. This model is mentioned for the first time in Proeve (Figure 9). It
is meant for structuring numbers using the five-structure, ten-structure, and the doubles.
These number representations can help students to shift from calculation by counting to
calculation by structuring. Proeve describes the example of 6 + 7, which can be put on
the arithmetic rack as shown in Figure 9. Students can derive the answer from seeing the
five and five, which makes ten, and adding one and two, making thirteen (5 + 5 = 10 and
then 10 + 1 + 2 = 13). Another way is seeing the double six and adding one (6 + 6 = 12 and
then 12 + 1 = 13). Furthermore, they can calculate via ten (6 + 4 = 10 and then 10 + 3 = 13).
The arithmetic rack is considered an important model because “it allows flexible use of
multiple solution procedures, while at the same time offering fixed number images that
facilitate memorizing calculations up to 20” [40] (p. 48). In TAL, the arithmetic rack is used
for structuring numbers and for addition and subtraction up to twenty in the same way as
in Proeve.

Figure 9. The arithmetic rack in Proeve [40] (p. 45).

4.3. Use of Students’ own Input

In Wiskobas, the use of students’ input in the teaching-learning process comes to the
fore in two ways. The first one is the already mentioned emphasis on letting students
explain in their own words what is happening in context situations and writing this down
with arrow language. The second way is to ask students to produce their own problems,
such as thinking of a route for the bus that results in a specific number of passengers in
the end.

Proeve also emphasizes having students putting into words what is happening in
context situations. In addition, the students are asked to explain their acting in words
while carrying out calculations. Moreover, it is emphasized to give students ample op-
portunities to come up with their own calculation procedures, and to make use of these
own constructions as a basis for shortened and structured solution procedures. This can
be done, for example, by using the arithmetic rack and the empty number line that allow
various solution strategies, as described in the section about models. Inviting students to
come up with own productions (i.e., thinking of problems with a particular answer) is also
present in Proeve.

TAL emphasizes that letting students use their own wordings is important in all
phases of the teaching-learning process, including letting students explain and compare
their own constructed and used solution procedures. Furthermore, using students’ own
productions is stretched into a form of practicing addition and subtraction, for which the
term “productive practice” [42] (p. 52) is used.

4.4. Use of Non-Routine Problems

Wiskobas suggests asking students questions that require more than only straight-
forward calculation but instead evoke reflection and reasoning. The earlier mentioned
question about what may have happened when the bus drives away from the bus stop
with three passengers more than it arrived with is an example of this. Another example
concerns the context of a double-decker bus, in which some passengers take a seat on the
lower level of the bus and others on the top level. This context is used for splitting numbers
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(a prerequisite skill for addition and subtraction) and it is suggested to ask students to fig-
ure out whether they have found all possible splittings for a particular number. Answering
this question requires a systematic approach and mathematical reasoning.

In Proeve, it is stated that providing non-stereotype problems from time to time is
important to prevent students from routinely guessing what operation to apply instead of
consciously reasoning for themselves. An example is

“Two friends celebrate their birthday together. Without consulting each other,
they each invite their friends. One invites five friends and the other invites six.
How many friends are invited?” [40] (p. 157).

Finally, TAL provides examples of non-routine, puzzle-like problems that combine problem-
solving with practicing calculations and emphasizes to use such problems on a regular basis.

5. Conclusions Study 1

Study 1 revealed both differences and similarities in the intended RME approaches on
early addition and subtraction as laid down in the analyzed core curriculum documents.
A summarizing visualization of our findings is shown in Table 1.

The three curriculum documents correspond on the use of context situations to provide
meaning to addition and subtraction. In Wiskobas and TAL, this includes the bus context. In
Wiskobas, this context is used for the simultaneous introduction of addition and subtraction
and for carrying out multiple calculations in one situation. Arrow language is suggested in
all three documents for symbolizing what is happening, and in Wiskobas also for letting
students write it down and for relating addition and subtraction.

The documents differ remarkably regarding the models suggested. The one hundred
square is explicitly promoted in Wiskobas, but no longer recommended in Proeve, and
finally, TAL suggests not to use it. The number line evolved from a segmented line in
Wiskobas to an empty line in Proeve and TAL. This has significant implications. On the
segmented number line, positioning numbers and making calculations can be done by
simply counting the tick marks, while the empty number line evokes the use of number
relations and of shortened and structured calculation procedures. The arithmetic rack is
not yet present in Wiskobas, but it has a prominent role in Proeve and TAL. This model and
the empty number line are both used for level-raising by supporting structured calculation.
Both also allow a variation of calculation procedures which is helpful for the idea of using
students’ own constructions of solution procedures as introduced in Proeve. The other
ways of using students’ own input—letting students put into words what is happening
and come up with their own productions of problems—are present in all three documents.
The same applies to the use of non-routine problems that evoke reflection and reasoning.

A final finding concerns the relationship between addition and subtraction, which
reflects the RME intertwinement principle. Only Wiskobas suggests ways to connect the
two operations, namely by use of the bus context, arrow language and the segmented
number line. The relationship between addition and subtraction is not entirely absent in
Proeve and TAL. They both discuss that some subtraction situations can easily be solved
by an adding-on strategy, but they do not put an explicit emphasis on the relationship
between addition and subtraction.
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Table 1. Realistic Mathematics Education (RME) learning facilitators and their intended use for early
addition and subtraction as indicated in Wiskobas (W), Proeve (P), and TAL (T).

RME Learning Facilitators and Intended Use
for Early Addition and Subtraction 1

W P T1975

1990

1999

Use of reality
Bus context

• Providing meaning to both operations

• Introducing both operations in one situation

• Multiple calculations in one situation

Other context situations

• Providing meaning to both operations

Arrow language

• Symbolizing what happens

• Relating both operations

• Students using arrow language

Use of models
Segmented number line

• Positioning numbers by counting

• Supporting calculations

• Relating both operations

Empty number line

• Positioning numbers using number relations

• Supporting structured and varied calculations

One hundred square

• Offering exploratory activities

• Practicing both operations

Arithmetic rack

• Providing number images

• Supporting structured and varied calculations

Use of students’ own input

• Students putting into words what is happening

• Students’ own productions of problems

• Students’ own constructions of solution
procedures

Use of non-routine problems

• Evoking reflection and mathematical reasoning

1 Note: = present, = absent.
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To conclude Study 1, the answer to our research question on the evolvement of
the RME approach on early addition and subtraction as intended is threefold. First,
the categories of learning facilitators based upon the big ideas and teaching principles
of RME are steadily present in all analyzed documents. Second, some of the learning
facilitators were made concrete in further detail over the years. This especially comes to
the fore in the use of the arithmetic rack and the empty number line which both provide
opportunities for structured solution procedures and make way for using students’ own
constructions of varied calculation strategies. Third, another remarkable change concerns
the intertwinement of addition and subtraction, which is only emphasized in Wiskobas
and no longer in Proeve and TAL.

Study 2: The RME way of teaching early addition and subtraction as implemented in
textbooks

To answer the second research question, we investigated how the intended RME
approach to teaching early addition and subtraction—as established in Study 1—has been
implemented in textbooks over the years. To this end, we carried out an analysis of
RME-oriented textbook series.

6. Method Study 2
6.1. Selection of Textbook Series

The selection of textbook series to be included in our study was based on two criteria.
First, the design of a textbook should be intentionally RME-oriented, evidenced by making
explicit references to Wiskobas or RME in teacher guidelines or information brochures.
Textbooks that are adapted versions of textbooks from other countries or that are based
upon other didactical approaches may have some RME characteristics but were not in-
cluded in our study. The second criterion concerns the market share. Since a larger market
share is an indication of a greater acceptance of a textbook by teachers, we only included
textbooks that reached a fifteen percent market share or more and their successive editions.
For determining the market share, we used information from the evaluation studies that
Cito carried out between 1986 and 2013 and oral information from publishers and sellers
of textbooks. The two criteria combined resulted in a collection of thirteen (editions of)
textbook series in use from the 1980s on until today: five consecutive editions of “De Wereld
in Getallen” (WiG1, WiG2, WiG3, WiG4, WiG5) (The World in Numbers), four editions of
“Pluspunt” (PP1, PP2, PP3, PP4) (Plus Point), the textbook series “Rekenen & Wiskunde”
(R&W) (Arithmetic and Mathematics) and its successor “Wis en Reken” (W&R) (Certainty
and Calculate), and two editions of “Rekenrijk” (RR2, RR3) (Rich Arithmetic/Realm of
Arithmetic) (Table 2). The two 1980s textbooks were also included in the previously men-
tioned study “Wiskobas in Methoden” [13], in which it was concluded that these textbooks
were highly aligned to the ideas of Wiskobas.

6.2. Selection of Textbook Materials

We selected from each textbook series the materials for the grade levels in which
early addition and subtraction are taught. These are grades 1 and 2 in the 1980s textbooks
and grades 1, 2, and 3 in the textbooks from the later time periods. The two textbooks
published in 2019 introduce addition and subtraction already in K2, but these parts of the
textbooks were not yet on the market when Study 2 was conducted and could therefore
not be included in our analysis.
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Table 2. Textbook series included in Study 2.

Time Period 1 Name Abbr. Publication Year Market Share 2

1980s
De Wereld in Getallen,

1st edition WiG1 1981 28%

Rekenen & Wiskunde R&W 1983 29%

1990s
De Wereld in Getallen,

2nd edition WiG2 1991 19%

Pluspunt, 1st edition PP1 1991 29%

2000s

De Wereld in Getallen,
3rd edition WiG3 2001 30%

Pluspunt, 2nd edition PP2 2000 55%
Wis en Reken W&R 2000 7%

Rekenrijk, 2nd edition RR2 2000 16%

2010s

De Wereld in Getallen,
4th edition WiG4 2009 50%

Pluspunt, 3rd edition PP3 2009 25%
Rekenrijk, 3rd edition RR3 2009 5%

current
De Wereld in Getallen,

5th edition WiG5 2019 -

Pluspunt, 4th edition PP4 2019 -
1 Decade in which the textbook was or is most used. 2 Highest known or estimated percentage of schools that at
some point in time used the textbook. Market share is not yet known for the two textbooks published in 2019.

All the textbook series consist of student material, including lesson books, work sheets
and (from the 2000s on) software. They also all provide teacher guidelines, sometimes with
additional user brochures, including daily lesson directions and background information.
In our analysis, we incorporated all parts of these materials that provide information about
the intended instructional approaches, from both the student and the teacher materials.
These include the parts in which, according to the teacher guidelines, instruction and
whole-class teaching are supposed to take place in the daily lessons, and information about
teaching sequences and didactical directions provided in the guidelines and user brochures.
Materials such as tests, materials for repetition and enrichment materials were left out of
our analysis.

6.3. Analysis Procedure

We used the findings of Study 1 (Table 1) as a framework for the analysis of the
textbooks. The focus was on use of reality, use of models, and use of students’ own input.
The use of non-routine problems was not included in our second analysis, because this is
already extensively reported upon in other studies [43,44].

The analysis contained two steps. First, we searched in the selected textbook materials
for the presence of the RME learning facilitators. Next, we checked whether the use as
indicated in the textbooks corresponds to the intended use according to the RME core
documents. To ensure that no relevant information was overlooked and the correspondence
with the RME approach was judged correctly, the search and the checking were done
multiple times. The analysis was mainly carried out by the first author and findings were
frequently discussed with the second author.

7. Results Study 2

The RME learning facilitators were found to be present in all the analyzed textbooks,
but we also discovered multiple differences. For all analyzed textbook series, the findings
are visualized in Table 3.
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Table 3. RME learning facilitators and their intended use for early addition and subtraction as included in RME-oriented
textbooks.

RME Learning Facilitators and Intended Use
for Early Addition and Subtraction 1

Textbooks
1980s 1990s 2000s 2010s 2019

W
iG

1

R
&

W

W
iG

2

PP1

W
iG

3

PP2

W
&

R

R
R

2

W
iG

4

PP3

R
R

3

W
iG

5

PP4

Use of reality
Bus context

• Providing meaning to both operations

• Introducing both operations in one situation

• Multiple calculations in one situation

Other context situations

• Providing meaning to both operations

Arrow language

• Symbolizing what happens

• Relating both operations

• Students using arrow language

Use of models
Segmented number line

• Positioning numbers by counting

• Supporting calculations

• Relating both operations

Empty number line

• Positioning numbers using number relations

• Supporting structured and varied calculations

One hundred square

• Offering exploratory activities

• Practicing both operations

Arithmetic rack

• Providing number images

• Supporting structured and varied calculations

Use of students’ own input

• Students putting into words what is happening

• Students’ own productions of problems

• Students’ own constructions of solution procedures

1 Note: = present, = absent.

7.1. Use of Reality

The eleven textbooks released from the 1980s to the 2010s all use the bus context to
introduce addition and subtraction. In none of these textbooks do the operations take place
simultaneously in one situation as suggested by Wiskobas. Some teacher guidelines state
explicitly that only one thing happens at each bus stop: passengers are either getting on or
off the bus. Regarding offering multiple calculations in one bus situation, the textbooks
differ. The two 1980s textbooks include this, as well some textbooks in the following
decades (WiG2, WiG3, RR2 and RR3), but the others do not. We were not able to establish
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whether the bus context is still used in the two textbooks published in 2019, since the
kindergarten materials in which addition and subtraction are introduced in these textbook
series were not yet available at the time of our analysis.

All thirteen textbooks offer varying other context situations, providing multiple mean-
ings of addition and subtraction. In the textbooks released from the 1980s to the 2010s, this
is also combined with arrow language. Regarding the use of arrow language, the inter-
pretation in the textbooks differs from Wiskobas. In all these textbooks, arrow language
is mainly offered as a ready-made fill-in exercise (Figure 10) in which students only have
to add the missing numbers, and sometimes missing operation signs as well. Only very
occasionally do students have to describe a problem situation by using arrow language,
and when this is asked, the guidelines state that the teacher has to demonstrate each step.
Furthermore, in only one textbook (W&R) is arrow language used to relate addition and
subtraction to each other. In the two textbooks published in 2019, arrow language is no
longer used.

Figure 10. Arrow language in R&W (1980s, left, Grade 1, student book 1–3, p. 50) and PP3 (2010s, right, Grade 1, student
book 7–8, p. 46).

7.2. Use of Models

All thirteen textbooks provide the model of the segmented number line and use it for
positioning numbers. The textbooks differ on other ways of using the segmented number
line. Using it to relate addition and subtraction to each other is done in all the 1980s and the
2019 textbooks, and in three textbooks (RR2, RR3 and WiG4) from the intervening period.
In the majority of textbooks, the segmented number line is used for supporting calculation.
Some of these textbooks (W&R, WiG4, WiG5 and PP4) provide the segmented number line
only for calculations up to 20 and not to support calculations with larger numbers.

The empty number line is present in all eleven textbooks published from the 1990s on.
All these textbooks but one (W&R) use it to position numbers. This means that in most
textbooks the positioning of numbers is supported both by the segmented and the empty
number line. The bead string, which was introduced in Proeve together with the empty
number line, is present in all but one (WiG2) of the textbooks that were published since
then. In six textbooks (PP1, PP2, PP3, RR2, WiG3 and WiG4), the bead string is used to
attach meaning to the empty number line, and in four textbooks (RR2, RR3, WiG5, and
PP4) the bead string is (also) related to the segmented number line (Figure 11).

All eleven textbooks published from the 1990s on in which the empty number line is
present use it to support structured and varied calculation procedures (Figure 12). They all
offer the empty number line to support calculation by stringing (e.g., calculating 36 + 29 by
doing 36 + 10 + 10 + 4 + 5) and by using varying strategies (e.g., 36 + 29 by doing 36 + 30 − 1).
This use of the empty number line is consistent with Proeve and TAL.
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Figure 11. The number bead combined with the empty number line in PP1 (1990s, above, Grade 2,
lesson book p. 57) and with the segmented number line in WiG5 (2019, below, Grade 1, student book
8, p. 4 [Reprinted with permission of Malmberg Publishers]).

Figure 12. Stringing and varying calculation strategies on the empty number line in PP2 (2000s, left, Grade 3, lesson book
p. 9) and WiG4 (2010s, right, Grade 2, student book p. 19).

For splitting procedures (e.g., 27 + 18 by doing 20 + 10 and 7 + 8), the first three
editions of WiG and the first two editions of PP use visualizations with 10-blocks and
1-blocks, which is also consistent with Proeve. Since the 2010s, this use of blocks is no
longer present in textbooks.

The one hundred square is provided in both 1980s textbooks. In line with Wiskobas,
this model is used for exploratory activities and for practicing calculations. This is also the
case in one 1990s textbook (PP1) and two 2000s textbooks (PP2 and W&R). From the 2010
textbooks on, the use of the one hundred square for early addition and subtraction has
disappeared, which corresponds with Proeve and TAL.

The arithmetic rack is used in all eleven textbooks published from the 1990s on. All
these textbooks use it for providing multiple number images and for replacing counting by
structured addition and subtraction (Figure 13), which is both in line with Proeve and TAL.
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Figure 13. Calculating with the arithmetic rack in W&R (2000s, left, Grade 2, student book 4, p. 14)
and RR3 (2010s, Grade 2, student book 4a, p. 16).

7.3. Use of Students’ own Input

All thirteen textbooks included in our analysis emphasize in their teacher guidelines
to let students explain in their own words what is happening in context situations, but
(as already mentioned) none of them invite students to do this by using arrow language.
All textbooks provide students with various assignments in the student books to produce
problems themselves, the so-called “own productions” (Figure 14). Making use of students’
own input by letting them come up with their “own constructions” of solution procedures
is to a certain extent recognizable in all textbooks published from the 1990s on. These text-
books regularly present worked examples of different calculation strategies for particular
addition or subtraction tasks, such as shown in Figure 12. These worked examples provide
the opportunity to discuss multiple calculation procedures with students, yet this is not
precisely the same as comparing and making use of students’ own solution procedures—as
emphasized in Proeve and TAL.

Figure 14. Assignments for own productions in WiG1 (1980s, left, Grade 1, student book 1b, p. 60)
and RR2 (2000s, right, Grade 1, Student book 3b, p. 29).

8. Conclusions Study 2

Study 2 showed that RME learning facilitators mentioned in the core documents
including use of reality, models, and students’ own input, are also present in the analyzed
RME-oriented textbooks. However, regarding the use of particular learning facilitators,
our findings are mixed—we found correspondences of RME-oriented textbooks with the
RME core documents, as well as deviations. To provide an overview of our results from
Study 2, we aggregated the textbooks findings per time period in Table 4 and placed them
alongside the findings from Study 1.

In most cases, the use of learning facilitators provided by all or most RME-oriented
textbooks corresponds with the intended use of these facilitators as indicated in the RME
core documents. This applies to the use of the bus context and other context situations
for providing meaning, the use of arrow language for symbolizing what is happening,
and the use of the arithmetic rack and the empty number line. Further, the use and the
disappearance of the one hundred square are in line with the core documents. Furthermore,
there is a correspondence between the textbooks and core documents regarding the use of
students’ own input in the teaching-learning process in the form of their own wordings,
their own productions of problems, and—although only to a certain extent—their own
constructions of solution procedures.
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Table 4. RME learning facilitators and their intended use for early addition and subtraction in
Wiskobas (W), Proeve (P), TAL (T), and RME-oriented textbooks per time period.

RME Learning Facilitators and Intended Use
for Early Addition and Subtraction 1

W P T Textbooks

1975
1990

1999

1980s
1990s
2000s
2010s

2019

Use of reality
Bus context

• Providing meaning to both operations

• Introducing both operations in one situation

• Multiple calculations in one situation

Other context situations

• Providing meaning to both operations

Arrow language

• Symbolizing what happens

• Relating both operations

• Students using arrow language

Use of models
Segmented number line

• Positioning numbers by counting

• Supporting calculations

• Relating both operations

Empty number line

• Positioning numbers using number relations

• Supporting structured and varied calculations

One hundred square

• Offering exploratory activities

• Practicing both operations

Arithmetic rack

• Providing number images

• Supporting structured and varied calculations

Use of students’ own input

• Students putting into words what is happening

• Students’ own productions of problems

• Students’ own constructions of solution procedures

1 Note: = present, = absent, = present in some, absent in other textbooks.

In several other cases, most or all textbooks deviate from the original intentions
articulated by Wiskobas. This applies for the use of the bus context to introduce addition
and subtraction in one situation, for the use of arrow language to relate addition and
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subtraction, and for letting students use arrow language to describe what is happening.
These ways of using these learning facilitators, which are no longer mentioned in Proeve
and TAL, are missing in the textbooks published after Proeve as well. In some textbooks, the
use of the bus context to carry out multiple calculations in one situation is also not included.

A learning facilitator on which textbooks differ from Proeve and TAL is the segmented
number line. While there is a change in the core documents from the segmented number
line (in Wiskobas) to the empty number line (in Proeve and TAL), the textbooks released
from the 1990s on (thus after the publication of Proeve) do not make this change. In
addition to the empty number line, the segmented number line is still in use as well, mostly
for positioning numbers and supporting calculations. Regarding relating addition and
subtraction on the segmented number line, there is no overall pattern—some textbooks do
this and others not.

9. Overall Conclusions and Discussion

The aim of this research was to trace how the RME reform evolved, and to unravel the
relationship between the intentions of the RME reform and its implementation in textbooks.
Our focus was on early addition and subtraction. We carried out two studies—one on the
intended curriculum level as laid down in RME core documents, and one on the potentially
implemented curriculum level in the form of RME-oriented textbooks.

In the study on RME as intended, we found that RME ideas on using reality, models,
students’ own input, and non-routine problems are steadily present in the RME core
documents published over time. In these documents, we also found changes over time
regarding particular learning facilitators and their intended use. Some of these changes
can clearly be characterized as further refined concretizations of RME ideas. An example
of this is the evolvement of the number line from a segmented to an empty one, which
enables structured and varied calculation. These changes imply that reconceptualization of
RME ideas not only took place on the overarching level of big ideas and teaching principles
of RME, but also on the more detailed level of particular learning topics.

We also detected that some ideas that were emphasized in Wiskobas, the oldest RME
core document, are surprisingly not present in the more recent ones Proeve and TAL. The
most outspoken example of this is the use of learning facilitators for relating addition and
subtraction to each other, which reflects the RME principle of intertwining related learning
strands. This leaving out of ideas that earlier were present may be unintentional. We could
not determine why these changes actually occurred, since the RME core documents did
not provide arguments for these changes.

Our study on RME-oriented textbooks also led to mixed findings. We found that
the RME-oriented textbooks generally correspond with the core RME documents on the
point of the presence of learning facilitators, but at the same time we could not detect an
overall pattern of alignment regarding the use of these learning facilitators. Thus, on the
one hand, based on our findings we can conclude that over the course of fifty years the
RME reform was and is still clearly present in Dutch primary school textbooks. On the
other hand, this does not mean that these textbooks are fully in consonance with RME’s
intentions. We found several differences between the intended use of particular learning
facilitators as indicated in the RME core documents, and the actual use of these facilitators
as described in the textbooks. Something similar was already found in the study “Wiskobas
in Methoden” [13]. In our study, we again found, over a long period of time, deviations
from the original RME intentions in RME-oriented textbooks. A striking example of this is
the use of arrow language. All textbooks that suggest its use apply it as a filling-in exercise,
which is almost the opposite of using arrow language to describe what is happening, which
is what was originally intended. Such findings clearly indicate that the mere presence of a
particular RME feature in a textbook does not tell the whole story. To get a broader picture
of how the RME reform was implemented in textbooks, the way in which it is interpreted
in the textbooks has also to be taken into account.
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This brings us to the limitations of our research. Our design only covered the level of
intended curriculum (the RME core documents) and the potentially implemented curricu-
lum (the textbooks), but not the level of the implemented curriculum (the teaching and
learning processes in school). This was beyond our scope and needs to be investigated as
well to achieve a full understanding of the development and implementation process of
RME. Of course, such a study should also not be restricted to early addition and subtraction
but should include the full spectrum of mathematical content domains.

Although we are aware of the constraints of our research, we think we can conclude
that it clearly shows how complicated the process is of generating and further developing
ideas for how to teach mathematics and consequently getting them implemented in materi-
als that teachers can use for their teaching. Our research has disclosed this process, which
is in no way a straightforward route.
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