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• Soil bacteriome and resistome struc-
tures were influenced by different
forces.

• In time, manure bacteria decreased, but
some native soil families were enriched.

• Swift recovery of soil resistome diver-
sity and abundance was observed over
21 days.

• ResCap reliably correlated with stan-
dard methods for gene quantification
(qPCR).
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Application of animal manure to soils results in the introduction of manure-derived bacteria and their an-
timicrobial resistance genes (ARGs) into soils. ResCap is a novel targeted-metagenomic approach that al-
lows the detection of minority components of the resistome gene pool without the cost-prohibitive
coverage depths and can provide a valuable tool to study the spread of antimicrobial resistance (AMR) in
the environment. We used high-throughput sequencing and qPCR for 16S rRNA gene fragments as well as
ResCap to explore the dynamics of bacteria, and ARGs introduced to soils and adjacent water ditches,
both at community and individual scale, over a period of three weeks. The soil bacteriome and resistome
showed strong resilience to the input of manure, as manuring did not impact the overall structure of the
bacteriome, and its effects on the resistome were transient. Initially, manure application resulted in a sub-
stantial increase of ARGs in soils and adjacent waters, while not affecting the overall bacterial community
composition. Still, specific families increased after manure application, either through the input of manure
(e.g., Dysgonomonadaceae) or through enrichment after manuring (e.g., Pseudomonadaceae). Depending on
the type of ARG, manure application resulted mostly in an increase (e.g., aph(6)-Id), but occasionally also in
a decrease (e.g., dfrB3) of the absolute abundance of ARG clusters (FPKM/kg or L). This study shows that the
structures of the bacteriome and resistome are shaped by different factors, where the bacterial community
seases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584 CL Utrecht, the Netherlands.
do).
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composition could not explain the changes in ARG diversity or abundances. Also, it highlights the potential
of applying targeted metagenomic techniques, such as ResCap, to study the fate of AMR in the environment.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
1. Introduction

Antimicrobial resistance (AMR) has been considered as one of the
major challenges to global public health. Agriculture contributes to the
emergence and spread of antibiotic resistance genes (ARGs) and antibi-
otic residues in the environment (Thanner et al., 2016). Manure from
(intensive) livestock production has been widely used as fertilizer be-
cause of its nutrient-rich and stable organic carbon composition. How-
ever, the application of animal manure also results in the introduction
of manure-derived bacteria and their ARGs into the soil, enriching the
already occurring set of ARGs (Jechalke et al., 2014b; Udikovic-Kolic
et al., 2014).

The gene groups encoding antimicrobial resistance – defined as
resistome – in manure and soils are clearly different (Noyes et al.,
2016). Depending on the animal source, genes conferring tetracycline
and aminoglycoside resistance have been shown to be highly prevalent
in animal fecal matter, or manure (Fang et al., 2018; Han et al., 2018;
Munk et al., 2018; Xie et al., 2018a), and Firmicutes, Bacteroidetes, and
Proteobacteria are the predominant phyla in dairy manure (Lopatto
et al., 2019; Wichmann et al., 2014). Recently, a strong correlation be-
tween the resistome and bacterial taxonomy has been reported in pig
and poultry feces in nine European countries (Munk et al., 2018). Soil
microbial communities are highly diverse in bacterial species (Fierer,
2017). Among other factors, soil texture strongly influences soil micro-
bial communities (Girvan et al., 2003) and has proven effects on the sur-
vivability of fecal bacteria in soils (Franz et al., 2014; van Veen et al.,
1997). In grasslands, the bacteriome can be dominated by Acidobacteria,
Actinobacteria, and Proteobacteria (Kaiser et al., 2016; Lopatto et al.,
2019), but through manure fertilization, the community structure may
change due to the input of nutrients (Pan et al., 2014), antimicrobial
compound residues (Jechalke et al., 2014a), or manure-derived taxa.

Most studies that explored the soil resistome, particularly in ma-
nured soils, report the use of ARG-targeted high-throughput qPCR
(HT-qPCR) coupled with 16S rRNA gene sequencing. HT-qPCR has the
advantage of analyzing significantly more resistance determinants (up
to 384 primer sets) than conventional qPCR, providing resistomeprofile
changes with relative abundance to the 16S rRNA gene population
structure. However, it still does not target the majority of known ARGs
(ResFinder database contains over 2700 gene variants). Metagenomic
shotgun sequencing (MGSS) has the potential to sequence all genetic
material of a given sample. However, MGSS analyses are constrained
by low sensitivity in detecting the “rare biosphere” unless cost-
prohibitive deep sequencing strategies are applied. Often the ecologi-
cally important taxa are present in concentrations below the “default”
MGSS detection limits (Lynch and Neufeld, 2015). In general, the
resistome constitutes the minority in the whole gene pool of environ-
mental samples, and is, therefore, challenging to target. Recently, ARG
target-enrichment strategies, such as ResCap, have been introduced to
overcome this challenge specifically for the resistome (Lanza et al.,
2018).

Up to now, a limited number of metagenomic studies targeting both
the bacterial community and resistome of manure and soils have been
performed, sampling either dairy (Guron et al., 2019; Noyes et al.,
2016) or swine farms (Fang et al., 2018; He et al., 2019; Leclercq et al.,
2016). However, in these studies, samples were collected only at a sin-
gle time point, and consequently, do not capture temporal variations in
the soil bacteriome and resistome structure induced by the application
of manure. Only two studies focused on application of dairy manure
on grassland, where typically, no tillage is performed, but did not
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measure the microbial community (Muurinen et al., 2017; Nõlvak
et al., 2016). More knowledge is available for swine or poultry manure
incorporated into agricultural fields, but overall, the number of field
studies characterizing both the bacteriome and/or the resistome over
time is quite limited (Hong et al., 2013; Lopatto et al., 2019; Riber
et al., 2014; Udikovic-Kolic et al., 2014). Therefore, changes in the bacte-
rial community and resistome composition in a field approach remain
to be thoroughly studied, particularly in a context of application of
dairy manure on grassland.

We hypothesized that the application of manure would significantly
alter the bacterial community, and that recovery of the community
would occur after a period of time. We similarly expected that ARG di-
versity would also initially increase and then decrease to values similar
to the ones found before manure application. The goal of this study was
to evaluate the impact of manure application on the bacterial commu-
nity and resistome ofmanured soils and nearbywatercourses, with em-
phasis on the resilience of the bacterial community and the resistome
diversity changes over time. We used high-throughput sequencing
and qPCR for 16S rRNA gene fragments as well as targeted shotgun
metagenomics (ResCap) (i) to evaluate the effect of the introduction
of manure-derived bacterial and ARG taxa on the bacterial community
and its resistome of manured soils and adjacent watercourses, over a
period of three weeks; (ii) to explore the fate of individual bacterial
andARG taxa once introduced to soils orwater; (iii) to correlate the bac-
terial community structure with the resistome structure; and finally,
(iv) to compare the outcome of ResCap to qPCR results obtained previ-
ously. To the best of our knowledge, this work reports the first usage of
ARG-targetedmetagenomics to analyze the effect ofmanure application
to soils.
2. Methodology

2.1. Sampling locations and sample collection

The soil andwater samples used in this studywere collected from six
dairy farms, with different soil textures (clay, sand, or peat), during the
manuring season of 2017 (between February and August). Each farm
had similar soil usage (grassland) and fertilization rates (farmers' per-
sonal communication) over the five years prior to the sampling
campaign.

Details on the manure properties, frequency of manure application,
soil physicochemical properties, and sampling procedure have been de-
scribed previously (Macedo et al., 2020). Briefly, the manure samples
were collected shortly before being applied to the field and after the
mixing. Manure (liquid slurry) was used as received from manure
transportation trucks, without any extra processing, except for mixing,
prior to soil application. Throughout the year, manure is collected and
stored below the stables until the compartment's holding capacity is
full, afterwhich it is transferred to a storage silo until the start ofmanur-
ing season. The manure is then applied to grassland by injection at ap-
proximately 10 cm depth, and no-tillage is performed. The soil and
water samples were collected before the application of manure (time
point T0) and at defined time intervals after manuring (1, 4, 7, 14, and
21 days; time points T1, T2, T3, T4, and T5, respectively). Samples
from nearby gardens, with no history of manure application, but of
the same texture were also collected and used as controls (NM). The
NM samples were collected from gardens due to the absence of forest
areas of the same soil texture close to the farms.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


G. Macedo, H.P.J. van Veelen, L. Hernandez-Leal et al. Science of the Total Environment 770 (2021) 145399
Composite soil samples were collected and prepared according to
ISO guidelines (ISO 10381-6:2009). Briefly, over 25 grab samples of top-
soil (0–10 cm) were collected every 40 steps with a soil probe, while
walking the fields in a “W” pattern (of those, 4–8 samples were col-
lected within the visual manure application bands). After collection,
the soil was homogenized and enclosed in plastic zip-lock bags. Water
samples were collected with sterile 2-L bottles from the adjacent dis-
charge ditch. Water samples were collected as close as possible to the
exit of a soil drainage pipe discharging to the ditch. All samples were
kept on ice during transport and stored at −20 °C before DNA
extraction.

2.2. DNA extraction and quantification

The total DNA extracts were obtained from 200 mg, 250 mg, and
100 mL of manure, soil, and water samples, respectively. The DNA
from manure and soil samples was extracted using the QIAamp DNA
Stool Mini Kit (QIAGEN; Hilden, Germany) and the FastDNA® Spin Kit
for Soil (MP Biomedicals; Irvine, CA, USA), respectively. The DNA from
the water samples was isolated with DNeasy® PowerWater® Kit
(QIAGEN) after filtration through 0.22 μm pore PVDF filters (Merck-
Millipore; Burlington, MA, USA). The DNA extraction of soil and water
samples proceeded according to the manufacturer's instructions, but
for manure samples, a bead-beating step with Precellys Evolution
(Bertin Instruments; Montigny-le-Bretonneux, France) was added for
enhanced cell lysis (Knudsen et al., 2016).

Each DNA extraction was performed in triplicate, after which the
DNA from each sample was pooled, containing similar volumes of
each original extract. For each extraction kit used, blank extracts were
randomly performed as controls to monitor kit and processing contam-
ination. TheDNAquantificationwas performed usingQuantus Fluorom-
eter (Promega; Madison, WI, USA) according to the manufacturer's
protocol, and checked for purity with NanoDrop 1000 Spectrophotom-
eter (Thermo Fisher Scientific; Waltham, MA, USA).

Ultimately, 140 DNA extracts were sent for 16S rRNA gene amplicon
sequencing, which comprised ten from manure, 62 from soil, and 58
from water samples, as well as ten negative extraction controls. These
samples covered time points NM, T0, T1, T2, T3, T4, and T5. A subset of
the samples (n=74)was sent for ResCap-enrichedmetagenomic shot-
gun sequencing. The ResCap samples included ten DNA pools fromma-
nure samples, 34 from soils, and 30 fromwater samples. These samples
corresponded to the time points NM, T0, T2, and T5, among which the
highest resistome changes were expected.

2.3. qPCR amplification of 16S rRNA gene and selected ARGs

Amplification of the 16S rRNA genes (rrs) and selected ARGs (sul1,
erm(B), and tet(W)) has been described previously (Macedo 2020).
Briefly, the absolute abundance of these genes was quantified by qPCR
in a CFX96 Touch™ Real-Time PCR Detection System (Bio-Rad, USA),
and each qPCR run was tested with a standard curve ranging between
103 and 107, or 10−5–10−9 target copies of standardized gene fragments
(gBlocks; IDT technologies, Belgium) for rrs, or ARGs, respectively, and
non-template controls. Cut-off valueswere calculated based on the low-
est quantity of genes included in the calibration curve of all plates, and
all calibration curves had a signal intensity of >2 threshold cycle (Ct)
difference to the non-template controls. The average of the highest Ct
obtained from this point across all plates was taken, and the standard
deviation was added to it.

All assays were performed on the diluted DNA extracts, in duplicate,
and the results were inspected to ensure that each duplicate fell within
1 Ct. The amplification efficiencies of all qPCR assays ranged between
88% and 102%, and the melting curves were performed to confirm the
amplicon specificity, starting at 65 °C with successive increments of
0.5 °C, up to 95 °C.
3

The quantifications occurred for each original extract, in dupli-
cates, following the Standard Curve method described elsewhere
(Brankatschk et al., 2012), and the final values for each pooled sam-
ple were obtained by averaging the results obtained for each original
extract. Later, the qPCR results were used to normalize ResCap values
(rrs) and to compare them with the quantification obtained from
ResCap (ARGs).

2.4. Microbiome profiling using rrs gene amplicon sequencing

Sequencing of rrs amplicons was performed at MrDNA Molecular
Research LP (Shallowater; TX, USA). Sequence libraries of the V4-V5 re-
gion were constructed using PCR with primers 515F/926R (Caporaso
et al., 2012; Quince et al., 2011) during a single-step 30-cycle PCR
using the HotStarTaq PlusMasterMix Kit (QIAGEN) under the following
conditions: 94 °C for 3min, followed by 30 cycles of 94 °C for 30 s, 53 °C
for 40 s and 72 °C for 1 min, after which a final elongation step at 72 °C
for 5minwas performed. The sampleswere run at 30 cycles to achieve a
good signal without hitting the amplification plateau. After amplifica-
tion, PCR products were checked on a 2% agarose gel to determine the
success of amplification and the relative intensity of bands. Guided by
expected microbial diversity, 300 bp paired-end reads were generated
using the MiSeq Reagent Kit V3 (Illumina; San Diego, CA, USA) at a
depth of 40,000 reads for manure and soil samples (hereafter “high-di-
versity samples”), and at 20,000 reads for water samples (hereafter
“low-diversity samples”) and negative controls. These sample sets
were purified using Agencourt XP AMPure beads (Beckman Coulter;
Brea, CA, USA) prior to Illumina library preparation. Sequencing was
performed on an Illumina MiSeq (Illumina).

The QIIME2 workflow (version 2018.11) was used to perform qual-
ity control and filtering of sequence data (Bolyen et al., 2019). Raw se-
quence data were imported into QIIME2, samples were demultiplexed,
and primer sequences were trimmed from the sequence reads using
q2-cutadapt (Martin, 2011). Then, feature tables and representative se-
quences for unique amplicon sequence variants (ASV)were constructed
for each data set after quality filtering of paired-end reads
(i.e., denoising, error-correction, and chimera removal) using the
DADA2 q2-plugin (Callahan et al., 2016). Parameters for quality filtering
were set as follows: to obtain a median Phred score > 30 at each base
position, the first ten and the first three bases were trimmed from
reads of high- and low-diversity samples, respectively, and forward
and reverse readswere trimmed at position 250 and 220 and at position
265 and 205 from high- and low-diversity samples, respectively. The
five feature tables and representative sequence sets were both then
merged into two merged data sets. Taxonomy assignment until the
genus taxonomic level was performed on representative sequences
using the scikit-learn naive Bayesian classifier (Pedregosa et al., 2011)
trained on full rrs sequences from the SILVA database version 132
(Quast et al., 2013).

Data analysis was performed using phyloseq version 1.22.3
(McMurdie and Holmes, 2013) in R statistical software version 3.5.0
(R Core Team, 2020). Prior to calculating bacterial diversity, ASVs
were removed that were not assigned to Bacteria (n = 2869), and
when assigned to Chloroplast (n = 993) or Mitochondria (n = 1417).
Furthermore, using the decontam package (Davis et al., 2018), 19 pre-
dicted contaminant ASVs which were linked to blank controls were re-
moved, retaining a total of 16,311 ASVs across all samples. Rarefaction
curves and library sizes can be found in the Supplementary material
(Supplementary File 1, Figs. 1–3). The raw reads are accessible under
the NCBI Bioproject number PRJNA665747.

2.5. ResCap workflow and data processing

The ResCap workflow is composed of three main steps, KAPA
HyperPlus Library construction (for MGSS) and enrichment, Illumina
short-read sequencing, and data annotation. The ResCap method was
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initially described by (Lanza et al., 2018), while the followed procedure
was according to the manufacturer conditions (Roche SeqCap EZ
workflow version 2.3). Briefly, 100 ng of DNA per sample was enzymat-
ically fragmented 20 min to a size between 200 and 500 bp, after end-
repair and adapter/barcode ligation using seven cycles amplification.
Eight purified libraries were pooled at 125 ng library each and enriched
according to the SeqCap EZ Library SR procedure (Roche). After the final
ligation-mediated PCR for 14 cycles, the enriched library pools were
paired-end 150 bp sequenced on Illumina NovaSeq6000 at a target se-
quencing depth of 2million read-pairs (4M reads) per enriched sample.

After barcode demultiplexing, the raw reads (over 90% ≥ Q30) were
adapter-clipped, erroneous-tile filtered, and quality-trimmed at Q20
(PHRED score) using BBduk (Bushnell, 2013). Read-pairs were subse-
quently mapped against the ResFinder database ((Zankari et al., 2012)
version of February 2020) using the default global-alignment algorithm
of BBMap (Bushnell, 2013). To normalize for library prep, enrichment,
sequencing depth, and gene length, FPKM (Fragments Per KilobaseMil-
lion) values for each ResFinder gene were calculated and subsequently
converted to FPKM/rrs gene copies. Each step of relative volume/con-
centration adjustment or amplification was taken into account for the
relative normalization (this includes the relative volumes during library
preparation, the number of samples in each pool during the library
preparation, the number of PCR cycles during enrichment, and the equi-
molar loading of thefinal pools on the sequencer). Finally, the outcomes
were corrected using the qPCR-obtained rrs copies per sample andmul-
tiplied by 109. This final FPKM value represents the normalized ARG
count per bacterial community.

To circumvent potential problemswith ambiguousmapping of read-
pairs to single highly identical ARGs in the ResFinder database, we ag-
gregated the FPKM data per identified ARG at 90% identity clustered
ARGs as the lowest level of detail (Munk et al., 2018). Briefly, all ARG
variants from ResFinder (accessed 19 February 2020) were clustered
using at least 80% coverage and a 90% sequence identity threshold
using CD-HIT-EST (v4.8.1) (Huang et al., 2010). Each cluster wasmanu-
ally inspected and optionally renamed to reflect their representant/ref-
erence sequence and gene members (Table S7) similar to (Munk et al.,
2018). The raw reads are accessible under the NCBI Bioproject number
PRJNA665747.

2.6. Alpha and beta diversities

For both bacteriomeand resistomedata, alphadiversity (Chao1 rich-
ness)was estimated after rarefaction. Other richness indexes (observed,
Shannon, and Pielou's evenness) can be found in the supplementary in-
formation (Supplementary File 1, Figs. 5 and 8).

In the bacteriome dataset, prior to rarefying, samples with low library
sizeswere excluded (< 5% ofmax read sum; 24water samples removed),
and then, the datawas split into twodatasets. Thefirst bacteriomedataset
was composed by manure and soil and the other by manure and water
samples. The manure-soil dataset consisted of 10,943 ASVs, distributed
in 72 samples (1796 and 9620 ASVs for manure and soil samples, respec-
tively), while the manure-water dataset consisted of 4128 ASVs, distrib-
uted in 44 samples (1492 and 2675 ASVs for manure and water
samples, respectively). Rarefying at 14,480 reads resulted in 5368 ASVs
removed from the first dataset while rarefying at 4022 reads resulted in
12,183 ASVs removed from the latter.

The resistomediversity was based on the NCBI accession numbers of
the ARG reference sequence from ResFinder and consisted of 424 differ-
ent genes, distributed in 74 samples (265, 313, and 347 different ARGs
formanure, soil, andwater samples, respectively). The ARG gene cluster
count matrix was rarefied to the number of the lowest sample library
size (183,629 hits).

The beta diversity analysis using Bray-Curtis dissimilarities were cal-
culated using the R package vegan (Oksanen et al., 2019) for each
dataset. The effects of time point, farm, and soil type were determined
using permutational multivariate analysis of variance (PERMANOVA)
4

and are depicted in non-metric multidimensional scaling ordination
plots based on the Bray-Curtis distances with 999 permutations. For
each variable tested, the homogeneity of group dispersion was con-
firmed by testing for multivariate homogeneity of groups dispersions
(PERMDISP2).

2.7. Procrustes analysis

The Procrustes analysis was used to assess the correlation between
the bacteriome and the resistome composition. The ordinations were
created from the gene cluster FPKM/rrs matrix and the ASV count ma-
trix, and NMDS was performed based on Bray–Curtis dissimilarities.
The symmetric Procrustes correlation coefficients between the first
two axes of the bacteriome and resistome ordinations. Significance
was tested using PROTEST, with default 999 permutations, and was cal-
culated separately for manure, soil, and water samples (alpha signifi-
cance threshold: 0.01).

2.8. Differential abundance analysis

To identify bacteria and ARG that differed in abundance before and
after manure application, the raw ASV and ARG cluster counts were an-
alyzed separately, using theDESeq2 package (Love et al., 2014). For each
analysis, samples from before manuring (T0) were used as normaliza-
tion reference. For each ASV and ARG, a Wald test was used to deter-
mine whether the fold change between time points was statistically
significant (alpha significance threshold: 0.01).

Additionally, manure-associated (M) bacterial ASVs absent before
(NM or T0) but present in soil and in water samples after (T1 – T5) ma-
nure application were identified. In addition to this exploratory ap-
proach, the samples were screened for selected families comprising
typical manure-associated pathogens as well as hospital-related patho-
gens (i.e., Salmonella, Campylobacter, Listeria, Yersinia, and Clostridium,
ESKAPE pathogens).

2.9. Statistical analysis

One-way analysis of variance (ANOVA)was conducted to detect dif-
ferences in the bacteria and ARG diversity indexes and in ARG abun-
dance based on qPCR and ResCap data across different sample types
and time points. The ANOVA tests were followed by TukeyHSD post-
hoc analysis, and homogeneity of variancewas confirmedwith Levene's
test. Data normality was confirmed with Shapiro-Wilk's method, and
when normality was not achieved, group comparison was performed
using the equivalent non-parametric test (Kruskal-Wallis). A signifi-
cance threshold of p < 0.05 was considered to be statistically relevant
for all ANOVA, except when mentioned otherwise. These analyses
were performed with R version 3.6.3 (R Core Team, 2020) and RStudio
(Version 1.2.5033; https://www.rstudio.com/). Used software packages
consisted of reshape (Wickham, 2007) and tidyverse (Wickham et al.,
2019), a set of packages designed for data cleaning, trimming, and visu-
alization; of PMCMRplus (Thorsten, 2020), and car (Fox and Weisberg,
2019) for ANOVA and Levene's test.

3. Results

3.1. Diversity of bacterial populations in manure, soil, and water

Chao1 patterns showed that the soil samples had a greater richness
of bacterial ASVs than manure (Fig. 1, p < 0.01), while water samples
showed lower bacterial taxa richness than manure (p < 0.01), but
higher evenness (p<0.01; Supplementary File 1, Fig. 5). The application
of manure did not affect the estimated total number of ASVs found in
manured soils (p = 0.78; Fig. 1) nor in the adjacent watercourses
(p = 0.15) as compared to soil and water before manure application,
respectively.

https://www.rstudio.com/


Fig. 1.No changes inmicrobiome diversity (Chao1) aftermanure application across sample types (A). Manure samples (M) as well as never-manured soils (NM), and samples before (T0)
and after (T1 – T5)manure application are presented under the corresponding rarefaction depth. Non-metric multidimensional scaling (NMDS) plots illustrating Bray-Curtis dissimilarity
matrices evidence the clustering of soil (B) andwater (C)microbiome samples by farm and soil texture, regardless of havingmanure applied. Other richness indexes (Observed, Shannon,
and Pielou's evenness) can be found in the suppl. Material.
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The NMDS ordination based on Bray-Curtis dissimilarity revealed
the clustering of samples based on soil textures (PERMANOVA,
p < 0.01 in both soil and water samples) and farm identity (Fig. 1;
PERMANOVA, p < 0.01 in both soil and water samples). No significant
effect of manuring or time-points after manuring was found. The effect
of soil texture and farm explained 36% and 48%, and 16% and 24% of the
variation in soil and water samples, respectively.

In soil communities, Bacteroidetes (19.9–43.5%), Proteobacteria
(20.7–38.4%), Verrucomicrobia (6.4–17.3%), Acidobacteria (3.8–15.8%),
Actinobacteria (2.8–10.4%)were themost abundant phyla, whereas inma-
nure communities Bacteroidetes (37.0–62.4%), Firmicutes (18.0–36.3%),
Proteobacteria (1.5–40.2%), Spirochaetes (1.7–15.6%), Tenericutes
(0.5–8.1%) were dominant (Supplementary File 1, Fig. 4). In water, the
abundant bacterial communities were Proteobacteria (4.0–68.6%),
Bacteroidetes (0.0–60.3%), Cyanobacteria (0.0–92.1%), Actinobacteria
(0.0–21.2%), and Verrucomicrobia (0.0–20.6%).
Fig. 2. Heatmap demonstrating the 30 most abundant families in manure and soil samples. M
enrichment. Differential abundance analysis based on the negative binomial distribution (D
between soil before receiving manure (T0) and soil four days after receiving manure (T2). Oth
ASV counts is shown.
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3.2. Tracing manure-derived bacteria in farm soils

Although manure application did not result in changes in the overall
community composition, the abundance of specific taxa was changed
shortly after manure application. The differential abundance analysis
showed that from the 30 most abundant families, seven families had
their abundances significantly increased after manure application (from
T0 to T2; p < 0.01; Fig. 2). Typical environmental bacteria were among
the most abundant taxa (e.g., Burkholderiaceae, Chitinophagaceae, and
Flavobacteriaceae), but some families (e.g., Dysgonomonadaceae and
Ruminococcaceae) were very abundant in manure and in soils directly
after manuring (Figs. 2 and 3). Other families, such as Pseudomonadaceae,
were significantly increased inmanured soils, even though theywere not
abundant in manure (Figs. 2 and 3).

Manure application resulted in the direct introduction of 26–136ASVs
to farm soils, as observed by the overlap of manure and manured-soil
anure resulted in the transfer of manure-derived bacteria, but also in native soil bacteria
ESeq2) showed that marked families (black dot) were significantly changed (p < 0.01)
er time points (T1 – T5) are also displayed. For better visualization, the cubic root of the



Fig. 3. Bar chart demonstrating the relative abundance of Dysgonomonadaceae and Pseudomonadaceae, evidencing their abundance peak in soils shortly after manure application, in the
different farms. Their relative abundance is shown in manure samples (M), and soil samples before (T0) and after (T1 – T5) manure application.
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ASVs, corresponding to eight families (incl. Dysgonomonadaceae; Supple-
mentary File 1, Fig. 6). From these, three families were increased shortly
after manure application (p < 0.01; Figs. 2 and 3) and showed their
Fig. 4. Increase of resistome diversity (Chao1) after manure application across sample types (A
matrices demonstrate the clustering of soil (B) and water (C) resistome samples by time poi
and Pielou's evenness) can be found in the suppl. Material (Supplementary File 1, Fig. 8).
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highest relative abundance within the first week after manure applica-
tion, regardless of the farm. No manure-derived bacteria were detected
in water samples after manure application.
). Non-metric multidimensional scaling (NMDS) plots depicting Bray-Curtis dissimilarity
nts, regardless of the farm and soil texture. Other richness indexes (Observed, Shannon,
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3.3. Resistome diversity in manure, soil, and water

Manure application resulted in significantly increased ARG diversity
in soil and water samples measured four days after the application of
manure (T2) and in soils three weeks after manuring (T5; Fig. 4;
p < 0.01). Regardless of the soil characteristics of each farm, the
resistome diversity of both soil and water samples was increased by
the application of manure, with the strongest changes apparent four
days after manuring (T2). At T5 (21 days after manuring), diversity
was still significantly increased in soils, but not in water.

The NMDS ordination based on Bray-Curtis dissimilarities revealed
that the resistome composition was significantly influenced by manure
application and days after manuring in soils (PERMANOVA, p = 0.001;
Fig. 4), but not inwater samples (p=0.011). Instead, the resistomepro-
file in water samples wasmainly shaped by the soil texture (p= 0.001;
r2 = 0.209). The effect of manure application was stronger in soils and
could explain 51% and 14% of the variation in soil and water samples,
respectively.

Amongmanure samples, resistance to tetracyclines was most abun-
dant (−4.27 ± 0.18 log FPKM/rrs; Supplementary File 1, Fig. 7),
followed by resistance to aminoglycosides (−4.54 ± 0.27), and
macrolides (−4.51 ± 0.19). The resistome of both never-manured soil
(NM) and soils before manure application (T0) was quite similar,
being dominated by resistance to trimethoprim (−4.29 ± 0.35 log
FPKM/rrs), quinolones (−4.42 ± 0.16), and macrolides (−4.76 ±
0.17). However, after the application of manure, the soil resistome
shifted and became dominated by resistance to aminoglycosides
(−4.23 ± 0.29 log FPKM/rrs), tetracyclines (−4.59 ± 0.17), and tri-
methoprim (−4.86 ± 0.36). A similar shift occurred between water
samples before and after manure application, with resistance to amino-
glycosides and tetracyclines becomingmore abundant aftermanure ap-
plication (Supplementary File 1, Fig. 7).

3.4. Manure-induced ARG changes

The differential ARG abundance analysis revealed that depending on
the type of gene, the abundance of some ARGs increased after manure
application, while others decreased (Fig. 5 and S9; p< 0.01). For exam-
ple, genes belonging to the clusters represented by aph(6)-Ib or erm(B)
Fig. 5.Heatmap demonstrating the 30 most abundant ARG clusters in soil samples, evidencing
ARGs. Differential abundance analysis (DESeq2) showed that the marked ARG clusters (black d
soil four days after receiving manure (T2). Never-manured (NM) and 21 days after receiving m
shown. ARG clusters in water samples are depicted in Supplementary File 1, Fig. 9.

7

were among the most abundant ARGs in manure, and their abundance
increased after manure application in both soil and water samples. In
contrast, dfrB3 and oqxB were among the most abundant ARGs in soils
before manure application and decreased in soils after manure
application.

In soils, manuring resulted in a significant increase in abundance of
aph(6)-Ib and erm(B) by roughly 1 log, from 8.13 ± 0.77 and 7.71 ±
0.20 log FPKM/kg to 9.13 ± 0.23 and 8.59 ± 0.32 log FPKM/kg respec-
tively (p < 0.01; Fig. 6). The abundance of dfrB3 decreased from
9.24± 0.24 to 8.43± 0.43 log FPKM/kg (p< 0.01; Fig. 6). Inwater sam-
ples, manuring resulted in the significant increase of aph(6)-Ib and erm
(B) abundance by roughly 2 logs, from 4.53 ± 0.7 and 3.85 ± 0.60 log
FPKM/L to 6.16 ± 0.67 and 5.75 ± 0.71 log FPKM/L, respectively
(p<0.01; Fig. 6), but the abundance of dfrB3 remained stable at roughly
5 log FPKM/L (Fig. 6).

3.5. Comparison between ARG: qPCR vs. ResCap

In general, when compared to qPCR results, ResCap led to a slight un-
derestimation of the gene abundance, depending mainly on sample
type (−2.26 ± 0.22, −0.65 ± 0.47, and − 0.58 ± 0.93), but also on
the gene (either sul1, erm(B), or tet(W); Supplementary File 1,
Fig. 12). The gene abundancesmeasured by qPCRwere positively corre-
lated to the ones measured with ResCap for sul1 (r = 0.83, p < 0.01),
erm(B) (r = 0.89, p < 0.01), and tet(W) (r = 0.85, p < 0.01), even
though an ideal 1:1 correspondence between the two datasets was
not found. The qPCR results used for comparison were obtained from
the same DNA extracts described here, prior to pooling, andwere previ-
ously published elsewhere (Macedo et al., 2020).

3.6. Bacteriome and resistome correlation (Procrustes)

Based on Procrustes and PROTEST significance analysis comparing
the ARG composition and bacterial composition for each sample type
of the first two axis from NMDS ordinations, the resistome and
bacteriome did not correlate in manure (p = 0.578, permutations =
999), soil (p = 0.046, permutations = 999), or water samples (p =
0.132, permutations = 999).
different ARG patterns, and howmanure (M) resulted in the abundance change of certain
ot) were significantly increased (p< 0.01) between soil before receiving manure (T0) and
anure (T5) are also displayed. For better visualization, the cubic root of ARG abundance is



Fig. 6. ResCap-based absolute abundance estimates of aph(6)-Id, dfrB3, and erm(B) gene
clusters, representing the main trends found in gene abundance changes. The time
points represent manure (M), never-manured soils (NM), before (T0), four-days after
(T2), and 21-days after (T5) manure application to soil and water samples. Group
differences were determined using ANOVA (p < 0.05).
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4. Discussion

In this study, we used qPCR (for rrs), high-throughput 16S rRNA
gene sequencing (for bacteriome), and targeted metagenomics
(ResCap, for resistome) to evaluate the impact of manure application
on the bacteriome and resistome of manured soils and nearby water-
courses. The results confirmed the hypothesis that manure application
introduced both bacteria and ARG to soils and that after three weeks,
their abundance tended to decrease to levels found before manuring.
The effects of manuring were more evident and longer-lasting in the
resistome than in the bacteriome of agricultural soil.

4.1. Manure enriches AMR-relevant bacteria in farm soils

In general, the dominant phyla of manure and soil bacterial commu-
nities in this studywere characteristic of bacteriomes described in other
studies (Han et al., 2018; Lopatto et al., 2019; Riber et al., 2014; Wang
et al., 2018). Manure, soil, and water alpha diversities and phylum com-
position were constant across the sampling campaign, showing that the
application of manure did not affect the overall bacteriome diversity of
soil and water samples.

Results similar to the ones described in the present study were re-
ported in other field studies of manured soils where tillage has been
performed (Lopatto et al., 2019; Riber et al., 2014; Xie et al., 2018a),
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but not in manured-soil microcosm studies (Han et al., 2018; Wang
et al., 2018). In the latter, soil diversity decreased after receiving ma-
nure, regardless of its animal source. Possible reasons for the divergent
outcome of these studies lie in differences in the experimental time
frame, the diverse inherent soil characteristics, and weather conditions
between studies. In this study, the soil had higher bacterial richness
thanmanure,which could explainwhymanure application did not con-
tribute to an overall diversity increase, and the location where the sam-
ples were collected (farm identity), followed by soil texture, were the
main drivers shaping the bacterial community.

Soil communities are known to be affected by soil texture (Blau et al.,
2018; Girvan et al., 2003) and also by edaphic factors (Lauber et al.,
2008). Still, four out of the eight families that were introduced to soils
by manure amendment had a significantly higher abundance after ma-
nuring (p<0.01), as shown by the overlap ofmanure andmanured-soil
ASVs and DESeq2 analyses. These families belonged either to Firmicutes
or Bacteroidetes, which are the most common phyla found in manure
(Ding et al., 2014; Wichmann et al., 2014), and have been recognized
as important ARG hosts in soils (Forsberg et al., 2014; Han et al., 2018;
Leclercq et al., 2016). Typically, manure-derived bacteria are not well
adapted to survive in soils (Bech et al., 2014; Franz et al., 2014; Heuer
et al., 2008), and consequently, tend to decrease shortly after introduc-
tion in soils. Indeed, in this study, these families were hardly detected
three weeks after manure application.

At the same time, Pseudomonadaceae and Moraxellaceae were
presumably enriched after manure application. As manure is com-
monly applied to soils for its nutrient content, the growth of certain
bacterial groups is stimulated (Goldfarb et al., 2011). In general, γ-
Proteobacteria, particularly Pseudomonas, take part in the primary
succession after a disturbance in the bacterial community of soil
and aquatic environments (Becerra-Castro et al., 2016; Song et al.,
2017; Vadstein et al., 2018). It has been recently shown that manure
application to soils can enrich antimicrobial-resistant bacteria (Ding
et al., 2014; Hu et al., 2016; Udikovic-Kolic et al., 2014), and both
Acinetobacter and Pseudomonas have been associated with ARG per-
sistence in manure-treated soils (Leclercq et al., 2016). Whether
and which of the ARG that were enriched in this study were located
on Pseudomonas has to be evaluated by further studies. Here, the rel-
ative abundance of Pseudomonadaceae decreased over time, reaching
levels similar to the ones found before manure application, showing
that the manure input had only a short-term effect on the relative
abundance of this family. The findings of the current study corrobo-
rate previous studies reporting manure enrichment of bacteria rele-
vant to the spread of AMR.

In general, water sampleswere affected to aminor extent bymanure
application than soils. Depending on the soil NPK requirements and
local legislation, 30 m3/ha of manure (slurry) is typically applied to
soils, corresponding to approximately 40 g/kg soil (Ding et al., 2014).
From this, and further depending on multiple factors (e.g., climate, soil
texture), it would be expected that only a small fraction of manure bac-
teria would leach into thewater ditches (Bech et al., 2014). Despite ma-
nure displaying higher bacterial diversity thanwater, its contribution to
the bacteriome structure of water samples was not detectable, which
can explainwhynomanure-derived ASVswere found inwater samples.

4.2. Manure provokes an intense short-term increase of ARGs

Overall, resistance to aminoglycosides and tetracyclines were abun-
dant throughout the different samples, but particularly more inmanure
and manured soils and waters. Resistance to tetracyclines and amino-
glycosides is commonly reported in manured soil studies (Chen et al.,
2019; Han et al., 2018; Zhang et al., 2019, 2017). As tetracyclines are
commonly administered to farm animals, resistance to this antimicro-
bial class was expected. However, aminoglycosides are not so widely
used on a national scale in the Netherlands (de Greef et al., 2019). Pre-
viously, (Muurinen et al., 2017) showed that some aadA genes were
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increased bymanure storage. Considering that all manure samples used
in this study were stored below the stables before being applied in the
fields, this could partly explain the high abundance of aminoglycoside
resistance. However, resistance to aminoglycosides has been strongly
correlated tomobile genetic elements (i.e., integrases and transposases)
(Zhang et al., 2017), and has been positively associated with corre-
sponding antibiotics used in poultry farms (Luiken et al., 2019). Because
neither farm antimicrobial consumption data was collected, nor mobile
genetic elements were measured, it is not possible to determine which
aspect was more important in this case.

In soils, manure application resulted in an intense short-term in-
crease of ARGs (after four days), which could still be observed after
21 days. The combination of results from this study with the previously
published findings (Macedo et al., 2020) suggests that most ARGs will
probably recover to abundances found before manure application in a
period of roughly 40 days. Elsewhere, a similar increase in ARG content
immediately after application of cow manure was observed in a field
study where tillage was not performed (Muurinen et al., 2017) and in
two microcosm studies (Han et al., 2018; Zhang et al., 2017). However,
the temporal succession in some of those studies seems to occur slower
than in this study, as there the overall number of ARGs after 40 dayswas
still significantly higher than beforemanure application. Notably, Zhang
et al. (2017) reported a period of 20 days for ARG numbers to decline
back to numbers before amendment. Furthermore, the present study
corroborates the previous findings that the fate of AMR depends exten-
sively onARG identity, as seen for genes thatwere very abundant inma-
nure and not in soils before manure application (increased after
manuring; e.g., aph(6)-Id, erm(B), cfxA, tet(W), or tet(M)), and for the
ones that were abundant in soils without manure but not in manure
(decreased after manuring; e.g., dfrB3, oqxB, otr(A), or ole(C)). In water
samples, manure application resulted in the increase of ARGs (after
four days), after which their diversity was decreased to levels before
manure application. There is a lack of studies focusing on the overall
ARG diversity in surface water streams adjacent to manured fields,
over time. The findings of this study are consistent with the ones
shown by Muurinen et al. (2017), where the number of ARGs in ditch
waters two and six weeks after manure application was similar to the
numbers found prior to manuring.

Moreover, in this study, manure application was the main variable
driving resistome diversity in soils, explaining 51% of the NMDS distri-
bution. Previously, in a multivariate analysis study, Muurinen et al.
(2017) also found that the manure amendment was among the vari-
ables that significantly explained ARG variation in soils. However,
long-term studies indicate that bacterial composition and soil proper-
ties have the strongest role in shaping ARG profiles in manured soils
(Guo et al., 2018; Xie et al., 2018b), which contradict the observations
from the current study. Not only did soil properties (here represented
by the soil texture) not showa significant correlationwith the resistome
structure, but also no statistically relevant association between the
resistome and bacterial composition was found. Although not common,
the lack of correlation between resistome and bacteriome and soil prop-
erties has also been reported in a long-termmanured-soil study (Cheng
et al., 2019). While soil environments are known for being a source of
ARG diversity, regardless of having a history of manure application
(D'Costa et al., 2011; Nesme and Simonet, 2015), here, theARGdiversity
observed in never-manured soil and in samples before receiving ma-
nure was well below the ARG diversity observed in manure. The input
of ARGs from manure was intense both in abundance and diversity
and led to a steep increase of ARG levels, thus shaping the overall
resistome structure. While manure strongly affected the resistome,
the direct contribution to the bacterial community was rather low,
thus explaining why no correlation was found between the resistome
and the bacteriome. Compared to the existing microbiota, the manure
amendment only added a fraction of additional bacteria to soil, as rrs
abundance was constant before and after manuring in soil and water
samples (Supplementary File 1, Fig. 10). Considering the amount of
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manure applied, it corresponded roughly to adding 1–10% bacteria to
the ones already present in soils, apparently not enough to shift the
overall community composition.

4.3. ResCap is a promising tool to determine the ARG fate in the
environment

Generally, the data obtained from ResCap showed a strong positive
correlation with the qPCR-obtained quantifications (Supplementary
File 1, Fig. 11 and 12). However, differences in the absolute agreement
were apparent between sample types.Manure samples showed a stron-
ger underestimation when compared to qPCR (roughly −2 log units),
and the water samples showed high variability in abundance differ-
ences between ResCap and qPCR data (standard deviation varied
0.874–0.914 log units). The reasons for these differences are not entirely
clear, and one can only speculate. As metagenome shotgun uses longer
intact DNA and qPCR uses short fragments for detection, the extent of
DNA fragmentation might contribute to the observed difference be-
tween values. Additionally, different hybridization or PCR efficiencies
between sample types could have interfered.

ResCap is reported to achieve better recovery of target genes than
MGSS and to greatly enhance the sensitivity and specificity of
metagenomic methods (Lanza et al., 2018), increasing the number of
mapped reads from 1 in 1000 read-pairs (Munk et al., 2018) up to 200-
fold (1 in 5). Here, a total of 475 ARG clusters were found in the 74 sam-
ples analyzed, including 79, 65, and 47 gene clusters that confer resistance
primarily to aminoglycosides, beta-lactams, and tetracyclines, respec-
tively. By introducing a probe-hybridization step, data quality and repro-
ducibility increase as it reduces the variance in target coverage, delivering
a better cost-effective approach (Mamanova et al., 2010). However, low
efficiencies in the hybridization step, or signal overloads, may affect the
outcome. Additionally, as it requires enzyme-based steps as does qPCR
(e.g., amplification during library preparation), inhibition might also
bias the results. At the same time, qPCR is considered the method of
choice for gene quantification but is not free from potential pitfalls. Final
quantification is affected by protocol-related issues (e.g., choice of
primers, and their concentration, mastermix), equipment used, among
others (Bustin et al., 2009; Rocha et al., 2018; Travis et al., 2011). Addition-
ally, it can only measure a limited number of genes, even in a high-
throughput setup, never delivering a complete picture of the sample
ARG landscape. In terms of errors, a variability of <3-fold in absolute
units, corresponding to circa 0.5 log units, was found in an inter-
laboratory comparisonusing qPCRdata (Travis et al., 2011),which the au-
thors considered “small in biological terms.”

The choice to evaluate the impact of anthropogenic activities,
namely manure application, in the environment is challenging and re-
quires compromising between accuracy and amount of information.
When compared to qPCR (Supplementary File 1, Fig. 12), the results ob-
tained with ResCap showed an average difference of <10-fold (1 log
unit) in overall soil and water samples. Although this difference is con-
sidered biologically relevant in absolute terms, when placed in a context
of highly polluted environments, such as manured soils (roughly 1010

total ARG copies/g; (Han et al., 2018)), or wastewater streams (roughly
108 total ARG copies/mL; (Quintela-Baluja et al., 2019)), itmay not be so
relevant because the background ARG level in those scenarios is already
relatively high. The semi-quantitative aspect of metagenomics, which
ResCap also features, is of great value. It should not be disregarded solely
based on the loss of accuracy but rather be validated in further method-
ological studies. ResCap has been previously validated and shown to
provide better results than metagenomic shotgun sequencing (Lanza
et al., 2018). Here, we applied this technology to a new context and con-
cluded that ResCap can simultaneously generate results on many resis-
tance genes while still giving at least semi-quantitative results.
Therefore, one should be careful in presenting the results, as factors
such as sample ARG abundance and presence of impurities in the DNA
extracts may significantly affect the ResCap-based quantification.
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4.4. Implications on-farm management

Traditional farming practices were followed while this study was
being conducted. Manure was stored below the stables or in silos, dur-
ing winter, and it was applied during manuring season (spring/sum-
mer) multiple times, as farmers commonly do. While the effects of
manuring in the resistome of agricultural soil were transient, an intense
increase of ARGs occurred simultaneously with the enrichment of na-
tive soil bacteria. Therefore, solutions to minimize the input of ARGs
into soil should be further investigated. The application of anaerobic di-
gestion treatments of animal waste holds potential because it allows
farmers to recover the nutrients and produce biogas. While manure
treatment is efficient in removing fecal indicator pathogens and some
ARG-carrying bacteria (Iwasaki et al., 2019; Pandey et al., 2015), some
ARGs persist after the treatment (Huang et al., 2019). Nevertheless, be-
cause of the costs of implementing and maintaining treatment struc-
tures, the majority of the farms applies manure directly in soils,
without any treatment.

5. Conclusions

In thisfield study, both soil bacteriome and resistome showed strong
resilience to the input of manure over a timeframe of 21 days. Manure
application resulted in the input of manure-derived bacteria that did
not affect the overall community composition. After being introduced
to soils, these bacteria decreased, in a period of three weeks. However,
manure application also resulted in the enrichment of fast-growing bac-
teria, namely Pseudomonadaceae. On the other hand, the resistome
displayed a temporal shift with an intense increase of ARG diversity
and abundance after manure application, but these effects were tempo-
ral. It was shown that the fate of ARG depends on the gene identity, and
that both bacteriome and resistome structureswere shaped by different
factors, where the bacterial community did not show a significant rela-
tionship with ARG abundance.

This study also highlighted that targeted-metagenomic techniques,
such as ResCap to enrich the resistome, provide an excellent tool to ex-
plore and assess the fate of AMR in the environment, as they provide the
complete picture of the resistome landscape at an affordable price. Ad-
ditionally, when coupledwith 16S rRNA gene quantifications, it reliably
correlated with standard methods used for gene quantification (qPCR).
However, caution is advised when analyzing the results as sample-
related bias may be prone to occur (e.g., inhibition).
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