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ABSTRACT
The formally exact framework of equilibrium Density Functional Theory (DFT) is capable of simultaneously and consistently describing
thermodynamic and structural properties of interacting many-body systems in arbitrary external potentials. In practice, however, DFT hinges
on approximate (free-)energy functionals from which density profiles (and hence the thermodynamic potential) follow via an Euler–Lagrange
equation. Here, we explore a relatively simple Machine-Learning (ML) approach to improve the standard mean-field approximation of the
excess Helmholtz free-energy functional of a 3D Lennard-Jones system at a supercritical temperature. The learning set consists of density
profiles from grand-canonical Monte Carlo simulations of this system at varying chemical potentials and external potentials in a planar
geometry only. Using the DFT formalism, we nevertheless can extract not only very accurate 3D bulk equations of state but also radial
distribution functions using the Percus test-particle method. Unfortunately, our ML approach did not provide very reliable Ornstein–Zernike
direct correlation functions for small distances.
© 2021 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0042558

I. INTRODUCTION

Given the massive present-day availability of computer power
and data, the grown general interest in machine learning (ML)
should not come as a big surprise. This interest also extends to
physics whose community excels at gathering, organizing, and ana-
lyzing data in order to predict and model the behavior of systems
with many degrees of freedom, which is also one of the strengths
of ML. An important distinction between the field of physics and
ML is that physicists tend to understand, model, and predict the
systems of their interest via a stepwise chain of reasoning from
cause to effect, whereas ML algorithms tend to “only” directly relate
cause to effect without necessarily understanding (in the traditional
“human” sense) the steps in between. In other words, ML can often
be regarded as a black box that is as incomprehensible as the initial
raw data itself.

Here, we will also suffer, at least to some extent, from this
black-box character of ML applied to a problem in classical Density

Functional Theory (DFT).1,2 However, only in a limited way because
we can build on the foundations of physics to exploit, in this case,
a few ingredients of the DFT formalism. As we will explain in full
detail below, DFT is an exact framework to describe thermodynamic
and structural properties of interacting many-body systems. This
involves the solution of Euler–Lagrange equations for the equilib-
rium density profile for a particle system in an external potential.
Now, DFT hinges for given particle–particle interactions on approx-
imate free-energy density functionals. By comparison with Monte
Carlo (MC) simulations of density profiles in a learning set of exter-
nal potentials, a free-energy functional can be constructed during an
ML process. The additional physics that can be extracted beyond the
learning set not only includes density profiles for external potentials
outside the learning set but also (i) thermodynamic bulk quanti-
ties (because the minimal value of the functional corresponds to the
thermodynamic potential at equilibrium from which, for instance,
the bulk pressure follows) and (ii) the two-body direct correlation
function (because it is related to the second functional derivative of
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the functional) from which the radial distribution function follows.
Moreover, thermodynamic surface properties such as the adsorption
and the interfacial tension can be extracted from the functional. Our
work is strongly inspired by recent ML work to construct a classi-
cal DFT for the Lennard-Jones (LJ) fluid in one spatial dimension,3,4

which we here extend to the three-dimensional LJ fluid. Similar to
Refs. 3 and 4, we use grand-canonical Monte Carlo (MC) simula-
tions at a learning set of chemical potentials and external potentials,
however, in a planar geometry. We stress that the planar geometry
yields an effective 1D problem embedded in 3D, not to be con-
fused with an actual 1D problem. We will show the ability not only
to “learn” a free-energy functional that predicts density profiles of
this system at chemical and external potentials outside the train-
ing set but also to extract several system properties that were not
at all present in the data of the training set or at least not explic-
itly. In particular, we will show that from a learning set in a pla-
nar geometry, a machine-learned functional can be constructed that
is capable of predicting the 3D mechanical bulk equation of state
of the homogeneous fluid (the pressure–density–chemical poten-
tial relations), the 3D radially symmetric direct correlation func-
tion and the radial distribution function at any density, and (in
principle) Lennard-Jones density profiles in an arbitrary external
potential in 3D. The agreement of these predictions against simu-
lations varies from very good (the equation of state, radial distri-
butions from the Percus test-particle method, and density profiles
outside the learning set) to, admittedly, rather poor (direct corre-
lation function). The poor prediction for the latter is probably due
to the rather simple form (and in retrospect perhaps an overly sim-
ple form compared to Ref. 4) for the free-energy functional and
due to the treatment of the repulsive part of the LJ interaction.
The main thrust of our findings at this point, therefore, is not the
construction of the Lennard-Jones free-energy functional that com-
pares “best” with MC simulations, but rather the notion that free-
energy functionals for 3D systems can be constructed from relatively
simple geometries (here planar) in the learning set. Extensions to
other systems, for instance electrolytes and ionic liquids forming an
electric double layer in contact with planar electrodes, could be a
next step with actual applications in modeling the osmotic equation
of state, the differential capacitance, and the adsorption in porous
geometries.

This paper is organized as follows. We start in Sec. II with
an extensive introduction for classical DFT—which can easily be
skipped by readers familiar with this framework. In Secs. III and
IV, we discuss the system and the simulation and machine-learning
methods that we use, and in Sec. V, we discuss the resulting kernels,
density profiles, equations of state, and pair correlation functions.
We end in Sec. VI with a discussion and outlook.

II. CLASSICAL DENSITY FUNCTIONAL THEORY
A. Formalism

We consider a classical one-component system of N spherical
particles with linear momenta pi and center-of-mass positions ri,
with i = 1, . . . , N being the particle label. The particles interact with
each other via an isotropic pair potential ϕ(rij), where rij = ∣ri − rj∣

is the distance between particles i and j. All particles are subject to
a static external potential Vext(ri) such that the Hamiltonian of the

system reads

HN =
N

∑
i=1

p2
i

2m
+

N

∑
i<j

ϕ(rij) +
N

∑
i=1

Vext(ri), (1)

where m denotes the mass of the particles. Here, we note that
Eq. (1) can also describe macroscopic bulk systems by consider-
ing the external potential to be zero in a box of volume V at a
homogeneous density ρ = N/V and temperature T. For these homo-
geneous systems, typical thermodynamic equilibrium quantities of
interest include the caloric and mechanical equations of state u(ρ, T)
and p(ρ, T) for the internal energy and pressure, respectively. In
addition, structural quantities such as the radial distribution func-
tion g(r) (at particle–particle separation r) and the structure factor
S(q) (at wavenumber q) are of interest for homogeneous systems.2
Equilibrium statistical mechanics offers a variety of techniques to
calculate (approximations to) these quantities, for instance, system-
atic low-ρ or high-T expansions, integral equations based on the
Ornstein–Zernike equation, or computer simulations. However, the
situation is more complicated in the case of a nontrivial external
potential due to, for instance, the Earth’s gravity, an attractive or
repulsive substrate, or a porous matrix that may confine the parti-
cles of interest. In this case, the system described by Eq. (1) becomes
heterogeneous in thermodynamic equilibrium such that the local
density ρ(r) varies in space. Consequently, the energy density u
and the pressure p become ill-defined (except, of course, within
a local density approximation), and the broken translation invari-
ance causes the radial distribution function to be of the form g(r, r′)
rather than g(∣r − r′∣). Nevertheless, the formalism of Density Func-
tional Theory (DFT) can provide a consistent picture of the thermo-
dynamic and structural properties of inhomogeneous fluids in an
external potential. Although DFT finds its roots in the quantum-
many-body description of electrons, it has also found many appli-
cations in the (essentially) classical context of soft-matter systems
to describe molecular liquids, electrolytes, colloidal dispersions,
etc.1,5–12

DFT is essentially a grand-canonical framework in which the
temperature T and the chemical potential μ of the particles are fixed
to characterize the heat bath and the particle bath with which the
system is in thermal and diffusive equilibrium. The correspond-
ing thermodynamic potential is the grand potential Ω0 defined
by βΩ0 = − ln ∑∞N=0 ∫ dpN drN exp[β(μN −HN)]/N!h3N , where β−1

= kBT, kB is the Boltzmann constant, and h is an arbitrary constant
with the same dimension as the Planck constant. From Ω0, essen-
tially all thermodynamic properties would follow, for instance, the
pressure of the homogeneous system equals −Ω0/V , and the internal
energy is ∂βΩ0/∂β. Of course, this involves the immense problem of
evaluating the 6N-dimensional phase-space integral in the definition
of Ω0. The key of classical DFT is that it circumvents this high-
dimensional phase-space integral by a proof1 of the existence of a
grand potential functional Ω[ρ] of the variational one-body den-
sity profile ρ(r), with the properties that (i) the equilibrium density
profile ρ0(r) minimizes the functional Ω[ρ], and (ii) this minimum
equals the equilibrium grand potential Ω0. This implies that

δΩ[ρ]
δρ(r)

∣

ρ0(r)
= 0, Ω[ρ0] = Ω0. (2)
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The problem is thus reduced to finding the functional Ω[ρ] and,
after that, to solving the 3D Euler–Lagrange equation (2), which
amounts to a huge reduction in the problem compared to the
high-dimensional phase-space integral.

One can also prove rigorously1,2,13 that the grand potential
functional Ω[ρ] can always be written as

Ω[ρ] = ℱ [ρ] − ∫ drρ(r)(μ − Vext(r)), (3)

where ℱ [ρ] is the intrinsic Helmholtz free-energy functional that,
and this is crucial for our machine-learning approach, only and
uniquely depends on the particle–particle interactions [here, the pair
potential ϕ(r)] and on the temperature, and not on μ and Vext(r).
In other words, the same and unique functional ℱ [ρ] for a given
ϕ(r) applies at any chemical and external potential. That ℱ [ρ] is a
Helmholtz free-energy functional follows straightforwardly from the
thermodynamic relation Ω0 = F0 − μN0, with N0 = ∫ drρ0(r) being
the equilibrium number of particles and F0 being the equilibrium
Helmholtz free energy, which can be decomposed into the sum of
the potential energy ∫ drρ0(r)Vext(r) due to the external field and
the remaining intrinsic free energy ℱ [ρ0].

Unfortunately, ℱ [ρ] is not explicitly known in most cases.
An exception is the ideal-gas case of ϕ(r) ≡ 0, where it is pos-
sible to construct the intrinsic free-energy functional as ℱ id

[ρ]
= kBT ∫ drρ(r)(ln ρ(r)Λ3

− 1), with Λ = h/
√

2πmkBT being the
thermal wavelength. The common practice in DFT is now to split
the intrinsic free energy into the ideal and the excess-over-ideal part,
ℱ [ρ]= ℱ id

[ρ]+ℱ exc
[ρ], and to find an explicit (usually approxi-

mate) expression for ℱ exc
[ρ]. Once such an explicit expression has

been found, we can cast the minimum condition for ρ0(r) of Eq. (2)
in the explicit form

ρ0(r) =
exp(βμ)

Λ3 exp
⎛

⎝
−β

δℱ exc
[ρ]

δρ(r)
∣

ρ=ρ0

− βVext(r)
⎞

⎠
. (4)

Note that Eq. (4) is a self-consistency relation for interacting sys-
tems, which usually takes the form of a nonlinear integro-differential
equation that needs to be solved numerically for given μ and Vext(r)
for a system of interest with pair potential ϕ(r) at temperature T
and, hence, with a given excess functional ℱ exc

[ρ]. In relatively
simple geometries, for instance, with planar or radial symmetry,
a numerical solution of Eq. (4) can be found at relatively low
computational cost by means of a Picard iteration scheme.

Thus, the remaining problem of DFT lies in constructing
an explicit form for ℱ exc

[ρ], for which no universal recipe is
available —not unlike the case of partition functions of interact-
ing systems. There is, however, one more exact relation that can
be and has been exploited and involves the second functional
derivative −βδ2ℱ exc

[ρ]/δρ(r)δρ(r′), which equals by definition the
Ornstein–Zernike direct correlation function c(r, r′) and is hence
directly related to the two-body structure of the system. In particular,
in a homogeneous bulk system, the direct correlation function is of
the form cb(∣r − r′∣), and its Fourier transform ĉb(q) yields the struc-
ture factor S(q) = (1 − ρĉb(q))−1, from which the radial distribution
function g(r) follows by an inverse Fourier transformation.

In this manuscript, we will focus on a Lennard-Jones fluid. In
the DFT treatment, we split the pair potential ϕ(r) = ϕ0(r) + ϕ1(r)
into a steep repulsion ϕ0(r) at short distances and an attractive tail
ϕ1(r) of well depth −ε < 0 in accordance with Barker–Henderson
theory, as further detailed in Sec. III. On the basis of the vast body
of knowledge on the thermodynamics and the two-body structure
of the hard-sphere system, extremely accurate approximations have
been constructed for its intrinsic excess Helmholtz free-energy func-
tional ℱ exc

HS[ρ], for which we will use the White-Bear mark II12 ver-
sion of the fundamental measure theory6,11 throughout this paper.
It is common practice in liquid-state theory to treat the attrac-
tions as a perturbation on the hard-sphere system, and a pop-
ular version results in the van der Waals-like mean-field (MF)
approximation,

ℱ exc
MF[ρ] ≈ ℱ

exc
HS[ρ] +

1
2 ∫

drdr′ρ(r)ρ(r′)ϕ1(∣r − r′∣). (5)

The high-temperature limit of Eq. (5) returns the hard-sphere limit,
but the MF approximation fails to give accurate results for lower
temperatures where the attractions play a more prominent role.2,3,14

We therefore seek improved excess free-energy functionals in terms
of corrections to the mean-field functional of Eq. (5) of the quadratic
and cubic forms,

βℱ exc
ML2 = βℱ exc

MF +
1
2 ∫

drdr′ρ(r)ρ(r′)Ω2(∣r − r′∣), (6)

βℱ exc
ML3 = βℱ exc

ML2 +
1
3 ∫

drdr′ρ2
(r)ρ(r′)Ω3(∣r − r′∣), (7)

where the labels ML2 and ML3 refer to the fact that we will use
machine learning (ML) to find the optimal form of the kernels Ω2(r)
and Ω3(r). We note that ML2 reduces to the mean-field form for
Ω2(r) ≡ 0 and that ML3 reduces to ML2 for Ω3(r) ≡ 0. We also
emphasize that the ML3 form of the functional is not compati-
ble with the third-order virial-type expansion, which would have
entailed an additional spatial integration (say over r′) and a kernel
of the triple product form f (∣r − r′∣) f (∣r′ − r′′∣) f (∣r′′ − r∣); finding
the optimal kernel f (r) proved to be computationally too demand-
ing and inconvenient at the exploration phase of this project, and
hence, we settled for the simpler form of the cubic term ML3.

The building of ML functionals upon the MF functional is
important. For long-ranged potentials, the mean-field functional
retrieves the correct asymptotic decay of the direct correlation func-
tion such that the range of the ML corrections can conveniently
be limited. For short-ranged potentials, the direct correlations are
short-ranged anyway, and the inclusion of the mean-field term puts
no constraint on the resulting ML functional.

B. Planar geometry
Interestingly, we can exploit the fact that the optimal kernels

Ω2(r) and Ω3(r) that we seek must be independent of μ and Vext(r)
to determine them in systems with a planar geometry, i.e., systems
that have translation invariance in the x- and y-directions with exter-
nal potentials Vext(z) and density profiles ρ(z) that only depend on
the normal coordinate z. One easily checks that the non-HS part of
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the MF functional of Eq. (5) then reduces to

ℱ exc
MF[ρ(z)] =

A
2 ∫

dzdz′ρ(z)ρ(z′)ϕ1,z(∣z − z′∣), (8)

where A = ∫ dxdy is the (macroscopically large) area of the pla-
nar surface and ϕ1,z(∣z − z′∣) = ∫ dxdy ϕ1(

√
(z − z′)2 + x2 + y2) is

the laterally integrated pair potential ϕ1(r). Likewise, the non-HS
contributions to the functionals of Eq. (6) can be cast in the form

βℱ exc
ML2 = βℱ exc

MF +
A
2 ∫

dzdz′ρ(z)ρ(z′)ω2(∣z − z′∣), (9)

βℱ exc
ML3 = βℱ exc

ML2 +
A
3 ∫

dzdz′ρ2
(z)ρ(z′)ω3(∣z − z′∣), (10)

where the laterally integrated kernels ω2 and ω3 can be written as

ωi(z) = 2π∫
∞

∣z∣
dr r Ωi(r), i = 2, 3. (11)

Interestingly, Eq. (11) can be inverted such that we find

Ωi(∣r∣) = −
1

2π
(

1
z

dωi(z)
dz
)∣

z=∣r∣
. (12)

In other words, once we find ω2(z) and ω3(z) from calculations in
planar geometry, we can determine Ω2(r) and Ω3(r) from Eq. (12)
such that the direct correlation function follows by taking second
functional derivatives of Eqs. (6) and (7). Hence, we have access to
thermodynamic and structural properties in bulk, in any geomet-
ric confinement, at any external potential, at any chemical potential,
and solely on the basis of input in a planar geometry.

III. SYSTEM
In this paper, we consider a 3D fluid in which the particles

interact with a truncated and shifted Lennard-Jones (LJ) interaction
given by

ϕLJ
(r) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

4ε((
σ
r
)

12
− (

σ
r
)

6
) + εcut for r ≤ rcut ,

0 for r > rcut ,
(13)

where ε > 0 denotes the well depth and σ is the LJ particle diam-
eter. The full LJ potential is truncated at rcut = 4σ and shifted
upward by εcut = 0.98 ⋅ 10−3ε such that ϕLJ

(rcut) = 0. The split-
ting of ϕLJ

(r) into a hard-sphere reference and an attractive tail
in the DFT treatment is performed on the basis of the well-
known Barker–Henderson theory15,16 that leads to an effective and
temperature-dependent hard-core diameter 0 < d ≤ σ that does not
depend on the bulk density, as explained in Refs. 15 and 17. At the
temperature kBT/ε = 2 of our main interest, the effective diameter is
given by d = 0.9568σ. The resulting expression for ϕ1(r) then reads

ϕ1(r) =
⎧⎪⎪
⎨
⎪⎪⎩

0 for r ≤ σ,

ϕLJ
(r) for r > σ.

(14)

FIG. 1. A general visualization of the external potential described in Eq. (15). This
external potential is applied in the training data and is given by the parameters
w, s, p and L. Two values of p are considered, namely, p = 2 (black) and p = 8
(blue).

We stress that the value inside the core, i.e., ϕ1(r < d), is not
uniquely defined,18,19 and its value can be used as a fit parameter
for better agreement between simulations and DFT. However, we
choose here to set it to 0 in line with previous studies on the LJ
system.20–22

The external potentials Vext(z) that we consider in this
manuscript all mimic a planar slit geometry. The slit is transla-
tionally invariant in the lateral x–y plane and is mirror-symmetric
in the midplane z = 0 such that Vext(z) = Vext(−z). We employ
a family of external wall-particle potentials that is repulsive and
parameterized by

βVext(z) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

0 for ∣z∣,

s(
∣z∣ − w L

2
(1 − w) L

2
)

p

for ∣z∣ > w
L
2

,
(15)

where the dimensionless strength s = βVext(L/2) ≥ 40 characterizes
the potential at ∣z∣ = L/2, w ∈ [0, 1] denotes the width of the central
part of the slit, βVext(z) = 0, and p > 0 is the power that character-
izes the steepness of the potential. Figure 1 illustrates the external
potential for general s, w, and L and for steepness parameters p = 2
(black) and p = 8 (blue).

IV. METHODS
A. Simulations

To generate the training and validation datasets to “learn” the
density functional, we perform grand-canonical Monte Carlo (MC)
simulations of the 3D truncated and shifted Lennard-Jones (LJ) fluid
confined between two planar soft-repulsive walls described by the
external potential Vext(z) of Eq. (15). Here, we only consider highly
repulsive walls with s ≥ 40 to ensure that the density reduces to
essentially 0 at ∣z∣ = L/2. We measure the equilibrium density profile
ρMC
(z) in a cubic simulation box of volume V = L3, with L = 10σ.

We impose periodic boundary conditions in the x- and y-directions
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and equilibrate the system for at least 105 MC cycles before the mea-
surements start. Each MC cycle consists of N trial moves, with N
denoting the instantaneous number of particles. Each trial move
can either displace a particle or insert/remove a particle. The prob-
ability of selecting a trial move to displace a particle instead of an
insertion/deletion move is set to 90%. The sampling of the density
profile ρMC

(z) is performed by dividing the volume in 320 equidis-
tant bins that represent planar slices normal to the z axis, each
of width σ/32 such that the interval z ∈ [−5σ, 5σ] is fully covered.
The density in each bin is measured and stored after every fourth
MC cycle.

In order to avoid (interesting but at this stage undesired)
complications due to possible phase transitions (condensation, pre-
wetting, capillary evaporation, etc.), we consider only a supercriti-
cal temperature kBT/ε = 2. Eight different chemical potentials μ are
imposed in the grand-canonical MC simulations of the LJ system,
given by βμ ∈ {−3.0,−2.5, . . . , 0.0, 0.5}. Here, the arbitrary offset of μ
is chosen such that the thermal wavelength equals the particle diam-
eter, Λ = σ; it implies that βμ→ log ρbσ3 in the dilute (ideal-gas)
limit ρbσ3

≪ 1. A total of 24 different external potentials are consid-
ered as training sets, all with total slit length L = 10σ and strengths
s ∈ {40, 60}, widths w ∈ {0.4, 0.65, 0.9}, and steepness parameters
p ∈ {2, 4, 8, 10}.

As an illustration, we show in Fig. 2 the simulated den-
sity profiles ρMC

(z) of a LJ fluid at kBT/ε = 2 and chem-
ical potentials βμ = {−3.0,−2.5,−2,−1.5,−1.0,−0.5, 0, 0.5} (sym-
bols) corresponding to (separately simulated) bulk densities ρbσ3

≈ {0.056, 0.10, 0.19, 0.33, 0.47, 0.56, 0.62, 0.67} in the external poten-
tial Vext(z) characterized by s = 60, w = 0.4, and p = 4, as denoted
by the red solid line. We observe monotonous density profiles at the
lowest μ’s, the development of density oscillations at higher μ′s, and
a fairly well-defined “bulk” density in the vicinity of z = 0 (except at
the highest μ′s, where the profiles of the two walls show some overlap
due to the limited system size).

FIG. 2. Equilibrium density profiles ρ(z) (symbols) of a LJ fluid at temperature
kBT/ε = 2 and chemical potentials βμ = −3.0,−2.5,−2,−1.5,−1.0,−0.5, 0, 0.5
from bottom to top, in an external potential Vext(z) (red solid line, right verti-
cal axis) characterized by a strength s = 60, a width w = 0.4, and steepness
parameter p = 4 as obtained from Monte Carlo simulations.

B. Machine-learning methods
With an optimization process that uses several techniques from

the field of ML, we will construct intrinsic free-energy functionals of
the form of Eqs. (9) and (10) such that the density profiles ρML

(z)
that follow from this machine-learned functional are an “optimal”
approximation to the corresponding MC densities ρMC

(z). We recall
that ρML

(z) is to be determined as a solution of the Euler–Lagrange
equation (4), not only for Λ = σ at a given temperature, chemical
potential, and external potential but also for a given excess functional
F exc
[ρ]. In other words, we are interested in optimal kernels ω2(z)

and ω3(z) [where ω3(z) ≡ 0 for ML2].
In order to quantify “optimal,” we define the so-called loss

function ℒ that characterizes the difference between ML and MC
profiles and that we will minimize with respect to ω2(z) and ω3(z).
Here, we define ℒ =ℒ 1 +ℒ 2 to consist of a dominant contribu-
tion ℒ 1 and a regularization term ℒ 2. The dominant loss term
is defined by the mean-square error23 between the MC and ML
profiles,

ℒ 1 =
1
n

n

∑
j=1

1
L∫

L/2

−L/2
dz(

ρMC
j (z) − ρML

j (z)
ρMC

b (μj)
)

2

, (16)

where j = 1, . . . , n labels the n = 24 × 8 = 192 combinations of 24
external potentials and the eight chemical potentials of the training
set as identified above. We normalize the difference between the MC
and ML profiles by the MC bulk density at the chemical potential
μj of training set j, for which we performed separate bulk simula-
tions. This scaling promotes equal weights to high- and low-density
states during the learning process. The regularization term ℒ 2 is
independent of the MC and ML profiles and defined by

ℒ 2 =
λ
L∫

L/2

−L/2
dz

1
2
((

ω2(z)
σ2 )

2

+ (
ω3(z)

σ5 )

2

) f (z), (17)

where f (z) is given by

f (z) =
⎧⎪⎪
⎨
⎪⎪⎩

1, ∣z∣ < σ,

ez/σ−1, ∣z∣ ≥ σ.
(18)

It accounts for the constraint that ω2(z) and ω3(z) must decay
smoothly to 0 for z ≫ σ, where our statistics is poor. Moreover, ℒ 2
also suppresses undue high-wavenumber undulations that tend to
develop at ∣z∣ < σ. We tune the (positive) regularization parameter
λ by trial and error such that it contributes less to the minimiza-
tion procedure than ℒ 1, while not being too small to be irrelevant.
Note that ℒ 2 effectively reduces the range of ωi(z) by suppressing
it exponentially for ∣z∣ > σ.

The minimization of the total loss function ℒ is performed
with the stochastic and iterative optimization method Adam as pro-
posed by Kingma and Ba in Ref. 24. We use their suggested default
step size α = 0.001 and exponential decay rates β1 = 0.9 and β2
= 0.999 and refer the reader to their work for a full description of
the method and its parameters. During each iteration of the mini-
mization process, the gradient of the loss function with respect to
the kernels ωi(z) is required, which are straightforwardly derived
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for ℒ 2 to be the functional derivatives,

δℒ 2

δωi(z)
=

λ
L

ωi(z)
σ6i−8 f (z). (19)

The functional derivatives of ℒ 1 with respect to ωi(z) for i = 2, 3
are more involved and stem from the dependence of ℒ 1 on the
ML density profiles ρML

j (z) for j = 1, . . . , n such that the functional
chain-rule yields

δℒ 1

δωi(z)
=
−2
n

n

∑
j=1

1
L∫

L/2

−L/2
dz′

ρMC
j (z

′
) − ρML

j (z
′
)

(ρMC
b (μj))2

δρML
j (z

′
)

δωi(z)
, (20)

where we replaced the dummy integration variable z of Eq. (16) by
z′. From the Euler–Lagrange equation (4) for the DFT equilibrium
profiles ρ0—which are represented by ρML

j in Eq. (20)—one checks
that δρ0(z′)/δωi(z) = −ρ0(z′) × δ2βF exc

/δρ(z′)δωi(z). Upon con-
sidering ωi and ρ independent variables in Eqs. (9) and (10) for the
ML2 and ML3 excess functionals, respectively, the second (cross)
derivative for i = 2 equals ρ0(z + z′), and for ML3 and i = 3, it equals
1
3 [ρ

2
0(z + z′) + 2ρ0(z′)ρ0(z + z′)]. Hence, within this approxima-

tion, a numerical integration of z′ suffices to evaluate Eq. (20), and in
combination with Eq. (19), we can numerically calculate δℒ /δωi(z)
for the grid points z of our system. Thus, we have all ingredients to
minimize ℒ by means of Adam.24

C. The training process
The training process starts with an initial guess for the two ker-

nels, for which we take the MF approximation ω0
2(z) = ω0

3(z) ≡ 0,
where the superscript 0 denotes the 0-th iteration in the training
process. Next, we use these kernels to calculate the n density pro-
files ρML

j,k (z) for learning sample j = 1, . . . , n and iteration label k = 0
by solving the Euler–Lagrange equation [Eq. (4)] using a Picard
iteration scheme with the MC profile ρMC

j (z) as the initial guess.
On the basis of Eqs. (16)–(20), we can then evaluate ℒ and

δℒ /δωi(z) for i = 1, 2, from which improved kernels ωk
i (z) are con-

structed for k = 1 by employing Adam,24 which will give rise to
improved density profiles ρML

j,1 (z), etc. For k ≥ 2, we take ρML
j,k−1(z) as

the initial guess in the Picard-iteration of ρML
j,k . The iteration process

is repeated until the loss function has converged.
Although Adam is already an efficient algorithm for the learn-

ing process, its computational cost can be significantly reduced by
making use of stochastic optimization. Rather than using all n ele-
ments of the training set in every iteration, which involves the addi-
tion of all n terms in Eq. (20) at every iteration level k, we consider
mini batches with only 20 randomly selected elements of the training
set during each Picard iteration k. The gradient of the loss function
ℒ 1 is computed by only taking into account this mini batch; thus,
the summation over the n density profiles of Eq. (20) changes to a
summation over 20 randomly selected density profiles, and the nor-
malization factor 1/n becomes 1/20. A new mini batch is randomly
selected during every iteration in the ML process.

V. RESULTS FOR THE LENNARD-JONES SYSTEM
We perform MC simulations of the LJ system to generate

MC density profiles with 24 different external potentials, described

in Sec. III, and eight equi-distant different chemical potentials,
βμ ∈ {−3.0,−2.5, . . . , 0.0, 0.5}, for the temperature kBT/ε = 2. We
describe the kernels, the resulting density profiles, the mechani-
cal equations of state of the bulk fluid, and the radial distribution
functions that follow from the functionals ML2 and ML3 using two
different routes.

A. The kernels
For several choices of the regularization parameter λ in Eq. (17),

we determined the kernel ω2(z) for ML2 and ω2(z) and ω3(z) for
ML3. Without a significant ℒ 2 contribution, λ ≤ 10−3, we found
spurious peaks in both ω2(z) and ω3(z) for ∣z∣ > 8σ, i.e., at the
largest separations (with the poorest statistics) we considered in the
learning set; these spurious peaks disappeared, and ω2(z) smoothly
decayed to 0 for λ ≥ 10−2, and throughout, we settle for λ = 10−2 as a
reasonable compromise between error-correction and minimization
of the actual loss function of interest ℒ 1.

In Fig. 3, we present the evolution of the loss functions ℒ 1
(blue) and ℒ 2 (red) during the training process with iteration label k
in (a) for ML2 and in (b) for ML3; the gray curves in (a) and (b) rep-
resent a moving average of ℒ 1 over 15 iterations. We observe good

FIG. 3. The loss function contributions ℒ 1 (blue) and ℒ 2 (red) as a function of
the iteration label k in (a) for ML2 and in (b) for ML3. The gray traces in (a) and
(b) represent a moving average of ℒ 1, and the insets show the zoomed-in view.
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convergence after, say, k = 5000 iterations, respectively. We note that
the minimized loss function ℒ 1 of ML2 is as small as 5 × 10−4,
and for ML3, it is even about four times smaller. We also note that
ℒ 2 <ℒ 1 for ML2, as desired for a regularization term that is
(naively) supposed to be a small correction to the total loss function.
However, for ML3, we find ℒ 1 to be so small that it has dropped
below the regularization term ℒ 2, which in retrospect should be
seen as a consequence of the good accuracy of the ML3 functional
rather than as a problem for the relative magnitude of the two
contributions to the loss function.

In Fig. 4(a), we show the MF (scaled) kernel βϕ1,z(z) (blue
dashed line) and its ML2 correction βϕ1,z(z) + ω2(z) (black solid
line), as obtained after 5000 iterations. For all z, the ML2 kernel is
more negative than the MF kernel, as if there is actually more cohe-
sive energy in the system than predicted by MF. We see that ω2(z)
develops a peculiar and unexpected small “bump” close to z = 0. For
ML3, a similar feature occurs close to z = 0 in both ω2(z) and ω3(z),
as can be seen in Fig. 4(b), where we plot ω2(z) (green solid line) and
ω3(z) (green dotted line) for the ML3 case as obtained after 5000
iterations, together with the ML2 kernel ω2(z) (black solid line) for
comparison. We see that ω2 from ML3 is again essentially negative

FIG. 4. (a) The mean-field (MF) kernel βϕ1,z(z)/σ
2 (blue dashed line) and its

quadratic Machine-Learning (ML2) improvement (βϕ1,z(z) + ω2(z))/σ2 (black
solid line), as obtained for the LJ system at temperature kBT/ε = 2. (b) The
cubic Machine-Learning (ML3) kernels ω2(z)/σ2 (green solid line) and ω3(z)/σ5

(green dotted line), also at kBT/ε = 2, for comparison together with the ML2 kernel
ω2(z)/σ2 (black solid line).

(except for a tiny positive feature at z = 0 and ∣z∣ ≃ 2σ) and contains
a “bump” similar to the ML2 case. We also see that ω3(z) has a struc-
ture that is quite similar to ω2(z), however more pronounced with
higher peaks and lower valleys. Below, we will investigate the ther-
modynamic and structural properties that follow from DFT based
on these kernels.

B. The density profiles
The first test of the quality of the ML functionals is a compar-

ison of their resulting density profiles with the simulated ones from
the training set. In Fig. 5, this comparison is illustrated for the exter-
nal potential parameterized by w = 0.65, p = 2.0, and s = 40 (shown
in red) and the four chemical potentials βμ ∈ {−2.5,−1.5,−0.5, 0.5};
for symmetry reasons, we only plot the regime 0 < z < L/2, and for
comparison, we also show the MF profiles. Clearly, the MF predic-
tions are substantially worse than ML2 and ML3, except at the lowest
μ, and ML3 constitutes a small improvement over ML2, especially at
the peaks of the profiles at intermediate to high μ. In fact, we can also
conclude from Fig. 5 that the main improvement of ML2 and ML3
over MF compared to the simulations concerns the bulk density ρb
that is approached in the center of the slit at z = 0, as will be made
more explicit below.

In Fig. 6, we consider a comparison of MC simulations with
MF, ML2, and ML3 density profiles in a particular external potential
outside the training set, at βμ = −1. The external potential consists
of hard walls at z = 0 and z = 20σ, and for z ∈ [0, 20σ], the potential
varies irregularly with wells and barriers between ±kBT, as shown by
the red solid curve in Fig. 6. We see again that both ML2 and ML3
are largely of comparable quality and substantially more accurate
than MF.

C. Mechanical equation of state of the bulk
The (isothermal) mechanical bulk equation of state provides

relations between the bulk density ρb, the pressure p, and

FIG. 5. Density profiles of a (truncated) Lennard-Jones fluid confined in a planar
slit characterized by a repulsive external potential given by Eq. (15) with param-
eters w = 0.65, p = 2.0, s = 40 at temperature kBT/ε = 2 and at four chemical
potentials βμ ∈ {−2.5,−1.5,−0.5, 0.5} from bottom to top. Symbols stem from
the grand-canonical MC simulations, and curves stem from the MF (blue dashed),
ML2 (black solid), and ML3 (green solid) functionals; all four state points are part
of the training set.
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FIG. 6. The equilibrium density profile for a LJ fluid at chemical potential βμ
= −1 and temperature kBT/ε = 2 in the external potential Vext(z) (red solid line)
outside the ML training set. Symbols stem from grand-canonical Monte Carlo (MC)
simulations, and lines represent DFT predictions based on the mean-field (MF)
approximation (blue dashed) and on the quadratic (ML2, black solid) and cubic
(ML3, green solid) corrections with machine-learned kernels.

the chemical potential μ, satisfying the constraint of the
Gibbs–Duhem equation dp = ρbdμ such that we can equiva-
lently consider ρb(μ), p(μ), or p(ρb). Within DFT, the bulk density
ρb(μ) that follows from a particular free-energy excess functional
follows from the solution of the Euler–Lagrange equation (4) for
the homogeneous bulk case Vext ≡ 0, which reduces for ML2 and
ML3 to a nonlinear algebraic equation with coefficients that depend
on ∫ dzωi(z). Hence, ρb(μ) is straightforwardly solved numerically
for the three functionals ML2, ML3, and MF of our interest here.
The bulk pressure follows as p(μ) = −Ω[ρb]/V , from which p(ρb)

follows upon inversion of ρb(μ). For the temperature of interest,
kBT/ε = 2, these three representations of the equation of state are
shown in Figs. 7(a)–7(c) for the three functionals MF (blue dashed
line), ML2 (black solid line), and ML3 (green solid line) together
with the MC data (purple symbols). The regime of the training set is
hatched gray. In the μ-dependent curves of (a) ρb(μ) and (b) p(μ),
we find agreement in the low-density limit βμ < −3, as expected,
since all functionals include the ideal-gas limit properly. In the
regime of the training set, we also see ML2 and ML3 outperforming
MF by a large margin in (a) and (b), with a small but hardly
noticeable improvement of ML3 compared to ML2, as we could
have expected on the basis of the density profiles of Fig. 6 and the
loss functions of Fig. 3. At the high-μ side outside the training set,
Fig. 7(a) shows an increasingly deteriorating quality of the ML2
and, especially, the ML3 prediction, which are systematically higher
than the MC data, although they are still much more accurate than
the predictions based on the MF functional. Interestingly, however,
the picture that emerges from the p(ρb) representation shown in
Fig. 7(c) is much more forgiving for the MF functional, which is
now of comparable good agreement in the complete regime of
the training set and deviates as much as ML2 (and even less than
ML3) from the MC data. Clearly, this relatively good MF and ML2
performance is due to a fortunate cancellation of errors occurring
in the process of eliminating the dependence on the chemical
potential.

It is, perhaps, remarkable that rather accurate bulk equations
of state in a complete density interval can be obtained from MC
simulations at only a few chemical potentials in only a few exter-
nal potentials. Here, it is crucial to appreciate the DFT formalism,
which includes the statement that the intrinsic excess free-energy

FIG. 7. The relations between (a) the bulk density ρb and (b) the bulk pressure p
as a function of the chemical potential μ for the (truncated) Lennard-Jones fluid
at temperature kBT/ε = 2 as obtained from grand-canonical Monte Carlo simula-
tions (MC, symbols) and the machine-learning functionals ML2 (black) and ML3
(green), and the mean-field function (MF, blue dashed). In (c), the corresponding
pressure–density relation p(ρb) is shown, obtained by the elimination of μ from
ρb(μ) of (a) and p(μ) of (b).

functional Fexc
[ρ] that we construct by the ML ansatz of Eqs. (9)

and (10) is independent of the external and chemical potentials and,
hence, can also be applied at any μ in the homogeneous bulk where
Vext ≡ 0.
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D. The structure of the bulk fluid
A key feature of DFT is that it provides not only thermody-

namic but also structural information, where we have seen that the
first functional derivative δFexc

[ρ]/δρ(r) plays a key role in the
Euler–Lagrange equation (4) for the equilibrium one-body distribu-
tion function. We have also seen already that the second functional
derivative −βδ2ℱ exc

[ρ]/δρ(r)δρ(r′) ≡ c(r, r′) equals the direct cor-
relation function and governs the two-body distribution function.1,2

In a homogeneous and isotropic bulk fluid, symmetry dictates that
the direct correlation takes the bulk form cb(∣r − r′∣), and the radial
distribution function g(r) follows from the Ornstein–Zernike equa-
tion g(r) − 1 = cb(r) + ρb ∫ dr′(g(r′) − 1)cb(∣r − r′)∣ ). Since the
ML2 and ML3 functionals have been fully determined in terms of
ωi(z) in planar geometry and its conversion to Ωi(r) according to
Eq. (12), we can write from Eqs. (9) and (10) that

cb(r) = cHS(r) − βϕ1(r) −Ω2(r) − 2ρbΩ3(r), (21)

where for cHS(r), we used the White-Bear mark I direct correlation
function reported in Ref. 25 (and where Ω3 ≡ 0 for ML2). Conse-
quently, our ML2 and ML3 functionals (and likewise also the MF
functional) give direct access to the two-body structure encoded in
cb(r) and g(r).

In Fig. 8, we plot the resulting cb(r) for bulk density ρbσ3
= 0.39

and find fairly good agreement between MF, ML2, and ML3, except
close to r = 0 where cb(r) from ML2 and, especially, ML3 become
deeply negative. This can be traced back directly to Fig. 4, which
reveals that (i) there is close structural similarity between the func-
tionals outside the hard core and (ii) that the “bumps” of ω2(z) and
ω3(z) close to z = 0 give rise to a substantial slope dω3(z)/dz for
z/σ ∈ [0, 0.05] that translates via Eq. (12) in a relatively large effect
in cb(r) in the vicinity of r = 0. Note also that cb(r) vanishes for
d < r ≤ σ due to the Barker–Henderson splitting and that all three
versions of cb(r) agree pretty accurately outside the hard core, at
least on the scale of the plot.

Upon insertion of cb(r) into the (Fourier transform of the)
Ornstein–Zernike equation, we find (after an inverse Fourier

FIG. 8. The Ornstein–Zernike direct correlation function cb(r) of the bulk Lennard-
Jones system at temperature kBT/ε = 2 and bulk density ρbσ3

= 0.39, as pre-
dicted by the second functional derivative of the excess free-energy functional
within the mean-field (MF) approximation and its quadratic (ML2) and cubic (ML3)
Machine-Learning corrections.

transform) the radial distribution functions g(r) that we compare
with canonical MC simulations at a given density ρb (at the fixed
temperature of interest kBT/ε = 2). The three lines in Fig. 9 show
these radial distribution functions for MF, ML2, and ML3 at bulk
densities (a) ρbσ3

= 0.39 and (b) ρbσ3
= 0.837, together with the MC

simulation results (symbols). For both the lower density in (a) and
the higher one in (b), we find reasonably good overall agreement
outside the hard core (r > d), with MF and ML2 actually outper-
forming ML3 close to contact. Inside the hard core, our prediction
for g(r) is poor in all cases, which is not surprising, given that the
underlying cHS(r) is constructed such as to cause vanishing g(r)
inside the hard core; any tampering of the direct correlation [such as
adding terms as we do in Eq. (21)] will give rise to spurious nonzero
contributions to g(r) for r < d.26

Interestingly, DFT provides another procedure to calculate the
radial distribution function of a bulk fluid. This so-called “Percus
test-particle method”27 is based on the identification of ρb g(r) with
the equilibrium density profile ρ0(r) that surrounds a given (test)
particle that is fixed in the origin of an otherwise homogeneous fluid
at bulk density ρb ≡ ρ0(∞). In other words, g(r) = ρ0(r)/ρ0(∞),
with ρ0(r) being the spherically symmetric density profile of
the fluid in an external potential that equals the pair potential,

FIG. 9. The radial distribution function g(r) of a truncated Lennard-Jones fluid
at bulk density (a) ρbσ3

= 0.39 and (b) ρbσ3
= 0.837, as obtained from the

Ornstein–Zernike equation with a direct correlation function cb(r) that follows from
the free-energy functionals ML2 (black), ML3 (green), and MF (blue dashed). The
symbols denote g(r) as obtained from canonical Monte Carlo simulations at the
same bulk density and temperature.

APL Mater. 9, 031109 (2021); doi: 10.1063/5.0042558 9, 031109-9

© Author(s) 2021

https://scitation.org/journal/apm


APL Materials ARTICLE scitation.org/journal/apm

Vext(r) = ϕ(r), scaled such that g(∞) = 1. For a given chemical
potential μ and a given functional Fexc

[ρ], one thus obtains g(r)
through the solution ρ0(r) of the Euler–Lagrange equation (4). For
the same two state points as used in Fig. 9, we present the resulting
radial distributions in Figs. 10(a) and 10(b). For both densities, the
agreement between simulation and all three DFTs is substantially
better than obtained from the Ornstein–Zernike route shown in
Fig. 9, not only for r < σ where the Boltzmann factor of the external
potential in Eq. (4) ensures a vanishingly small contribution to g(r)
but also at larger distances where the oscillations in the MC data are
rather accurately captured by all three DFTs. Interestingly, however,
the peaks of the oscillations in (b) are actually better accounted for by
MF and ML2 than by ML3, which underestimates them especially at
close contact. The relatively good performance of MF in predicting
g(r) via the Percus test-particle method compared to its relatively
poor prediction of the equation of state ρb(μ) is due to the scaling-
out of ρb in the density profile ρ0(r) such that g(∞) = 1 by construc-
tion. Clearly, an overall comparison of Figs. 9 and 10 shows that g(r)
based on the test-particle method is much more accurate compared
to the MC simulations than those based on the Ornstein–Zernike
equation. This is not surprising, given that we constructed the direct
correlation function in Eq. (21) based on a modification of that of
a reference hard-sphere system, which yields non-vanishing radial

FIG. 10. The radial distribution function g(r) for the Lennard-Jones system as
obtained from the Percus test-particle method for bulk densities (a) ρbσ3

= 0.39
and (b) ρbσ3

= 0.837. System, legends, and the MC data are identical to those in
Fig. 9.

distributions inside the hard core if the OZ route is used. A more
careful discussion on the different radial distribution functions from
the two routes can be found in Ref. 26.

VI. SUMMARY, DISCUSSION, AND OUTLOOK
In this article, we combine the formalism of classical den-

sity functional theory (DFT) with machine-learning (ML) density
profiles from Monte Carlo (MC) simulations to construct approx-
imations to the excess intrinsic Helmholtz free-energy functional
Fexc
[ρ] of a (truncated and shifted) Lennard-Jones fluid at the super-

critical temperature kBT/ε = 2. This functional consists of a well-
known and accurate hard-sphere contribution, a standard van der
Waals-type mean-field account of the attractions, and new machine-
learned corrections that are, for simplicity, either of a quadratic
(ML2) or an additional cubic (ML3) form in the density. The kernels
of ML2 and ML3 are radially symmetric and translation-invariant
two-point functions of the form Ωi(∣r − r′∣) for i = 2 and 3; see
Eqs. (9) and (10). By comparing DFT predictions of the equilib-
rium density profiles ρ0(z) with grand-canonical MC simulations
at a learning set of chemical potentials μ and external potentials
Vext(z) in a 3D planar geometry, we can construct the optimal
planar kernels ωi(∣z − z′∣) using Adam to minimize a suitable loss
function, from which we can reconstruct the full radially symmet-
ric kernels Ωi(∣r − r′∣). Given that Fexc

[ρ] is independent of the
external potential and the chemical potential, the functional and its
Euler–Lagrange equation (4) for ρ0(r) can be applied to any μ and
any Vext(r). By comparisons with density profiles obtained from
grand-canonical MC simulations, for conditions within and outside
of the learning set, we find that the ML2 and ML3 functionals gen-
erally outperform MF by far because the latter predicts densities that
are systematically too low; ML3 improves ML2 somewhat on some
of the details at higher μ, at least within the training set. A similar
picture emerges from the resulting representations of the mechani-
cal equations of state, viz., the bulk density ρb(μ) and the pressure
p(μ), where MF is too low by a large margin and ML3 performs
only slightly better than ML2 within the training set, while show-
ing a slightly poorer performance outside. The functional Fexc

[ρ]
can also be used to calculate the direct pair correlation function,
from which the radial distribution g(r) of a bulk fluid follows via
the Ornstein–Zernike equation. At the relatively low bulk density
ρbσ3

= 0.39, this yields, outside the hard core, an (almost) equally
satisfying result for MF, ML2, and ML3; see Fig. 9. Inside the hard
core and also close to contact, say, σ < r < 1.3σ, the prediction for
g(r) is poor in all cases. However, all three functionals give a rather
good account of the simulated g(r) at these two state points if the
Percus test-particle method is employed, although here ML3 overes-
timates the peaks at the higher density slightly. The reason for the
relatively good MF performance for g(r) compared to the equa-
tion of state ρb(μ) and density profiles stems from the imposed
asymptotic normalization g(r →∞) = 1.

A disadvantage of the ML approach is its black-box charac-
ter and the associated difficulty in interpreting the outcome. In
particular, the “hump” in the ML2 and ML3 kernels ωi(z) close to
z = 0 shown in Fig. 4 and the associated deeply negative direct cor-
relation cb(r) close to r = 0 for ML3 in Fig. 8 are actually rather
suspicious. In retrospect, we expect these features to be the result
of some degree of overfitting the data in the learning process. This
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is also borne out by closer inspection of the bulk equations of state
ρb(μ) and p(μ) in Figs. 7(a) and 7(b), respectively, where ML3
hardly improves upon ML2 in the (hatched) regime of the learning
set while performing even poorer outside and, likewise, for g(r) of
Figs. 9(a) and 10(a) at the density ρbσ3

= 0.39 that lies comfortably
in the middle of the training set. Of course, ML3 does outperform
ML2 somewhat for the density profiles of Fig. 5. Nevertheless, some
more caution could or should have been exercised in the diversity of
the training set of external potentials, perhaps with attractive com-
ponents and discontinuities. We leave studies along these lines for
future work.

Although there is room for improvement and extensions, we
have shown here anyway that it is, in principle, possible to con-
struct a free-energy functional for an atomic fluid by an ML process
that takes data from grand-canonical MC simulations at a variety
of chemical and external potentials, from which further predictions
outside the training set can be made. Interestingly, even data taken
in a planar geometry can suffice to construct the full functional, at
least for the (relatively simple) functional forms that we considered
here, which are linear in the kernels Ωi(∣r − r′∣); nonlinear forms
probably require a different treatment. It is important to realize that
we fixed the temperature, and although Fexc

[ρ] is independent of μ
and Vext(r), it is dependent on T, so strictly speaking, a new func-
tional is to be constructed at every temperature of interest. We leave
the T-dependence of the functional to future work. Another rather
straightforward extension is to use the newly constructed functional
to calculate the Gibbs adsorption and the tensions of wall–fluid
interfaces, for which we expect good accuracy on the basis of the
good agreement of the density profiles. We also expect that it is pos-
sible to extend studies of this type to other systems with spherically
symmetric particles, also to mixtures such as electrolytes. Systems
of particles with orientation degrees of freedom are probably chal-
lenging, in practice, because of their larger number of variables,
although one could imagine first attempts based on truncated expan-
sions in spherical harmonics or an initial focus on homogeneous
bulk states (nematics). We hope that this paper will stimulate further
explorations of the combination of DFT, ML, and MC simulation.
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