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Tipping points occur in diverse systems in various disciplines such as ecology, climate science, economy,
and engineering. Tipping points are critical thresholds in system parameters or state variables at which a
tiny perturbation can lead to a qualitative change of the system. Many systems with tipping points can be
modeled as networks of coupled multistable subsystems, e.g., coupled patches of vegetation, connected lakes,
interacting climate tipping elements, and multiscale infrastructure systems. In such networks, tipping events in
one subsystem are able to induce tipping cascades via domino effects. Here, we investigate the effects of network
topology on the occurrence of such cascades. Numerical cascade simulations with a conceptual dynamical model
for tipping points are conducted on Erdős-Rényi, Watts-Strogatz, and Barabási-Albert networks. Additionally,
we generate more realistic networks using data from moisture-recycling simulations of the Amazon rainforest
and compare the results to those obtained for the model networks. We furthermore use a directed configuration
model and a stochastic block model which preserve certain topological properties of the Amazon network to
understand which of these properties are responsible for its increased vulnerability. We find that clustering and
spatial organization increase the vulnerability of networks and can lead to tipping of the whole network. These
results could be useful to evaluate which systems are vulnerable or robust due to their network topology and
might help us to design or manage systems accordingly.

DOI: 10.1103/PhysRevE.101.042311

I. INTRODUCTION

In the last decades the study of tipping elements has
become a major topic of interest in climate science. Tipping
elements are subsystems of the Earth system that may pass
a critical threshold (tipping point) at which a tiny perturba-
tion can qualitatively alter the state or development of the
subsystem [1]. However, tipping points also occur in various
complex systems such as systemic market crashes in financial
markets [2], technological innovations [3], or shallow lakes
[4] and other ecosystems [5]. Understanding their dynamics
is thus crucial not only for climate science but also for other
disciplines that use complex systems approaches.

Many tipping elements are not independent of each other
[6]. In such cases, if one tipping element passes its tipping
point, the probability of tipping of a second tipping ele-
ment is often increased [7], yielding the potential of tipping
cascades [8] via domino effects with significant potential
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impacts on human societies in the case of climate tipping
elements [9]. In this study, we investigate the dynamics of
complex networks of interacting tipping elements. A tipping
element is described by a differential equation based on the
normal form of the cusp catastrophe, which exhibits fold
bifurcations and hysteresis properties. The interactions are
accounted for by linear coupling terms. Many environmental
tipping points can be described as fold bifurcations [10] and
prototypical conceptual models that exhibit fold bifurcations
have been developed for the thermohaline circulation [11],
the Greenland ice sheet [12], and tropical rainforests [13]
among others. Coupled cusp catastrophes have been studied in
detail for two or three subsystems [6,14,15] or in combination
with Hopf bifurcations [16]. On the other hand, threshold
models for global cascades on large random networks have
been investigated [17].

Here, we study cascades in complex systems with continu-
ous state space that are moderate in size yet large enough for
statistical properties of the complex interaction networks to
become relevant. Cascades in complex systems with continu-
ous state space have been investigated, for example, for power
grids [18,19]. We use a paradigmatic coupled hysteresis model
based on the normal form of the cusp catastrophe. Employ-
ing different network topologies such as Erdős-Rényi (ER),
Watts-Strogatz (WS), and Barabási-Albert (BA) networks as
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well as networks generated from moisture-flow data on the
Amazon rainforest, we investigate the effect of topological
properties of the network. We find that networks with a
large average clustering coefficient are more vulnerable to
cascading tipping and discuss how this is connected to the
occurrence of small-scale motifs such as direct feedback and
feed-forward loops. We consistently observe that networks
with spatial organization like the small-world and Amazon
networks are more vulnerable than strongly disordered net-
works.

II. THE MODEL

A. System

In our conceptual model, a tipping element is represented
by a (real) time-dependent quantity x(t ) that evolves accord-
ing to the autonomous ordinary differential equation

dx

dt
= −a(x − x0)3 + b(x − x0) + r, (1)

where r is the control parameter and a, b > 0. The parameters
a and b control the strength of these effects, respectively,
and x0 controls the position of the system on the x axis.
The equation thus has one stable equilibrium for |r| > rcrit

and a bistable region for −rcrit < r < rcrit (see the bifurcation
diagram depicted in the box in Fig. 1).

We describe the characteristic behavior of Eq. (1): If the
system state is initially in the lower stable equilibrium (x ≈ 0)
and r is slowly increased, eventually at r = rcrit a tipping
point is reached and a critical transition to the upper stable
equilibrium (x ≈ 1) occurs. If r is afterwards decreased, the
system state stays on the upper branch and, only at r = −rcrit ,
tips down to the lower branch again. Equation (1) is a minimal
model for ecosystems with alternative stable states and hys-

FIG. 1. Illustration of a tipping network. Each node represents
a tipping element with a corresponding state variable xi. A directed
link corresponds to a positive linear coupling with strength d . The
effective control parameter r̃i of a node depends on the state of the
nodes it is coupled to. The equilibria with respect to the effective
control parameter are qualitatively illustrated in the box.

teresis [5] but can also be used to conceptualize other systems
with similar properties such as the thermohaline circulation
and ice sheets [12,20].

Next, we consider a directed network of N interacting
tipping elements as a linearly coupled system of ordinary
differential equations,

dxi

dt
= −a(xi − x0)3 + b(xi − x0) + ri + d

N∑
j=1, j �=i

ai jx j

︸ ︷︷ ︸
r̃i (x1,x2,...,xN )

,

(2)

where d > 0 is the coupling strength and

ai j =
{

1 if there is a directed link from element j to element i,
0 otherwise. . (3)

For simplicity, we use the same parameters a and b for all
tipping elements in the network. An illustration of such a
system with several tipping elements is depicted in Fig. 1.
Similar systems have been studied with diffusive coupling
focusing on hysteresis effects [21].

We briefly review the behavior of two tipping elements
with unidirectional coupling (X1 → X2) [6]. The elements
of the adjacency matrix are a21 = 1 and a12 = 0, which
means that element 1 has an effect on element 2 but there
is no effect in the other direction. As r1 is slowly increased,
it approaches its tipping point at rcrit and eventually tips
from x− to x+. The effective control parameter r̃2 is thus
increased by �r̃ = d (x+ − x−). For r2 = 0, a tipping event
in the second element is induced if �r̃ > rcrit and there-
fore if the coupling strength exceeds a critical threshold of
dc = rcrit

x+−x−
.

B. Network models

To investigate the effect of the network topology on tipping
cascades we use different network models: We use three
well-known models, the Erdős-Rényi model [22], the Watts-
Strogatz model [23], and the Barabási-Albert model [24]. We
slightly extend the latter two models such that we are able to
generate and compare directed networks with a controllable
average degree 〈k〉 = 〈kin + kout〉. Furthermore, we use mod-
els to control the reciprocity and average clustering coefficient
as well as a directed configuration model and a stochastic
block model. All network models are briefly discussed in the
following paragraphs.

(i) The ER model is a simple random network model,
where a directed link between two elements i and j is added
with probability p. The resulting average degree is 〈k〉 ≈
p(N − 1).
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(ii) The WS model is usually used to generate networks
with large clustering coefficients but small average path
lengths to resemble the small-world phenomenon [25]. We
implement a directed WS model as follows: Initially, a reg-
ular network is generated where each node i is connected
in both directions to its m nearest neighbors, e.g., nodes
i + 1, i − 1, . . . , i + m

2 , i − m
2 . Therefore, m has to be an

even integer and the average degree of the resulting regular
network is equal to m. In order to generate networks with
arbitrary average degree, m is chosen such that the average
degree of the resulting regular network is larger than the
desired average degree. Then, until the average degree of
the network matches the desired average degree, links are
randomly deleted. Finally, each of the remaining links is
rewired with probability β, similar to the usual WS model
[23]. With increasing rewiring probability β the generated
network becomes more and more random.

(iii) The BA model is used to generate scale-free networks,
i.e., networks with a power-law degree distribution. We im-
plement a directed BA model as follows: We start with two
bidirectionally coupled nodes. Every additional node is in
both directions connected to an already existing node i with

probability p = kin
i +kout

i∑
m,n amn

. When the specified network size N is

reached, the average degree 〈k〉 ≈
∑

m,n amn

N is compared to the
desired average degree. If the average degree is smaller than
the desired average degree, links between randomly selected

nodes i and j are added with probability p = kin
i +kout

i +kin
j +kout

j

2
∑

m,n amn

until the average degree matches the desired average degree.
Otherwise, if the average degree is greater than the desired
average degree, links are randomly deleted as in the WS
model.

(iv) To generate networks with arbitrary reciprocity R, we
initially generate an ER network where all links are reciprocal
(R = 1). Afterwards, links are randomly chosen and rewired
until the desired reciprocity is achieved.

(v) The procedure to generate networks with arbitrary
average clustering coefficent C is similar. Initially a network
with only reciprocal triangles between three randomly chosen
nodes is generated. Afterwards links are randomly chosen and
rewired again until the desired average clustering coefficient
is achieved. That way, we are able to generate networks with
an average clustering coefficient between C = 0.05 and C =
0.35. Note that the reciprocity is also large for networks with
a large average clustering coefficient.

(vi) A directed configuration model can be used to generate
networks with arbitrary average in and out degree. Links are
randomly assigned to node pairs where the corresponding in
and out degree has not been reached before [26].

(vii) Finally, stochastic block models (SBMs) are used
to generate networks with community structures. For each
(directed) combination of communities there is a separate link
probability, which is usually high within the community and
low between two communities [27].

C. Simulation procedure

We use the system given in Eq. (2) and conduct cascade
simulations on different network topologies. The parameters
of the equation are chosen such that rcrit = 0.183 and for
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FIG. 2. Cascade simulations on ER networks of different sizes,
an average degree of 〈k〉 ≈ 5, and a coupling strength of d = 0.2.
The time evolution of the fraction of tipped elements is shown.

r = 0 the two stable equilibria are x− = 0 and x+ = 1 for
all elements. The resulting parameters are a = 4, b = 1, and
x0 = 0.5. Consider a network with N tipping elements and a
topology that is described by the adjacency matrix A = (ai j ).
Initially, ri = 0 and xi = 0 for all i = 1, . . . , N . The algorithm
of a cascade simulation is the following:

(1) Choose a random starting node m of the network.
(2) Slowly increase rm (rm → rm + �r).
(3) Let the system equilibrate, e.g., integrate the ODE

system until ẋi < ε for all i = 1, . . . , N .
(4) Check whether at least one element tipped. If not, jump

back to step 2. Otherwise, count the total number of tipped
elements.

The algorithm stops when the starting node m tips, which
is always the case. We normalize the total number of tipped
elements (minus 1 for the starting node) by the number of
nodes that can be reached on a directed path from the starting
node (the size of the out component). We call the resulting
number cascade size L. Note that due to the normalization a
small disconnected component where all elements tip is also
considered as a cascade with size L = 1 even though only
a small number of elements was tipped. The ODE system
was integrated with the function scipy.integrate.odeint
from the SCIPY python package [28]. In all simulations, �r =
0.01 and ε = 0.005 were used. Examples of tipping cascades
with size L = 1 are shown in Fig. 2 for ER networks with
different-sized N .

III. RESULTS AND DISCUSSION

A. Cascades on generic network topologies

We start with cascade simulations on networks generated
with the ER model. For any parameter combination we gen-
erate 100 different networks and simulate one cascade on
each network. We use the average cascade size from these
simulations as a measure of the vulnerability of the corre-
sponding network structure, ranging from robust (〈L〉 = 0) to
highly vulnerable (〈L〉 = 1) networks. The dependence of the
average cascade size with respect to the coupling strength is
shown in the upper panel in Fig. 3 for random networks with

042311-3



JONATHAN KRÖNKE et al. PHYSICAL REVIEW E 101, 042311 (2020)

0.10 0.12 0.14 0.16 0.18
d [arb. units]

0.0

0.5

1.0

〈L
〉

Network size N

8

16

32

64

128

256

512

1024

101 102 103

N

0.12

0.15

0.18

d
c

[a
rb

.
u
n
it

s]

FIG. 3. Network size dependency of critical coupling strength in
ER networks with 〈k〉 ≈ 5. Upper panel: Average cascade size with
respect to the coupling strength in the transition region. Each average
is calculated from 100 cascade simulations on different randomly
generated networks with N = 100. Error bars indicate the standard
error. Lower panel: Approximate critical coupling strength (coupling
strength where 〈L〉 ≈ 0.5) with respect to the network size N . The
dashed line indicates the critical coupling strength dc ≈ rcrit = 0.183
for a simple unidirectional coupling of two elements.

a fixed average degree 〈k〉 ≈ 5. For low coupling strengths
(d � 0.1) the network is not affected by the externally induced
tipping of one element and the average cascade size remains
0. With increasing coupling strength, a transition from robust
to vulnerable networks is observed. From the analysis of the
unidirectional system, a sharp transition at d ≈ rcrit would be
expected for all networks. However, only for N → ∞ does
the transition become more and more steep and approximately
approach rcrit . For networks of finite size, the onset of the tran-
sition is shifted to lower coupling strengths with decreasing
network size. We hypothesize that the reason for this is two
effects: The first effect is the destabilization of the system by
feedback loops (X1 � X2), which can lead to a decrease in the
tipping point rcrit of certain nodes. The second effect is due to
the gradual change in the state of a tipping element X3 that is
coupled to another element (X1 → X3). When the element X1

tips, the state of the element X3 will be slightly altered even if
it does not tip. If it is coupled to another element X2, however
(X2 → X3), the effective control parameter of element X3 will
be slightly increased, by an increment of the order �r̃ ∼ d2.
Therefore an additional indirect coupling with one intermedi-
ate node, called a feed-forward loop, will decrease the critical
coupling strength dc of the target node. But how can the size
dependence of the critical coupling strength be explained?
The reason for this is the following: With increasing network
size while fixing the average degree, the relative density of
the motifs decreases, and thus, for N → ∞, the destabilizing
effect of the motifs vanishes. Therefore, the critical coupling
strength dc approaches the critical coupling strength of a
unidirectionally coupled system. If, in contrast, we fixed the
link density, the relative density of motifs would increase and
thus the critical coupling strength would probably decrease
with increasing network size.

FIG. 4. Dependence of the transition region on the reciprocity R
(left panel) and on the clustering coefficient C (right panel). Each
average is calculated from 100 cascade simulations on different
randomly generated networks with N = 100.

To test this hypothesis, cascade simulations on networks
with different reciprocities and average clustering coefficients
are conducted. The reciprocity is the number of reciprocated
links (ai j = a ji = 1) divided by the total number of links
in the network. Thus, the reciprocity measures the relative
amount of feedback loops in the tipping network. The average
clustering coefficient is the number of triangles a node is part
of divided by the potential number of triangles averaged over
all nodes [29]. Therefore, the average clustering coefficient is
strongly related to the number of feed-forward loops. Simu-
lation results for different reciprocities R can be seen in the
left panel in Fig. 4. As expected, for networks with a high
reciprocity, the transition region is shifted to lower coupling
strengths. As can be seen, however, the dependence on the
reciprocity is rather weak. Simulation results for networks
with different average clustering coefficient C are shown in
the right panel in Fig. 4. It can be clearly seen that the vulner-
ability to tipping cascades is significantly increased for high
average clustering coefficients. There are eight motifs that
contribute to the average clustering coefficient in a directed
network, two (indirect) feedback loops and six feed-forward
loops [30]. We suspect that the effect of indirect feedback
loops is smaller than the effect of direct feedback loops for
d < 1. Therefore, we conclude that feed-forward loops are
mainly responsible for the increased vulnerability of networks
with large average clustering (see Fig. 4).

We also observe a transition of the average cascade size
when the coupling strength is held constant at d = 0.15 and
the average degree is varied (Fig. 5). In this case the transition
is shifted to higher average degrees when the network size
increases, because a higher average degree is necessary to
yield the same relative density of destabilizing motifs.

Cascade distributions for 〈k〉 ≈ 5 and selected coupling
strengths at the onset, in the center, and at the end of the
respective transition region are shown in Fig. 6. We find
a bimodal distribution of very small cascades (L ≈ 0) and
very large cascades (L ≈ 1). For networks with small-world
and scale-free topology generated with the WS model with
β = 0.1 and the BA model, respectively, we observe similar
transitions of the average cascade size. For the scale-free
topology, the large cascades are distributed around an average
size 〈L〉 < 1. This can be explained by the preferential attach-
ment mechanism. Through this mechanism a large number of
weakly connected elements develop which can only be tipped
when the coupling strength is very high (d � rcrit).
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FIG. 5. Network size dependency of the critical average degree
kc in ER networks with d = 0.15. Upper panel: Average cascade
size with respect to the average degree in the transition region.
Each average is calculated from 100 cascade simulations on different
randomly generated networks with N = 100. Error bars indicate the
standard error in both panels. Lower panel: Approximate critical
average degree (average degree where 〈L〉 ≈ 0.5) with respect to the
network size N .

Now we focus on the effect of the network topology. For
all network models, the transition from robust to vulnerable
networks is shifted to lower coupling strengths when the aver-
age degree is increased (Fig. 7). The topology of the network
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FIG. 6. Distributions of cascade sizes L for different network
topologies. A random topology generated with the ER model (first
row), a small-world topology generated with the WS model and β =
0.1 (second row), and a scale-free topology generated with the BA
model (third row). Each distribution is an average of 10 distributions
with 100 cascade simulations on different networks with N = 100
and 〈k〉 ≈ 5. The (almost-invisible) error bars indicate the standard
error across the 10 distributions. Three coupling strengths for each
network topology are shown: one where almost no cascades occur;
one where in about half of the simulations cascades are triggered;
and one where in almost all simulations cascades are triggered.
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FIG. 7. Average cascade size 〈L〉 with respect to average degree
〈k〉 and coupling strength d for three network topologies. Random
networks generated with the ER model (left), small-world topology
networks generated with the WS model and β = 0.1 (center), and
scale-free networks generated with the BA model (right). Each
average is calculated from 100 cascade simulations on different
randomly generated networks with N = 100.

has a significant effect on this shift of the transition region for
sparse networks (〈k〉 ≈ 5). For networks with small-world and
scale-free topology, the transition is shifted to lower coupling
strengths compared to the simple random topology generated
with the ER model. For the scale-free topology the transition
width is also significantly increased for 〈k〉 ≈ 5. For denser
networks (〈k〉 � 19), the differences between the network
topologies are less pronounced.

We further investigate in which way the rewiring in the WS
model decreases the vulnerability of the network. In Fig. 8
the shift of the transition region to higher coupling strengths
with respect to the rewiring probability β can be clearly seen.
The increase in the critical coupling strength mainly occurs
between β = 0.1 and β = 1. The lower panel in the figure
again demonstrates how this corresponds to the decay of the
average clustering coefficient C. Thus, we again conclude
that tipping networks with an increased average clustering
coefficient such as small-world networks (but also spatially
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FIG. 8. Shift of the transition (upper panel) and average clus-
tering coefficient C (lower panel) with increasing rewiring proba-
bility β for WS networks with N = 100 and 〈k〉 ≈ 5. The shift of
the transition towards higher coupling strengths for high rewiring
probabilities corresponds to the decrease in the average clustering
coefficient. The extent of the small black circles in the lower panel
exceeds the standard error, which is therefore not visible.
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structured networks [31]; see Sec. III B) are especially vulner-
able to cascades and that the average clustering coefficient is
a good indicator of the vulnerability of a network topology.

B. Cascades on spatial network topologies
from moisture-flow data

To investigate the effects of spatial organization of the
network on vulnerability with respect to tipping cascades,
we apply our model to network topologies generated from
data of atmospheric moisture flows between different forest
cells in the Amazon. On a local scale, the Amazon may
exhibit alternative stable states between rainforest and sa-
vanna, with tipping points between them depending on rainfall
levels [32–35]. Models that capture the basic mechanisms
also reveal a bifurcation structure with hysteresis and saddle-
node bifurcations with rainfall level as the control parameter,
comparable to our conceptual model [36]. On a regional
scale, the forest enhances rainfall through the “transpiration”
of groundwater to the atmosphere; local-scale tipping may
thus increase the vulnerability of remote forest patches by
allowing less local precipitation to be passed on to other
patches because the transpiration capacity of savanna is lower
than that of forest. Therefore, the Amazon can be thought of as
a spatial network of local-scale tipping elements. Note that the
Amazon as a whole is often viewed as a tipping element [37].
In our framework, vulnerable regimes where tipping of single
cells induces large cascades correspond to such threshold be-
havior of the large-scale Amazon system. Complex-network
approaches such as a cascade model inspired by the Watts
model [17] have been applied to observation-based data on
Amazon forest patches [38]. Here we analyze the effect of
the network structure of transpired-moisture flows for the
Amazon that were calculated by Staal et al. [39], aggregated
to a single year (2014) on 1◦ spatial resolution.

As our analysis is focused on the effect of the network
topology, we neglect the actual moisture-flow values and use
a homogeneous coupling strength analogous to the above
simulations. This makes the simulation results less realistic
and applicable, however, we do not aim to draw conclusions
about the Amazon system. Rather, we want to compare the
network topology to common random networks and identify
topological effects on the vulnerability of tipping networks
with respect to tipping cascades.

To generate and compare networks with arbitrary average
degree, similar to the random network topologies above, we
calculate a moisture-flow threshold from a specified average
degree. Only when the moisture flow between two cells ex-
ceeds the threshold are these cells connected with a link in the
corresponding direction. If a large average degree is specified,
the threshold becomes small and the resulting network will
be dense. That way we are able to generate networks with an
arbitrary average degree from the data. An example network
with 〈k〉 = 5 is depicted in Fig. 9.

The average cascade size is calculated by conducting one
cascade simulation with each node of the generated network
as the starting node and averaging over the cascade size. We
generate networks from data with a 1 × 1◦ grid (N = 567)
and with a 2 × 2◦ grid (N = 160) and 〈k〉 = 5. The average
cascade size of ER networks with the same size is shown for
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FIG. 9. Spatially organized network generated from atmospheric
moisture-flow data (2 × 2◦-grid resolution) of the Amazon rainfor-
est. The threshold is chosen such that 〈k〉 = 5. Total rainfall values
for each node in 2014 are shown in the background.

comparison (upper panel in Fig. 10). For the Amazon network,
the onset of the transition from robust to vulnerable networks
is shifted to the lower coupling strength of d ≈ 0.08 compared
to the ER network. In contrast to the ER networks there is
no strong size dependency. However, a small shift to lower
coupling strengths is observed.

Additionally to the Amazon moisture-flow network ob-
tained by thresholding, we generate networks with a directed
configuration model [26] and a stochastic block model [27] to
isolate the effects of the degree sequence and the community
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FIG. 10. Average cascade size 〈L〉 with respect to coupling
strength for different networks with an average degree of 〈k〉 = 5.
Upper panel: Results for the networks generated from the moisture-
flow data with 1 × 1◦-grid resolution (567 nodes) and 2 × 2◦-grid
resolution (160 nodes). For comparison, simulation results for ER
networks with the same network sizes are shown. Lower panel:
Simulation results for a directed configuration model and a stochastic
block model are compared with the results of the Amazon network
and the ER networks with N = 160 for all networks. Error bars indi-
cate the standard error. Note that the standard errors for the original
moisture-flow networks are smaller than for the other network types.
The reason is that all moisture-flow simulation results are based on
the same network, whereas the other results are based on different
randomly generated networks.
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FIG. 11. Distribution of cascade sizes analogous to the above
distributions for different networks generated from moisture-flow
simulations of the Amazon rainforest (N = 160). Note that there is
no standard error indicated (error bars) for the original moisture-flow
networks, as there is only one distribution due to the deterministic
network generation procedure.

structure of the network, respectively. For the directed
configuration model, we specify the joint degree sequence
of the Amazon network. For the SBM, we apply a Girvan-
Newman algorithm to the original Amazon network [40].
The algorithm progressively removes edges with the highest
edge betweenness, i.e., those rare links that connect separate
communities. When the network breaks into two components,
we calculate the elements of the probability matrix (fraction of
links over possible links for the corresponding combination of
components). With the probability matrix and the component
sizes, we then generate a random network with the SBM.

In the lower panel in Fig. 10, the transition of the con-
figuration model and the SBM is compared to the original
Amazon network and the ER network with N = 160. Al-
though the vulnerability of the network is increased in both
cases compared to the ER model, neither of the topological
properties alone, degree sequence or community structure,
sufficiently explains the early onset of the transition in the
original Amazon network.

Cascade distributions for the coarse resolution (2 × 2◦
grid) are depicted in Fig. 11. They show that already for
values of d ≈ 0.1, cascades with two typical cascade sizes
occur for the original Amazon network. With increasing
coupling strength the frequency of these cascades increases
and the cascade size is shifted to higher values. Comparing
this observation to the network in Fig. 9 suggests that these
cascades correspond to the two subclusters in the north and
southwest regions of the Amazon rainforest. These subregions
form clusters that are much more strongly connected than
the rest of the network and are thus much more vulnerable
to tipping cascades. Interestingly, separate tipping of sub-
clusters is not observed for the networks generated with the
SBM, implying that some relevant topological property of
the spatially structured Amazon network, for example, the
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FIG. 12. Average cascade size 〈L〉 with respect to average de-
gree and coupling strength for different networks generated with
moisture-flow simulations of the Amazon rainforest (N = 160).

anisotropy of the link direction due to atmospheric wind
patterns, might still be missing. The robust and vulnerable
regimes of the networks are shown in Fig. 12. Consistent with
the above results, we observe a shift of the transition to lower
coupling strengths with increasing average degree 〈k〉 where
the transition is smooth for the Amazon network and steep for
the configuration model and the SBM. Similarly to the random
network topologies, the differences are only relevant for the
sparse regime below 〈k〉 � 19.

IV. CONCLUSION

The aim of our study was to assess the effect of the network
topology on the vulnerability of tipping networks to cascades.
This is not only important for understanding the effect that
the tipping of potential tipping elements in the climate system
might have on the complete Earth system, but also of high
relevance for other fields that use complex system approaches.
We found that networks with large average clustering coeffi-
cients and spatially structured networks are more vulnerable
to tipping cascades than more disordered network topologies.
This implies that the risk of a cascade’s being triggered could
be surprisingly high for real-world networks where large
clustering is common. Furthermore, we found that the effect
of the network topology is relevant only for relatively sparsely
connected networks. The analysis of the Amazon network
suggests that the structure of the forest-climate system in the
Amazon might yield subregions that are especially vulnerable
to tipping cascades. A detailed study using actual moisture
flows could investigate the question whether the Amazon rain-
forest consists of separate subregional-scale tipping elements.
Generally, heterogeneity in the parameters, for example, the
temporal and spatial scales or the coupling strengths of the
ODE system stated in Eq. (2), could have a further influence
on the results [41].
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