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Geometric focusing of monochromatic internal waves is a well-known linear mechanism
that provides a pathway to smaller length scales and hence energy dissipation, especially
when repeated reflection from inclined boundaries focuses these waves onto internal wave
attractors (IWAs). While simple attractors have been well documented both theoretically
and in idealized laboratory settings, the small aspect ratio and complex shape of the ocean
has made it difficult to detect the narrow frequency bands where attractors may form. The
greatest obstruction however is the restricted spatiotemporal resolution of measurements of
the ocean’s internal wave field. Moored instruments provide a detailed temporal but poor
spatial resolution, except along line-segments spanning part of the water column only. The
ability to measure a fully resolved two-dimensional section through a three-dimensional
field, as in present-day laboratory experiments, is missing in the ocean. This prohibits the
search for IWAs in ocean data, especially if this concerns a multi-frequency wave field.
Mimicking an ocean observation set-up, our experimental study aims at detecting IWA
signatures from laboratory observations along a vertical line-segment. We perform small
and large amplitude forcing experiments at a fixed wavenumber with both monochromatic
and broadband frequency components. We examine energy intensification at dissipative
length scales at frequencies known to support attractors. Importantly, our laboratory
experiments indicate that even in the presence of multiple forcing frequencies, or
for large-amplitude monochromatic forcing (where beams become unstable to Triadic
Resonant Instability), focusing reflections due to attractors are the predominant mechanism
for transferring energy to dissipative scales.
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1. Introduction

Several decades of internal wave field observations have exposed the apparent existence
of a universal internal wave continuum, the Garrett–Munk (GM) spectrum (Garrett &
Munk 1975). The GM spectrum is conventionally thought of as the manifestation of the
internal wave energy cascade from the large-scale input (Garrett & Kunze 2007) to much
smaller spatio-temporal scales where internal waves mix the ocean (Wunsch & Ferrari
2004). Understanding the physical processes involved in the internal wave energy cascade
– sometimes referred to as internal wave turbulence (Zakharov, Lvov & Falkovich 1992) –
remains a challenge (Lvov, Polzin & Tabak 2004; MacKinnon et al. 2017; Dauxois et al.
2018). This study investigates the contribution of wave attractors to the energy cascade.

A basic property of linear internal waves in a stratified fluid with a linear density profile
is the conservation of the propagation angle, even when reflecting from boundaries (e.g.
Sutherland 2010). As a consequence, reflections at inclined boundaries lead to focusing or
defocusing, corresponding to a shift of spectral energy density towards smaller or larger
spatial scales, respectively. Notably, focusing typically dominates over defocusing for
reflections from both subcritical bottom topography (Bühler & Holmes-Cerfon 2011) and
supercritical topographies (Mathur, Carter & Peacock 2014) as well as in fully confined
basins having non-trivial shape (Maas & Lam 1995). The domination of focusing occurs
because the former lead to amplification, the latter to a reduction of wave amplitude. In
a confined basin, waves can defocus upon subsequent reflections from the boundary until
reaching the basin scale. From that moment on, these waves start to focus again. They
add to waves that were already focusing from the beginning. Focusing thus determines
the ultimate fate of enclosed waves in an ideal fluid setting. Hence, repeated reflections
of internal waves at topography can cascade energy to smaller, dissipative spatial scales.
This process is especially interesting if the trajectory of the internal waves converges to
a closed loop, such that the energy accumulates along so-called wave attractors (Maas &
Lam 1995; Maas et al. 1997). The linear dynamics of wave attractors in two-dimensional
trapezoidal domains has been studied thoroughly for inviscid (Maas 2005) and viscous
flows (Hazewinkel et al. 2008, 2010). More realistic open-ocean topographies admitting
wave attractors are investigated by Tang & Peacock (2010), Echeverri et al. (2011) and
Guo & Holmes-Cerfon (2016) using quasi two-dimensional settings. While it remains
challenging to understand wave attractors in truly three-dimensional domains (Drijfhout &
Maas 2007; Pillet et al. 2018), it has become evident that complicated ocean topographies
do not preclude the existence of wave attractors (Sibgatullin & Ermanyuk 2019).

It is well established that, for large-scale monochromatic energy input, the attractor’s
energy cascade can terminate with viscous dissipation (Ogilvie 2005; Hazewinkel et al.
2008; Beckebanze et al. 2018) and/or result in triadic resonant instability (TRI) if the
energy input is sufficiently large (Scolan, Ermanyuk & Dauxois 2013; Brouzet et al. 2017).
Brouzet et al. (2016, 2017) and Brunet, Dauxois & Cortet (2019) show experimentally
that, in the large-amplitude regime, a wave attractor can lead to an energy cascade where
repeated geometric focusing amplifies the wave field locally near the wave attractor until
a threshold is passed, after which TRI sets in. (The presence of a threshold relates to
the finite width of the wave beam Bourget et al. (2014) due to its geometric focusing.)
TRI projects energy from the monochromatic input frequency ω1 to the new frequencies
(ω+, ω−) such that ω1 = ω+ + ω−. (Historically, the case ω+ = ω− = 1

2ω, known as
parametric subharmonic instability (Dauxois et al. 2018) was studied.) However, the
interaction may also be reversed. Two input waves of the same or different frequency may
– without any threshold – interact and lead to a new output frequency, satisfying the more
general relationship ±ω1 ∓ ω± = ±ω−, a process referred to as two wave interactions
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Internal wave attractors hidden in multi-frequency fields

Name K Frequencies (rad s−1) Forcing amplitude A (mm)

Single-frequency attractor 1 ω1 = 0.55 0.5, 1, 2, 4, 8, 16
Multi-frequency wave field 16 ωk = 0.39 : 0.02 : 0.69 0.5, 1, 2, 4, 8, 11.5

Table 1. Parameter values of the laboratory experiments. The K individual waves in the most energetic
experiments for the multi-frequency wave field are forced with amplitude A/

√
K = 11.5/4 = 2.87 mm to

prevent the maximum amplitude, due to the summation of 16 waves, exceeding 17 mm – the threshold for
ASWaM.

(TWIs) (Davis et al. 2020). Note that, here, both ±ω1 and ∓ω+ are now the input
frequencies. The notation of ω± has been chosen to avoid confusion with ωk defined in
table 1. For clarity, both TRI and TWI are predicated on triadic resonances. For TRI, some
of the energy supplied through one input wave is emitted through two daughter waves.
For TWI, some of the energy supplied through two input waves is transferred to a single
daughter wave. (There may also be some transfer of energy from the higher frequency
input wave to the lower frequency one as a result of the TWI.)

For two reasons, geometric focusing projects only a small fraction of the oceanic internal
wave continuum onto simple wave attractors. These simple attractors are characterized by a
periodic orbit with a small number of surface and supercritical bottom reflections and by a
short perimeter. Firstly, the spectral widths of the frequency bands that allow these simple
(‘short’ path-length) wave attractors are narrow and sparsely distributed within the internal
wave continuum, corresponding to complicated, ‘long’ path-length wave attractors that
are prone to viscous degradation. This is due to the ocean’s small aspect ratio. Secondly,
oceanic internal wave forcing is particularly strong at a discrete set of tidal frequencies
(as opposed to being part of a broad-band continuum). These tidal frequencies would
need to fall into one of these narrow bands in order to excite a simple attractor directly
(Echeverri et al. 2011; Guo & Holmes-Cerfon 2016). These considerations illustrate that it
is unlikely that the internal wave energy cascade proposed by Brouzet et al. (2016) applies
to the ocean. It seems more realistic that frequency bands corresponding to simple wave
attractors are at best reached by a sequence of TWIs.

In a series of laboratory experiments we study both single- and multi-frequency forcings
that correspond to attractors over a range of amplitudes in a trapezoidal domain. We
first consider the simple case of weak (linear) monochromatic forcing, where attractors
are easily identified using classical methods. We then increase the forcing amplitude and
examine weakly nonlinear monochromatic forcing, where we find that the attractor beam
becomes unstable to TRI. Nevertheless, we can show that geometric focusing onto wave
attractors persists in this regime, even though the attractors are not directly visible. We then
consider low-amplitude multi-frequency forcing. Again, despite patterns of wave attractors
not being immediately visible, by examining the energy spectra at dissipative length
scales we can see that geometric focusing has occurred at frequencies that correspond
to attractors. Finally, we examine larger-amplitude forcing in the multi-frequency domain.
In contrast to the TRI mechanism based on single-frequency forcing, in this regime we
observe that multi-frequency forcing leads to linear geometric focusing, mixing and to
TWIs. The waves triadically generated by TWI may themselves fall into frequency bands
corresponding to simple attractors which may lead to their subsequent amplification.
However, as the forcing amplitude was not high enough to generate TRI in this
regime, dissipation prevails because TWI and geometric focusing are simultaneously
present. Since geometric focusing is a linear process, it takes precedence over nonlinear
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processes involved in TRI which requires a further boost in the amplitude of the internal
wave field.

The structure of this paper is as follows. In § 2 we report the laboratory set-up, including
a detailed description of the multi-frequency, large-scale forcing by a newly developed
wavemaker. The experimental results along with discussion are presented in § 3 broken
down by either monochromatic (§ 3.1) or multi-frequency (§ 3.2) forcing and by amplitude.
Finally, conclusions are drawn in § 4.

2. Experimental set-up

We employ the Long Flow Tank (11.4 m long, W = 25.5 cm wide) in the G. K. Batchelor
Laboratory, DAMTP, University of Cambridge. A salt stratification with linear density
profile giving a constant buoyancy frequency N = 1.695 ± 0.08 rad s−1 is created over
8 h by two computer-controlled gear pumps to a depth of approximately 43 cm. Using
gear pumps proves to be more convenient than the traditional double-bucket method as it
avoids the need for large reservoirs of fresh and salt water, and allows the specification of
the water depth and buoyancy frequency to be made more accurately before commencing
filling. The stratification is described by the buoyancy frequency defined by

N2 = − g
ρ0

dρ̄

dz
(2.1)

for a fluid in which the density ρ is given as the sum of a background density ρ0 + ρ̄(z)
(varying linearly with depth) and a spatio-temporal perturbation ρ′(x, z, t) representing
the internal waves, where (x, z) is the Cartesian coordinate system: x points along the
length of the wavemaker and z points upwards, opposing gravity. Here, g = 9.81 m s−2

is the gravitational acceleration and ρ0 = 103 kg m−3 is the reference density. The
stratification is measured using an aspirating conductivity probe traversed through the
depth (the tip of this probe can be seen in figure 1). After filling, two barriers are
lowered along pre-installed tracks. One barrier is vertical, the second sloping at angle
α = 45◦ ± 0.1◦ with respect to the horizontal, forming a trapezoidal domain with water
depth H = 42.7 ± 0.3 cm, bottom length Lb = 103 ± 0.1 cm and surface length Ls =
Lb + H cot α = 145.7 ± 0.3 cm. A slope of 45◦ was chosen as steeper angles would have
reduced the frequency range capable of forming an attractor, while shallower slopes would
have resulted in more of the experiment being outside the field of view of the camera. The
1 m long Arbitrary Spectrum Wave Maker (ASWaM) (Dobra, Lawrie & Dalziel 2019) is
located at the bottom of the trapezoidal domain. The ASWaM generates fluid perturbations
by pushing the elastic bottom (nylon-faced neoprene foam) from below with 96 rods (each
4 mm in diameter) that are connected to linear actuators (see figure 1). All actuators are
individually computer controlled, allowing generation of a wide range of spatio-temporal
inputs, although for the purposes of this paper we only force at one particular wavelength.
The maximum half peak-to-peak amplitude is 17 mm. The length of ASWaM was used to
force one wavelength, setting the wavelength, L0 = 96 cm. Glycerol – being denser than
salt water – sits below the neoprene foam to prevent salt water ingress around the seals
of the vertical rods connecting the actuators. For large-amplitude forcing, contamination
by glycerol of the fluid column above the neoprene unfortunately did occur along with a
mixed boundary layer, further discussed in § 3.2. Other wavemaker configurations could
partly mitigate this by having a surface-mounted wavemaker (Bourget et al. 2014; Supekar
& Peacock 2019; Boury, Odier & Peacock 2020) that would not require the addition of a
glycerol layer.
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Internal wave attractors hidden in multi-frequency fields

Density probe →

Sloping barrier →

← Vertical barrier

Neoprene foam, actuated by ASWaM

Figure 1. Photograph of the trapezoidal section of the uniformly stratified tank enclosed by vertical and sloping
barriers. Along the bottom boundary lies the Arbitrary Spectrum Wavemaker (ASWaM), comprised of 96
horizontal rods, covered in neoprene, whose vertical displacement can be individually controlled.

The internal wave motion is captured at 4 frames per second using synthetic schlieren
(Sutherland et al. 1999; Dalziel, Hughes & Sutherland 2000) with a 12 Mega-pixel
monochrome camera, positioned 379.3 ± 0.5 cm from the tank. This technique utilizes
the fact that for salt water there is an approximately linear relationship between density
and refractive index and so propagating internal waves distort the image observed by the
camera through the tank, making the dot pattern appear to move. The camera then records
this apparent displacement of the random dot pattern, which is positioned 15 ± 0.5 cm
behind the tank and illuminated by a white LED panel to create a sharp pattern contrast.
DigiFlow (Dalziel 2006) is used to calculate the cross-tank mean of the gradient ∇ρ′ =
[∂x, ∂z]ρ′ of the density perturbation ρ′ by matching the apparently displaced pattern to the
quiescent undisturbed pattern. In this paper, we express density perturbations in terms of
the buoyancy b = −gρ′/ρ0. The limiting factor for the spatial resolution was controlled by
the dot spacing used for pattern matching (Dalziel et al. 2000). Here, the smallest length
scale resolvable was therefore approximately 2 mm for quasi-linear internal waves. We
note that this measurement technique cannot resolve three-dimensional structure due to
localized wave breaking.

An attractor with m surface reflections and n sidewall reflections is referred to as
an (m, n)-attractor (Maas & Lam 1995). Hence, the simplest, diamond-shaped wave
attractor (see figure 2a) with one reflection from each of the four planar boundaries is
the (1,1)-attractor. For the multiple-frequency forcing experiments, the frequency range is
chosen to be slightly wider than the (1,1)-attractor band.

Throughout this paper, we express the internal wave dispersion relation as ω =
N sin θ , where ω is the wave frequency and θ is the angle that the lines
of constant phase make with the horizontal. The smallest possible angle for a
(1,1)-attractor is θmin = sin−1(H/

√
H2 + L2

s ) = 16.3◦, and largest possible angle is θmax =
sin−1(H/

√
H2 + L2

b) = 22.5◦. The corresponding degenerate attractors are shown by
the red dotted and blue dashed lines in figure 2(a), respectively. The thick orange
diamond in figure 2(a) shows an intermediate (1,1)-wave attractor with angle θ =
sin−1(H/

√
H2 + ((Lb + Ls)/2)2) = 19.0◦.
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Figure 2. (a) Sketch of the trapezoidal fluid domain with diamond-shaped (1,1)-attractor (orange) and the
two degenerate (1,1)-attractors (dashed and dotted lines) at the edges of the attractor frequency range I(1,1)

defined by (2.2). The wavemaker is indicated by the sinusoidal bottom perturbation. (b) Conceptual illustration
of the wave attractor energy cascade in wave frequency (ω) – wavenumber (k) space. Geometric focusing of
large-scale energy input within a (m, n)-attractor frequency band I(m,n) pumps up the energy density at smaller
scales until reaching the dissipative range. The initial increase in energy density permits weakly nonlinear TRI
and TWI to redistribute wave energy to different frequencies, including those outside the I(m,n)-band.

For a trapezoidal fluid domain, the theoretical frequency band for (1,1)-wave attractors
is

I(1,1) = N[sin(θmin), sin(θmax)] = N

⎡
⎣ H√

H2 + L2
s
,

H√
H2 + L2

b

⎤
⎦ . (2.2)

For our laboratory set-up we get the frequency band I(1,1) = [0.471, 0.640] rad s−1, with
an uncertainty for the lower and upper bound of approximately 5 % due to uncertainties
in the buoyancy frequency N = 1.695 ± 0.08 rad s−1. The degenerate wave attractors
corresponding to the edges of the frequency band are special in the sense that its two
remaining branches overlap, i.e. on either side energy propagates in opposite directions.
This will also be the case for the associated oscillatory currents, leading to shear
instabilities. For this reason, we expect wave attractors to appear only for wave frequencies
that fall well within the theoretical frequency band. We present here two series of six
laboratory experiments, listed in table 1.

For both the single- and multi-frequency forcing experiments, the neoprene foam at
z = −H + h(x, t) (see sketch figure 2a) is displaced by imposing

h(x, t) =
{

Ag(x)f (t), Lb − L0 < x < Lb

0, 0 < x < Lb − L0
(2.3)

for g(x) = sin (k0(x − Lb + L0)) (1 − exp(−c(x − Lb + L0)) − exp(−c(Lb − x))) .

Here, t is time, k0 = 2π/L0 is the imposed horizontal wavenumber such that the
wavelength is equal to the length L0 = 96 cm of the ASWaM, and c = 10 m−1 is an
edge-smoothing parameter. The small region, Lb − L0 = 7 cm, defines the horizontal,
solid boundary bottom section to the left of ASWaM in figure 2. The relative amount of
energy input at wavelengths smaller than L0, was considered negligible due to smoothing.
This was most difficult to achieve at the connection point between the sloping barrier and
the base of the tank. A smooth rubber foot was placed at the bottom of the metal tracks
while a piece of acetate was attached to the barrier to ensure a smooth transition at this
corner. A small amount of internal wave generation still occurred at the edge regions,
however, they were quickly damped by viscosity due to their high wavenumbers.

We vary the amplitude A among experiments (see table 1) to experimentally investigate
the transition from small-amplitude to large-amplitude regimes.
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Internal wave attractors hidden in multi-frequency fields

For K ≥ 1 distinct input frequencies (ωk, k = 1, . . . , K) we use the time dependence
given by

f (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for t < 0 s and t ≥ 960 s,

t

30
√

K

K∑
k=1

sin[ωkt + φk)] for 0 ≤ t < 30 s,

1√
K

K∑
k=1

sin[ωkt + φk)] for 30 ≤ t < 930 s,

(960 − t)

30
√

K

K∑
k=1

sin[ωkt + φk)] for 930 ≤ t < 960 s.

(2.4)

The random phase shifts φk with uniform distribution in [0, 2π] (but kept constant for
all runs), ensure that the generated wave field is not synchronous. For monochromatic
forcing (K = 1), the phase shift is φ1 = 0. It is found that for the experiments presented
here, a steady state is reached within approximately 5 min, i.e. within 1/3 of the 16 minute
duration of the experiments. Note that the energy input per frequency ωk is proportional
to ω2

kA2/K, therefore the higher the frequency, the higher the energy input is at that
particular frequency. This kinetic energy input of the wavemaker partitions in leftward
and rightward propagating wave beams (each propagating half of the energy imparted),
and is converted into potential energy and back into kinetic energy within the wave beams.
The total characteristic amplitude A therefore quantifies the total energy input (∝ A2) by
ASWaM, independent of the number of frequencies K that are used (provided the mean

frequency
√∑

ω2
k/K is independent of K). The amplitude per frequency ωk is therefore

given by A/
√

K. We note that the internal wave generation need not be 100 % efficient
(Mercier et al. 2010). Dobra (2018) found the efficiency for ASWAM to range from 0.1
to 0.9, depending on the propagation angle θ . One could extend the theoretical analysis
by replacing A/

√
K by qkA/

√
K where qk < 1 are empirical factors quantifying the wave

generation efficiency per wave frequency ωk. We kept the analysis simple by assuming
qk = 1.

3. Experimental results

3.1. Single-frequency forcing
We excite monochromatic (1,1)-attractors with single frequency ω1 = 0.55 rad s−1 (θ =
19.3◦) for six different forcing amplitudes ranging from 0.5 mm to 16 mm, shown in
table 1. Snapshots of the experimentally observed horizontal buoyancy gradient ∂xb for a
weak-amplitude experiment (A = 0.5 mm) and a large-amplitude experiment (A = 8 mm)
are shown in figures 3(a,c,e,g) and 3(b,d, f,h), respectively. The time step between these
panels corresponds to approximately 1.5 min. The time averages of the magnitude of the
buoyancy gradient, |∇b| =

√
|∂xb|2 + |∂zb|2, for these snapshots are given in figure 3(i,j).

The corresponding time series along a vertical transect at x0 = 50 cm are shown in
figure 3(k) for the small amplitude and in figure 3(l) for the large amplitude. The last row
of panels (figure 3m,n) depicts the non-dimensionalized prescribed forcing from ASWaM.
For the small-amplitude forcing, every time snapshot shows energy localization along a
diamond-shaped (1,1) wave attractor. This is again clear in the time average of these plots
(figure 3i) along with the corresponding time series (figure 3k). For the larger-amplitude
experiment, the time average (figure 3j) also vaguely shows energy localization along
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Figure 3. Snapshots of experimentally observed horizontal buoyancy gradient ∂xb, at times t = 479 +
16nπ/0.55 s, where n = 1, . . . , 4, (9.50 to 14.07 min) for single-frequency forcing. (a,c,e,g) correspond to
small-amplitude (A = 0.5 mm) forcing, (b,d, f,h) to large-amplitude, (A = 8 mm) forcing. See table 1 for
experimental parameters. (i,j) Time-averaged magnitude

√
|∂xb|2 + |∂zb|2 of the four plots above. (k,l) Time

series along the vertical transect at x0 = 50 cm, in (a–h) indicated by dashed lines. In (k,l), times of snapshots
(a–h) are indicated by dashed vertical lines. (m,n) Time series of the non-dimensionalized bottom disturbance
by ASWaM, f (t), given by (2.4), which is regular for this single-frequency forcing.

the same attractor shape. However, it is much harder to identify the presence of a wave
attractor from the snapshots in figure 3(b,d, f,h) for the large-amplitude forcing, or from
the corresponding time series, figure 3(l).

The classical methodology of identifying attractors by local energy intensification
apparently fails in the large-amplitude regime, especially when observing along a single
vertical transect only. Yet, as we will see in figure 4, we can identify the wave attractors
in the spatio-temporal spectra of the magnitude of the buoyancy gradient taken from the
vertical transect time series at x0 = 50 cm. We verified that the spectral decompositions
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Internal wave attractors hidden in multi-frequency fields

in figure 4 are only weakly dependent on the horizontal location of the vertical transect
(not shown). Here we also present the spatio-temporal plot for the largest forcing
amplitude at A = 16 mm (figure 4c). Increased energy levels at dissipative length scales
corresponding to the forcing frequency of the attractor indicates a focusing reflection
mechanism that contributes to the energy cascade. The smallest and most energetic
wavelength of a linear attractor attainable before viscous damping begins to dominate
over the focusing, denoted λmin, is given by λmin = 2π(νLa tan θ/(2ω(γ 3 − 1)))1/3 with
γ = sin(α + θ)/ sin(α − θ) ≈ 2.08, θ = 19.3◦, ν = 1 mm/s and La the perimeter length
along the attractor (Hazewinkel et al. 2008; Beckebanze et al. 2018). For our laboratory
setting with La ≈ 2.5 m, this length scale is approximately 2.9 cm. Scales smaller than this
are thus strongly damped due to viscous dissipation. Beckebanze et al. (2018) show that for
certain geometries, dissipation from friction at lateral walls can be significant. We note that
for the experimental set-up presented here, the thickness of the boundary layer, which is

given as d0 = μ−1(ν/ω)1/2, where μ =
√

(|sin2 α/sin2 θ − 1|), is approximately 0.7 mm.
This leads to a moderate enhancement of dissipation and small increase in the minimum
size (wave length) of the attractor. To be on the safe side, we have chosen dissipation to be
characterized by scales between 1 and 2 cm, the former limit being closer to the resolution
of synthetic schlieren.

All three single-frequency spectral plots (figure 4a–c) show that energy levels at the
dissipative scales (between the horizontal blue lines) within the (1,1)-attractor frequency
band (between the solid vertical lines) are substantially increased (factor 3 at large
amplitude to factor 10 at small amplitudes) over those at other frequencies. This shows
that elevated dissipation levels in single-transect measurements can betray the presence of
wave attractors, even when temporal observations are inconclusive.

Another mechanism that may limit the maximum amplitude obtainable in experiments,
observed in the large-amplitude single-frequency experiments, is TRI. TRI can effectively
transfer energy to smaller length scales through the generation of two waves that satisfy
the temporal and spatial resonant conditions, ω1 = ω+ + ω− and k1 = k+ + k−, where
k are the wavevectors and the subscripts, 1, + and − indicate the primary wave and
two resonant waves, respectively. For the A = 8 mm experiment (figure 4b), two lower
frequencies (ω− = 0.22 (rad s−1) ω+ = 0.33 (rad s−1)) that satisfy the temporal resonant
condition are indeed seen to develop, and are maintained throughout the experiment.
Moreover, in the A = 16 mm case (figure 4c), cascading TRI is observed, where these
resonant frequencies in turn become unstable and generate triadic instabilities of their
own, seen by further lower frequencies that satisfy the temporal relationship of TRI.
These two processes, known as discrete and cascading TRI, have been discussed (case
B and C) respectively in Brouzet et al. (2016). As the normalized spectral average over
the dissipation scales, B̃(ω)/A, displayed in figure 5 shows, despite the presence of these
triadic interactions, the largest congregation of dissipative length scales for all of the
forcing amplitudes corresponds to the attractor forcing frequencies, not these resonant
frequencies generated from triadic instabilities. Notice instead that high dissipation also
takes place at the superharmonic, 2ω1, and at zero frequency. Both result from TWIs that
can take place without the need to pass any threshold forcing amplitude. We can therefore
identify repeated geometric focusing as the main mechanism for energy dissipation.

To summarize, the time series of the vertical transects (figure 3k,l) mimic information
that one might extract in the ocean from observational records collected with an acoustic
Doppler current profiler, thermistor chain or conductivity, temperature and pressure
chain. This means that oceanic wave attractors hidden in observational records might
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Figure 4. Spectral decompositions of the magnitude of the buoyancy gradient |∇b(x0, z, t)| =
√

|∂xb|2 + |∂zb|2 along the vertical transect at
x0 = 50 cm for single-frequency forcing amplitudes A = 0.5, 8, 16 mm (a–c). The contour plots show the spatio-temporal spectra B̂(ω, λz) =
(1/
T)(1/H)

∫ 0
−H

∫ T1
T0

|∇b| exp(iωt + i2π/λzz) dt dz as a function of wave frequency ω and vertical wavelength λz, normalized by the height of the tank and over
the time period 
T = T1 − T0, where T0 = 1440 s and T1 = 3840 s. The vertical solid and dashed lines indicate the frequency ranges for the (1,1) and (2,1)-attractors,
respectively. The horizontal blue lines delimit the dissipative scales, λ1,2 respectively. The integrated magnitude B̃(ω) = (1/
λ)

∫ λ2
λ1

B̂(ω, λz) dλz over the dissipative
scales (from λ1 = 1 cm to λ2 = 2 cm) is shown below each panel.
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Figure 5. Colours present the buoyancy amplitude’s spectral decomposition B̃(ω)/A averaged over the
dissipation range (from λ1 = 1 cm to λ2 = 2 cm, between blue lines in figure 4) and normalized by forcing
amplitude A, as a function of wave frequency and forcing amplitude.

be detectable by their increased energy levels at dissipative length scales for attractor
frequencies.

3.2. Multiple-frequency forcing
The multi-frequency experiments are forced at 0.5, 1, 2, 4, 8 and 11.5 mm amplitudes
with each amplitude containing wave frequencies ωk = (0.39 + 0.02(k − 1)) for k =
1, 2, 3, . . . , 16, or in short-hand notation ωk = 0.39 : 0.02 : 0.69. Eight of the input
frequencies project into the wave attractor frequency band I(1,1), five frequencies are
smaller than ωmin = 0.477 rad s−1 and three are larger than ωmax = 0.649 rad s−1 (see
(2.2) for definition). For reproducibility, we chose phases φk to be the kth digit of
π ≈ 3.14159 . . . multiplied by 2π/10, e.g. φ3 = 0.4 × 2π. As mentioned in § 2, the energy
input per frequency is found by ω2

kA2/K, meaning we add energy at a strength proportional
to ω2

k .
The snapshots of the weak (A = 0.5 mm) multi-frequency forcing (figure 6a,c,e,g)

depict various diamond-shape (1,1)-attractors. However, the time average of the magnitude
of the buoyancy gradient, |∇b|, in figure 6(i) indicates that the sum of the eight excited
wave attractors leads to no energy localization. For the large-amplitude regime (A =
8 mm), as expected, the wave attractor does not have an obvious appearance for either the
snapshots or the time average of the magnitude of the buoyancy gradient (figure 6b,d, f,h
and 6j). Specifically, neither of the time series shown in figure 6(k,l) show a clear indication
that a wave attractor has formed. Nevertheless, examining the spatio-temporal spectra
we find that, as for the series of single-frequency experiments, the wave attractor energy
cascade towards the dissipative length scales persists in the presence of a multi-frequency
wave field. This is shown in figures 7(a–c) and 8, where the intensified energy levels at
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Figure 6. As in figure 3 but for a multi-frequency forcing, visible in the bottom panels (m,n), which show the
time series of the non-dimensionalized bottom disturbance by ASWaM, f (t), given by (2.4).

attractor frequencies are visible for all forcing amplitudes A. It should be noted that, while
this is less obvious for the highest forcing amplitudes (A = 8 mm and 11.5 mm), the colour
scale presented is logarithmic which makes a factor of 2 increase harder to identify.

Unlike the single-frequency forcing, the spectral decompositions of the magnitude
of the buoyancy gradient |∇b| in figure 7 do not provide clear evidence of TRI. This
comes as no surprise, because the threshold for the onset of TRI depends on the energy
per frequency (∝ A2/K) rather than the total energy input (∝ A2). Hence, the most
energetic multi-frequency experiment with A = 11.5 mm amplitude forcing corresponds to
A = 11.5/

√
16 = 2.87 mm forcing for the single-frequency forcing; for our experiments

there has been no TRI observed for A ≤ 4 mm. It should be noted that this amplitude
threshold only exists for finite width beams. Studies by Brouzet (2016) and Bourget et al.
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Figure 7. As in figure 4 but for a multi-frequency forcing of the non-dimensionalized bottom disturbance by ASWaM, f (t), given by (2.4). Forcing frequencies and scales
are indicated by 16 black dots.
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Figure 8. As in figure 5 but for a multi-frequency forcing of the non-dimensionalized bottom disturbance by
ASWaM, f (t), given by (2.4).

(2014) have examined this threshold, considering different beam widths and stratifications,
finding amplitude threshold values of a similar magnitude.

While TRI was not observed in the multi-frequency experiments, TWIs were. The
frequencies corresponding to these interactions are shown by the black arrows on figure 8,
where increased energy levels can be seen at these frequencies. Despite their presence,
as with the case of TRI in the single-frequency experiments, the largest congregation of
dissipative length scales for all of the forcing amplitudes corresponds to the attractor
forcing frequencies, not these TWI frequencies. Moreover, for both the single- and
multi-frequency forcing, while normalized energy levels at most wave frequencies increase
with increasing forcing amplitude, A (figures 5 and 8), the most energetic frequencies
within the (1,1)-attractor band (between vertical black lines) remain nearly constant. The
latter indicates that geometric focusing by the wave attractor (a linear process in A) is
unaltered by nonlinear processes (TRI and TWI).

In the large-amplitude regime, intense overturning took place near the bottom, which
created an approximately 5 cm thick homogeneous bottom layer (also contaminated
with glycerol entrained from beneath the wavemaker) by the end of the experiment.
This intensified bottom mixing might have been driven by barotropic sloshing that was
inevitably generated by the peristaltic action of the boundary motion. The homogeneous
bottom layer slightly shifted the attractor frequency range I(1,1) towards larger frequencies,
noticeable in figure 7(c) at A = 11.5 mm. Interestingly, while larger spatial scales are
seen for all small-amplitude, multi-frequency forcing frequencies (figure 7a), we observe a
specific frequency within the attractor band that seems to be preferred at dissipative scales.
Due to this shift in the attractor range, this corresponds to the frequency in the middle of
the attractor range, hence the one least affected by internal shear, as discussed in § 2.
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Internal wave attractors hidden in multi-frequency fields

4. Concluding remarks

Our analysis reveals that the projection of wave energy to smaller scales at wave attractor
frequencies persists in the large-amplitude single- and multi-frequency regimes. This
means that the energy cascade in the ocean can be accelerated by the presence of wave
attractors, even if in the presence of (large-amplitude) wave turbulence. We thereby
consolidate the general thought (Sibgatullin & Ermanyuk 2019) that wave attractors could
contribute to the energy cascade towards dissipative scales in the ocean.

Brouzet et al. (2016, 2017) and Brunet et al. (2019) emphasized the possibility of
single-frequency wave attractors triggering TRI in the large-amplitude regime. Their
studies did not indicate whether the occurrence of TRI limited the efficiency of the wave
attractor to project energy to the dissipative scales. We show that the linear mechanism
of geometric focusing persists in the large-amplitude single-frequency regime, despite the
dispersion of wave energy to non-attractor frequencies through TRI and TWIs. Similarly,
the wave attractor energy cascade remains efficient if the large-scale energy input consists
of multiple frequencies to begin with. We find no evidence of TRI in our multi-frequency
experiments, because significant energy content per wave frequency is below the threshold
for TRI and possibly due to energy transfer to non-attractor frequencies being generated
by TWIs. Time constraints did not allow us to perform an experiment where the forcing
frequency or frequencies were all located outside simple attractor frequency bands. We
expect that when new frequencies, arising through TRI or TWI, land in one these attractor
bands, these may likewise contribute to a rapid transfer to dissipation scales.

Wave attractors have never been observed in ocean records. It is often argued that
this is due to the sparsity of observational data. Our analysis shows that hidden wave
attractors can be detected from increased energy levels at dissipative scales at the attractor
frequencies. For observational records revealing elevated energy levels (as compared to
the ‘universal’ GM spectrum) at a specific frequency band, it could be a fruitful exercise
to check whether this frequency band corresponds to a family of simple wave attractors in
the ocean geometry surrounding the measurement site.

In reality, as briefly mentioned above, the simple attractor frequency bands may not
incorporate tidal frequencies at which most oceanic internal waves are generated. In that
case, we might expect nonlinear processes to cascade the internal wave energy to attractor
frequency bands before the linear process of repeated geometric focusing sets in.
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