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ABSTRACT

Here, we point out on an intriguing mapping between the quantum harmonic oscillator ground state and the zero absolute vorticity plane
Couette flow of a Boltzmann-like density distributed ideal gas in thermal equilibrium. The mapping is obtained when the gas is embedded in
a rotating frame whose rotation rate is equal to half of the frequency of the quantum harmonic oscillator.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0047620

It has been shown numerically1 and experimentally2,3 that for
pressure-driven turbulent channel flows, undergoing spanwise system
rotation, the mean velocity profile may be deformed into a plane
Couette flow in the central region of the channel. Furthermore, the
absolute vorticity (that is, the sum of the averaged spanwise flow vor-
ticity and the background vorticity due to the system rotation) of this
Couette flow tends to zero, thus denoted as a “zero-absolute-vorticity
state.” Here, we address another fundamental aspect of the zero-abso-
lute-vorticity state, in a much simpler setup of thermal equilibrium,
which may serve as an analog of the ground state of a quantum har-
monic oscillator.

Consider then a hypothetical experimental setup in which a quasi
horizontal mono-atomic ideal gas in thermal equilibrium (e.g.,
immersed in a large enough heat bath) is overlaid on a platform that is
rotating clockwise with the angular velocity X ¼ x=2 (where the
choice of the clockwise rotation is made in order to obtain an analogy
with a 1D harmonic oscillator in the x direction). Treating the gas as
an inviscid fluid in a horizontal plane, the Euler momentum equation
viewed from the rotating frame reads (e.g., Ref. 4)

@u
@t
þ u � ru ¼ �rp

qm
þ xẑ � u; (1)

where u ¼ ðx̂ uþ ŷvÞ is the horizontal velocity vector and r
¼ x̂ @

@x þ ŷ @
@y

� �
is the horizontal part of the nabla operator.�rp=qm

is the horizontal pressure gradient force (PGF), where p and qm denote

the gas pressure and mass density, respectively. The Coriolis force is
expressed by xẑ � u, wherex is the Coriolis frequency.

The ideal gas equation of state is written as

p ¼ qm

m
kT ¼ qkT; (2)

where m denotes the mass of each particle of the gas, so that q is the
particle density. k is the Boltzmann constant and T denotes the tem-
perature. In thermal equilibrium, T is constant; thus, the PGF can be
written as the exact gradient,

�rp
qm
¼ �rðQ=mÞ; Q ¼ kT ln ðq=qsÞ (3)

(where qs is an arbitrary positive valued scaling factor). Therefore, the
PGF cannot apply momentum torque to generate vorticity. Adding
the continuity equation for a compressible gas,

@q
@t
¼ �r � ðquÞ; (4)

then for given constant values of T and x, the system of Eqs. (1)–(4)
solves for the variables ðu;qÞ.

The spanwise (z direction) vorticity component of the flow is
f ¼ ð@v@x � @u

@yÞ. A zero absolute vorticity state is defined when the total

vorticity, viewed from a frame of rest, is zero. As the tank rotates
clockwise, the zero absolute vorticity must, therefore, satisfy the

Phys. Fluids 33, 031708 (2021); doi: 10.1063/5.0047620 33, 031708-1

Published under license by AIP Publishing

Physics of Fluids LETTER scitation.org/journal/phf

https://doi.org/10.1063/5.0047620
https://doi.org/10.1063/5.0047620
https://www.scitation.org/action/showCitFormats?type=show&doi=10.1063/5.0047620
http://crossmark.crossref.org/dialog/?doi=10.1063/5.0047620&domain=pdf&date_stamp=2021-03-23
https://orcid.org/0000-0002-3584-3978
https://orcid.org/0000-0003-1523-7548
mailto:eyalh@tauex.tau.ac.il
https://doi.org/10.1063/5.0047620
https://scitation.org/journal/phf


condition f ¼ x. A straightforward stationary zero absolute vorticity
solution of systems (1)–(4) is obtained for the plane Couette flow:
u¼ 0 and vc ¼ xx (where the subscript “c” denotes the Couette pro-
file). For q ¼ qðxÞ, the flow is geostrophically balanced between the x
components of the Coriolis force and the PGF,

xvc ¼ x2x ¼ � 1
m
@Q
@x

; (5)

yielding

qðxÞ ¼ q̂ e�
VðxÞ
kT ; q̂ ¼ x

ffiffiffiffiffiffiffiffiffiffiffi
m

2pkT

r
; VðxÞ ¼ mðxxÞ2

2
¼ mv2c

2
: (6)

Here, q was normalized [normalization does not affect the correctness
of (5)] to satisfy Ly

Ð1
�1 qdx ¼ 1, where Ly is a length scale in the y

direction, taken hereafter as the unity without loss of generality. It
obeys a Boltzmann-like probability density function (PDF).
Alternatively, as dvc ¼ xdx, we may write the Couette velocity PDF,
satisfying

Ð1
�1 ~qðvcÞdvc ¼ 1 as

~qðvcÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
m

2pkT

r
e�

mv2c =2
kT ; (7)

suggesting that vc distributes according to the 1D Maxwell–Boltzmann
distribution,5 where vc plays the role of the thermal velocity in ideal
gas.

Recalling that the momentum advection term can be written as:
u � ru ¼ fẑ � uþrðu2=2Þ, we rearrange (1) into

@u
@t
þ ðf� xÞẑ � u ¼ �r u2

2
þ Q
m

� �
; (8)

whose LHS vanishes for stationary zero absolute vorticity state solu-
tions. Consequently, (8) is reduced to the Bernoulli equation,

u2

2
þ Q
m
¼ Be; (9)

where Be is the Bernoulli potential constant. For the Couette flow solu-
tion, (9) can be written as

mv2c
2
þ QðxÞ ¼ VðxÞ þ QðxÞ ¼ mBe: (10)

Hence, Be ¼ Qðx ¼ 0Þ=m ¼ kT
m ln ðq̂=qsÞ is an undetermined con-

stant since the scaling factor, qs, in Q is arbitrary. This by itself is not
surprising as the dynamics is governed by the geostrophic balance of
(5), which does not depend on the precise value of Q. The mean
(expectation) value hf i �

Ð1
�1 qf ðxÞdx yields hVi ¼ kT , as expected

in thermal equilibrium. Hence, if we choose to definemBe ¼ kT � E0
(so that the density scaling factor qs ¼ q̂=e, where e is Euler’s num-
ber), then we obtain from (6) and (10),

q0ðxÞ ¼ x

ffiffiffiffiffiffiffiffiffiffi
m

2pE0

r
e�VðxÞ=E0 ; VðxÞ þ QðxÞ ¼ E0: (11)

Hypothetically tuning the platform rotation rate X to satisfy
kT ¼ �hX ¼ �hx=2 � E0 (where �h is the reduced Planck constant),
then (11) becomes the familiar 1D quantum oscillator ground state
PDF to find a spinless quantum particle with mass m in position x,
where the zero subscript refers to the zeroth order Hermite polynomial

solution.6 We now wish to transform the momentum and continuity
Eqs. (1) and (4) in an equivalent form to the ones obtained from the
1D Schr€odinger equation in the presence of the harmonic potential
VðxÞ ¼ m

2 ðxxÞ2. Toward this end, we assume again that ðu; v; q;QÞ
are only functions of (x, t) and v ¼ vc ¼ xx. Then, the x component
of the momentum equation can be written as

m
@u
@t
¼ � @

@x
mu2

2
þ Qþ V

� �
; (12)

where the y component is trivially satisfied. The continuity equation
obtains the simple form,

@q
@t
¼ � @

@x
ðquÞ; (13)

where the plane Couette zero absolute vorticity stationary solution can
be recovered by setting u¼ 0.

Consider now the 1D time-dependent Schr€odinger equation6 for
a spinless quantum particle, in the presence of the harmonic potential:

i�h
@W
@t
¼ ĤW ¼ p̂2

2m
þ V

� �
W; (14)

where Wðx; tÞ is the wavefunction, and Ĥ and p̂ ¼ �i�h @
@x are the

Hamiltonian and momentum operators, respectively. Recall that now
m denotes the mass of the quantum particle, rather than an atom in a
gas. We write the wavefunction in a polar form,

Wðx; tÞ ¼ ffiffiffi
q
p ðx; tÞeiSðx;tÞ=�h; (15)

where now qðx; tÞ is the probability density function to find the parti-
cle in position x at time t, and S is the phase (scaled by �h). Defining the
velocity according to the de Broglie guiding equation,

u ¼ 1
m
@S
@x
: (16)

Madelung7 decomposed (14) to its amplitude and phase to obtain two
equations. The first is the continuity Eq. (13) and the second is the
quantum Hamilton–Jacobi, time-dependent Bernoulli-like equation:

@S
@t
¼ � mu2

2
þ V þ Qq

� �
; (17)

where

Qq ¼ �
�h2

2m
ffiffiffi
q
p

@2
ffiffiffi
q
p

@x2
; (18)

is the quantum potential (denoted also as the Bohm potential). Taking
now the x derivative of (17) we obtain (12), except that instead of Q in
the RHS, we have Qq.

For the quantum stationary states S ¼ �Ent (where En
¼ �hxðnþ 1=2Þ and n takes integer values); thus, S is not a function of
x and, consequently, by (16), u ¼ 0. The continuity Eq. (13) ensures
then that the eigen-states PDF, qn, are indeed stationary, where (17)
gives

VðxÞ þ QqnðxÞ ¼ En (19)

so that specifically for the ground state (n¼ 0), we obtain the second
equation of (11) with Qq0 ¼ Qqðq0Þ in the position of
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Q0 ¼ kT ln ðq0=qsÞ. Nonetheless, a quick check reveals that the two
are the same; thus, the mapping is complete.

According to the quantum field theory, the harmonic oscillator
ground state composes the zero point energy of vacuum fluctuations.
We find it intriguing that (apart from the obvious scaling by �h) such a
fundamental building block has a relatively straightforward macro-
scopic analog. It may also be worth noting that under this analogy,
E0=�h ¼ X ¼ x=2; hence, the factor half does not appear when relat-
ing the ground state with the rotation of the tank itself, rather than
with the background vorticity Coriolis frequency it induces.
Furthermore, the fact that the Couette flow carries zero absolute vor-
ticity seems adequate to describe spinless quantum particle
phenomena.

One may ask for the physical basis of the analogy between the
two phenomena. This stems from the Coriolis force acting as a restor-
ing force to generate inertial oscillations in the presence of geostrophi-
cally balanced flows. Consider the solution where ðu; v;q;QÞ are only
functions of (x, t), then the two components of the momentum equa-
tions read

Du
Dt
¼ � @Q

@x
� xv;

Dv

Dt
¼ xu; (20)

where D
Dt � @

@t þ u @
@x is the 1D material derivative in the x direction.

Suppose that we now perturb the geostrophic equilibrium of (5) by
slightly displacing a fluid parcel in the x direction so that u ¼ Dv=Dt,
where vðtÞ denotes the small displacement. This will immediately
results in a change in v, as can be seen from the second equation
of (20),

Dv

Dt
¼ xu ) v ¼ xðx þ vÞ ¼ vc þ xv: (21)

Plugging v back in the first equation of (20), we recover the classical
harmonic oscillator,

Du
Dt
¼ D2v

Dt2
¼ �x2v: (22)

Hence, the Coriolis force acting on the Couette flow, vc ¼ xx,
becomes �mx2x ¼ � @V

@x , where V is the harmonic potential. As for
the quantum harmonic oscillator energy states, the gradient of this
harmonic potential is locally balanced. For the quantum states, it is
balanced by the gradient of the Bohm potential, whereas in the hydro-
dynamic analog, it is (geostrophically) balanced by the pressure gradi-
ent force. For the thermal Couette flow, the latter happens to have the
same structure as the Bohm potential gradient in the quantum oscilla-
tor ground state. In both systems, the consequence of the balance is
that the de Broglie velocity (16) remains zero. Only when the energy
states are perturbed, u becomes non zero. Hence, while vc defines the
potential, u relates to the particle motion within this potential.

As pointed out by,8 generally the Bohm potential plays an analog
role of the enthalpy in a barotropic fluid. Then, the quantum
Hamilton–Jacobi Eq. (17) reads as the corresponding time-dependent
Bernoulli barotropic fluid equation. It is interesting that for the
Couette flow solution in thermal equilibrium, this equivalency
between the equations still holds formally, even though the ideal gas
enthalpy in thermal equilibrium is constant. Furthermore, the analogy
seems to hold solely for the quantum oscillator ground state. For the
higher energy states (n ¼ 1; 2; 3;…):

qnðxÞ ¼
1

2nn!
H2

n

ffiffiffiffiffiffiffiffiffiffi
VðxÞ
E0

s0@
1
Aq0ðxÞ (23)

(whereHn denotes the Hermite polynomial of order n), one cannot find
a temperature structure T(x) that simultaneously allows writing the
PGF as an exact gradient and satisfying the geostrophic balance of (5).

We mentioned that the suggested “experiment” is hypothetical,
not only because of the technical challenges it poses, but mainly
because the required rotation rate of X ¼ ðk=�hÞT ¼ Oð1011ÞT is
obviously unattainable in practice due to the smallness of the Planck
constant. This may be expected as it is improbable to construct, in
practice, a macroscopic system that quantitatively demonstrates a
quantum phenomenon.9

It should also be stressed that this analog does not suggest a clas-
sical counterpart for the existence of a non zero ground state, as the
Bernoulli potential can be chosen to be set to zero for the choice of
qs ¼ q̂. From the fluid dynamics perspective, it is interesting that
although the Couette zero absolute vorticity state emerges as a conse-
quence of highly nonlinear pressure driven turbulent dynamics; here,
a simple version of it can be obtained by the linear Schr€odinger
equation.

This analog motivates the examination of further zero absolute
vorticity geostrophic-like balances, embedded within the Schr€odinger
equation, in more complex setups such as in the presence of an elec-
tromagnetic field. In a follow-up paper, we will address such hydrody-
namic balance shear flow analogs of the Landau levels and the integer
quantum Hall effect.
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