
1. Introduction
Antarctic Peninsula (AP) surface melt has increased in the past half-century in response to anthropogenic 
increases in surface temperature (Barrand et al., 2013). Surface melt-induced firn air depletion and densifi-
cation contribute to the hydrofracture process thought to have preceded the collapse of Larsen A and B ice 
shelves off the eastern coast of the AP in 1995 and 2002, respectively (Alley et al., 2018; Kuipers Munneke 
et al., 2014; McGrath et al., 2012). Ice shelves are the floating extensions of grounded glaciers and apply 
a buttress force that when lost, allows grounded glacier velocity to increase, and accelerates sea level rise 
(Rignot, 2004). Recently föhn winds have been identified as contributors to localized surface melt and hy-
drofracture in all seasons including polar winter at a single weather station on Larsen C ice shelf (Kuipers 
Munneke et al., 2018).

Abstract Warm and dry föhn winds on the Antarctic Peninsula (AP) cause surface melt that can 
destabilize vulnerable ice shelves. Topographic funneling of these downslope winds through mountain 
passes and canyons can produce localized wind-induced melt that is difficult to quantify without direct 
measurements. Our Föhn Detection Algorithm (FöhnDA) identifies the surface föhn signature that causes 
melt from measurement by 12 Automatic Weather Stations on the AP, that train a machine learning 
model to detect föhn in 5 km Regional Atmospheric Climate Model 2 (RACMO2.3p2) simulations and in 
the ERA5 reanalysis model. We estimate the fraction of AP surface melt attributed to föhn and possibly 
katabatic winds and identify the drivers of melt, temporal variability, and long-term trends and evolution 
from 1979–2018. We find that föhn wind-induced melt accounts for 3.1% of the total melt on the AP and 
can be as high at 18% close to the mountains where the winds funnel through mountain canyons. Föhn-
induced surface melt does not significantly increase from 1979–2018, despite a warmer atmosphere and 
more positive Southern Annular Mode. However, a significant increase (+0.1 Gt y-1) and subsequent 
decrease/stabilization occur in 1979–1998 and 1999–2018, consistent with the AP warming and cooling 
trends during the same time periods. Föhn occurrence, more than föhn strength, drives the annual 
variability in föhn-induced melt. Long-term föhn-induced melt trends and evolution are attributable to 
seasonal changes in föhn occurrence, with increased occurrence in summer, and decreased occurrence in 
fall, winter, and early spring over the past 20 years.

Plain Language Summary Surface melt on the glaciers and floating ice shelves of the 
Antarctic Peninsula can contribute to sea-level rise via run-off to the ocean and by ice-shelf destabilization 
and reduced buttressing against glacier flow to the ocean. Surface melt on the Antarctic Peninsula 
has traditionally been attributed to sunlight melting snow although more recent studies demonstrate 
significant contributions in all seasons from warm, downslope winds called föhn winds. It is important to 
understand where these winds cause melt, when they cause melt, how much melt, and are they changing 
through time? We use weather stations on the Antarctic Peninsula, model data, and Machine-Learning 
techniques to characterize these warm winds. We find they occur in every season, including winter when 
there is no sunlight to melt the snow surface. Föhn wind-induced melt accounts for 3.1% of the total melt 
on the Antarctic Peninsula and can be as high as 18% close to the mountains where the winds funnel 
through mountain canyons. Overall there has not been a significant increase in melt caused by föhn winds 
in the past 40 years, although the seasonality of the winds and associated melt are changing.
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Föhn winds are warm and dry downslope winds that form on the lee side of mountain ranges like the AP. A. 
D. Elvidge and Renfrew (2016) hypothesized four mechanisms for föhn-warming: (1) Isentropic drawdown 
where cool moist air is blocked at low levels upwind of mountains, allowing warm dry air aloft to be brought 
to the surface, (2) release of latent heat from precipitation that changes the lapse rate and warms the sur-
face, (3) mechanical mixing of the persistent cold boundary layer with warm air aloft, (4) lee-side descend-
ing air creates clear skies enhancing radiative heating. Föhn events are highly variable within and between 
seasons, with the ultimate effect on surface conditions dependent on the large-scale atmospheric flow and 
orographic forcing (A. D. Elvidge et al., 2015). The topographic configuration of the AP (orthogonal to the 
westerlies) makes föhn conditions possible in all seasons, especially in spring (SON) and fall (MAM), caused 
by the seasonal shift in the storm track (Cape et al., 2015). Föhn-induced surface melt reduces local albedo 
and could increase the likelihood of hydrofracture especially near the grounding line which is thought to be 
a vulnerable hinge-point (Lenaerts et al., 2016; Scambos et al., 2000).

A number of studies focus on the impacts of föhn wind on melt, surface mass balance, and ice shelf stability. 
Case studies of specific föhn events lasting days or weeks using remote sensing, in situ observations, and 
airborne measurements highlight their impact on the surface energy budget, mainly focusing on the Larsen 
C ice shelf (LCIS) (Bozkurt et al., 2018; Cape et al., 2015; A. D. Elvidge et al., 2016; Wiesenekker et al., 2018). 
Regional climate model studies combined with in situ observations have deepened understanding of the 
spatio-temporal impacts of föhn-induced melt, and reiterate its importance in ice shelf densification and 
evolution (Datta et al., 2019; Luckman et al., 2014; Turton et al., 2018). Site-specific research shows that 
föhn-induced surface melt is predominantly limited to the northern AP (King et al., 2017; Kuipers Munneke 
et al., 2018; Turton et al., 2018). Most recently A. D. Elvidge et al., (2020) studied the impact of föhn on the 
surface energy budget, clarifying previous contradictory findings, while exploring surface energy budget 
regimes on the Larsen C ice shelf. Föhn is well documented in summer though understudied in winter be-
cause large scale field campaigns are primarily conducted in the less harsh summer months (A. D. Elvidge 
et al., 2015).

Despite numerous föhn studies, questions persist regarding how föhn-induced melt affects the spatial melt 
pattern, especially south of the Larsen C ice shelf and west of the AP, what fraction of the total melt on the 
AP is caused by föhn winds, how melt varies through time, and how föhn-induced melt has evolved on the 
AP. To address these questions, we use a novel approach to identify föhn-induced melt events, using in situ 
meteorological observations to train a Machine Learning algorithm to identify the föhn signature in ERA5 
global reanalysis and RACMO2 regional climate model simulations. We use these datasets to extend what 
we learn at weather stations both spatially and temporally. These records of föhn-induced melt occurrence, 
both spatial and temporally resolved are combined with the surface energy budget which allows us to quan-
tify melt when föhn occurs. We identify a föhn-induced melt climatology, and the annual drivers of föhn 
variability and evolution by assessing the correlation and seasonal variability of meteorological and energy 
balance variables to föhn-induced melt on the AP.

2. Data and Methods
2.1. Study Domain

The AP extends 1,300 km north from the Antarctic Continent (Figure 1). The AP is covered by a grounded 
ice sheet and supports three major ice shelves including the fourth-largest Antarctic ice shelf (Larsen C). 
The spine of the AP, the Antarctic Peninsular mountain range, averages only 50 km wide, and its mean 
elevation is 2,800 m above the surrounding ocean. This relatively thin and high mountain range is an ef-
fective barrier to the prevailing westerlies, segmenting the peninsula into an Antarctic maritime air mass 
to the west, and a colder continental air mass to the east. However, when the westerlies are strong and the 
meteorology forces air over the AP mountain range, relatively warm and dry downslope föhn winds can 
increase the temperature well above the freezing point (A. D. Elvidge et al., 2015). The turbulent föhn winds 
disrupt the polar boundary layer which allows large fluxes of sensible heat and enhanced solar radiation 
to reach the surface, which are partially offset by increased latent heat exchange, causing melt (Grosvenor 
et al., 2014; King et al., 2017).
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2.2. Surface Observations

We obtained in situ observations of hourly meteorological variables from three Automatic Weather Sta-
tion (AWS) networks; the Institute for Marine and Atmospheric Research (IMAU) at Utrecht University, 
Antarctic Meteorological Research Center (AMRC) at the University of Wisconsin, Madison, and the Na-
tional Snow and Ice Data Center (NSIDC). These data were processed through the Justified Automatic 
Weather Station (JAWS) software (Zender et al., 2019), which corrects for weather station tilt through time 
and harmonizes AWS data to be comparable across different networks (https://github.com/jaws/jaws). 
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Figure 1. MODIS Mosaic overlay of the Antarctic Peninsula with automatic weather station (AWS) names and 
locations. Ice shelves are shaded gray and the ocean is shaded dark blue (“MODIS Mosaic of Antarctica 2008–2009 
(MOA2009) Image Map, Version 1”). AWS color indicates the supporting network; Blue-Institute for Marine and 
Atmospheric Research (IMAU) at Utrecht University, Green-National Snow and Ice Data Center (NSIDC), Yellow-
Antarctic Meteorological Research Center (AMRC) at the University of Wisconsin.

https://github.com/jaws/jaws
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Meteorological records including wind speed (m/s), air temperature (K), and relative humidity (%) were 
collected by 12 AWS totaling 47 station-years on the AP (Figure 1 and Table 1). AWS observations are used 
as ground truth, useful to evaluate satellite observations and model simulations, and are used to train a Ma-
chine Learning (ML) algorithm to detect föhn winds in reanalysis and regional climate model simulations.

2.3. Föhn Detection

We developed a Föhn Detection Algorithm (FöhnDA) that identifies föhn winds that cause melt. Our ap-
proach is similar to previous studies that employ thresholds to identify föhn conditions in hourly AWS 
data (Cape et al., 2015; Datta et al., 2019; A. D. Elvidge et al., 2020; Speirs et al., 2012; Turton et al., 2018), 
however, we are most interested in föhn-induced melt so we focus on föhns that cause the surface air tem-
perature to rise above the freezing point. The föhn signature is quite distinct from the climatological average 
and is characterized by high wind speeds, low relative humidity, and increased temperatures, which makes 
identifying föhn events straightforward in AWS data. This signature is shared by katabatic winds, which 
allows FöhnDA to identify both wind types. Katabatic winds form when cold dense air drains downslope 
due to gravity. However, the majority of wind-induced melt in this region is the direct result of the AP spine 
interacting with large scale mesocyclones leading to föhn wind.

FöhnDA identifies a föhn-induced melt event using binary classification when three measured fields sur-
pass their empirically derived thresholds. The FöhnDA threshold for air temperature (T) is 0°C, which en-
sures it captures föhn events that cause surface melt. Thresholds for relative humidity (RH) and wind speed 
(WS) are more dynamic because high wind speeds and low relative humidity do not guarantee temperatures 
above freezing, they only aid to identify föhn. FöhnDA uses quantile regression to identify these variable 
thresholds that take into account the climatology and seasonality at each weather station site. FöhnDA 
uses two empirically determined thresholds: the 60th percentile wind speed and 30th percentile relative 
humidity. Thresholds for both wind speed and relative humidity were extensively tested to help improve 
classification. Varying these thresholds by 10 percent above and below the current values does not produce 
significantly different results because the main determinant of föhn-induced melt events is a surface tem-
perature above freezing. A föhn melt hour (h) is identified when,

   FöhnDA h 1 If T 0°C, RH 30th percentile, WS 60th percentile 
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Station name Location Variables observed Operation years

AWS 18 (IMAU) 66° 24′ S, 63° 22′ W T, RH, W, P, WD, SW↓, SW↑, LW↓, LW↑ 2015–2016

AWS 17 (IMAU) 65° 56′ S, 61° 51′ W T, RH, W, P, WD, SW↓, SW↑, LW↓, LW↑ 2011–2014

AWS 15 (IMAU) 67° 34′ S, 62° 09′ W T, RH, W, P, WD, SW↓, SW↑, LW↓, LW↑ 2009–2014

AWS 14 (IMAU) 67° 01′ S, 61° 30′ W T, RH, W, P, WD, SW↓, SW↑, LW↓, LW↑ 2009–2014

Bonaparte Point (AMRC) 64° 46′ S, 63° 03′ W T, RH, W, P, WD 2014–2015

Dismal Island (AMRC) 68° 05′ S, 68° 49′ W T, RH, W, P, WD 2017–2018

Fossil Bluff (AMRC) 71° 19′ S, 68° 16′ W T, RH, W, P, WD 2009–2011

Hugo Island (AMRC) 64° 57′ S, 65° 40′ W T, RH, W, P, WD 2009–2010

890600 (NSIDC) 64° 10′ S, 64° 10′ W T, RH, W, P, WD 1979–1981

890620 (NSIDC) 67° 34′ S, 68° 58′ W T, RH, W, P, WD 1988, 2001

890630 (NSIDC) 65° 15′ S, 64° 16′ W T, RH, W, P, WD 1986–1991

890660 (NSIDC) 68° 07′ S, 67° 07′ W T, RH, W, P, WD 1985–1997

Notes. IMAU is Institute for Marine and Atmospheric Research at Utrecht University, AMRC is Antarctic Meteorological Research Center at the University 
of Wisconsin, Madison, NSIDC is the National Snow and Ice Data Center. T, temperature, RH, relative humidity, W, wind speed, P, surface air pressure, WD, 
wind from direction, SW↓, incoming short-wave radiation, SW↑, outgoing short-wave radiation, LW↓, incoming long-wave radiation, LW↑, outgoing long-wave 
radiation.

Table 1 
Automatic Weather Station Information
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Periods that meet these three criteria are classified as föhn melt events. We apply FöhnDA to all 12 AWS sep-
arately to produce the “ground-truth” training data for the ML algorithm to detect föhns that cause melt in 
reanalysis and climate model simulations. By applying FöhnDA separately at each AWS we obtain ground-
truth data that encompass the climatic variability at each AWS site, and form a diverse training data set.

Finally, all AWS time series were manually quality controlled before analysis. Across all the AWS time 
series, FöhnDA correctly classified 97% of föhn melt events, relative to manual classification. We also con-
ducted a föhn classification sensitivity study (Table  A1) where we compare our classification results to 
results from methods in previous studies (Cape et al., 2015; Datta et al., 2019). Since other classification 
methods aim to identify all (not only melt-inducing) föhn events, we sub-sampled each method's results 
when temperatures were above freezing and found that FöhnDA replicated these results with less than a 5% 
error and with minimal false-positive and false-negative scores. We found that FöhnDA has a more sensitive 
wind speed criteria because the mean 60th percentile wind speed across all AWS sites is 2.85 m/s, which 
is exceeded during calmer föhn conditions compared to the other methods that employ higher wind speed 
thresholds (Datta et al, 2019–>3.5 m/s, Cape et al., 2015–>5 m/s).

2.4. Reanalysis

We used hourly meteorological data of 25 fields (Table A3) from the European Center for Medium-Range 
Weather Forecasts (ECMWF) ERA5 reanalysis (Copernicus Climate Change Service, 2017). These data 
are available at a horizontal resolution of about 30 km or 0.28° globally. ERA5 is created by assimilated 
satellite and in situ observations into ECMWF's Integrated Forecast System (IFS). When compared with 
ground-truth AWS observations on the southwestern AP and LCIS, ERA5 mean surface air temperature 
has a warm bias and ERA5 wind speed is underestimated though overall reproduce surface observations 
(Bozkurt et al., 2020; Tetzner et al., 2019).

We use sea level pressure to derive four new fields to train our ML algorithm: direction to high and low 
pressure, and distance to high and low pressure. These are useful to identify the preferred mesoscale flow. 
Two time-invariant fields, distance to steepest slope and distance to the highest elevation, serve to indicate 
topographic controls for föhn formation. We use an elliptical search domain with an east/west diameter of 
120 km and a north/south diameter of 36 km, to determine the proximity of grid cells to local topography 
and slope features. This search field allows the ML algorithm to find the relationship between topographic 
features and föhn winds. Lastly, we create a field called ERA5 FöhnDA which uses our AWS thresholds to 
detect föhn conditions from ERA5 air temperature, relative humidity, and wind speed.

2.5. Atmospheric Model

We accessed the 3-hourly output of 19 fields from the Regional Atmospheric Climate Model 2 (RAC-
MO2), version 2.3p2, with a horizontal resolution of 5.5  km (0.05°) focused on the AP. RACMO2 uses 
the physics package CY33r1 of the ECMWF Integrated Forecast System (IFS) (https://www.ecmwf.int/en/
elibrary/9227-part-iv-physical-processes\textit{{ECMWF-IFS,} 2008}) in combination with atmospheric 
dynamics of the High-Resolution Limited Area Model (HIRLAM), and is evaluated extensively with sur-
face observations located in Dronning Maud Land and the LCIS (Bozkurt et al., 2020; J. M. Van Wessem 
et  al.,  2018). When compared with AWS observations on the LCIS, surface air temperature has a slight 
warm bias and shortwave/longwave radiation are over/under estimated due to underestimation of clouds 
and moisture but overall reproduce surface observations (Bozkurt et al., 2020; King et al., 2015). RACMO2 
is forced at the lateral boundaries with ERA-Interim data (Dee et al., 2011) and shows improvement in the 
surface energy fluxes and near-surface temperature from previous versions compared with AWS obser-
vations (J. M. Van Wessem et al., 2018). Hence RACMO2 provides self-consistent surface melt estimates 
independent of and intermediate in scale between ERA5 and AWS.

We created seven new fields for RACMO2 analogous to those described above for ERA5: distance to high 
and low pressure and direction of high and low pressure, distance to the steepest slope and highest eleva-
tion, and RACMO2 FöhnDA based on the three thresholds to identify föhn in AWS data.
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To evaluate the consistency of ERA5 and RACMO2 meteorologies with 
in situ data, we intercompare their air temperature, relative humidity, 
and wind speed products with the nearest AWS observations. Pearson 
correlation values were calculated using each AWS and their operation 
years with co-located ERA5 and RACMO2 for the same years (Table A2). 
Averaged over all AWSs, Pearson r values for the spatially gridded data-
sets (RACMO2, ERA5) are weak for relative humidity (r = 0.31, r = 0.25) 
largely due to how RACMO2 and ERA5 under-represent moisture and 
clouds (King et  al.,  2015). Wind speed correlation is weak for ERA5 
(r = 0.19) and strong with RACMO2 (r = 0.74), likely due to the disparity 
in each data set's horizontal resolution. Correlation is strong in both data-
sets for air temperature (r = 0.92, r = 0.81). Overall, both datasets portray 
spatiotemporally diffuse surface conditions relative to AWS, and thus re-
quire training to reveal the presence of localized föhn winds (Figure 2).

2.6. Machine Learning Model Development and Selection

We first attempted to detect föhn winds that cause melt in ERA5 and 
RACMO2 without the use of machine learning techniques by using the 
FöhnDA thresholds discussed above that were tuned for AWS measure-
ments. We call this the baseline model. However, the baseline model 
identifies less than 50% true positives in both datasets and produces too 
many false-positive and false-negative föhn classifications to be useful 
for either gridded data set. The low accuracy of the baseline model stems 
from the coarser spatial footprint of the spatially gridded datasets com-
pared to in situ observations, and from biases in ERA5 and RACMO2 
mentioned above.

Machine Learning (ML) can largely circumvent the limitations imposed 
by spatial resolution because it learns from complex parameterized mod-
els and large datasets, such as ERA5 and RACMO2. Previous studies have 
compared expert human classification of föhn events to machine learn-
ing classification in the Alps with promising results (Mayr et al., 2018). 
We use Gradient Boosting Classification (GBC) machine learning be-
cause it provides simple and interpretable classification and performs 
well with atmospheric data (Jin et al., 2019; Sprenger et al., 2017). GBC 
uses decision trees as weak learners which are added in series. Each tree 
attempts to minimize the errors of the previous trees creating a strong 
classifier that provides scientific insight into which atmospheric input 
features are most important for identifying föhn winds with help from 

feature attribution techniques, discussed below. We used AWS FöhnDA results as ground-truth data to train 
two GBC decision tree models (ML-RACMO2 and ML-ERA5) to identify föhn winds that cause melt in 
ERA5 reanalysis and RACMO2.

For both models, we used 10-fold cross-validation to develop and validate decision trees using the XGBoost 
package in Python (Chen & Guestrin, 2016). XGBoost or “eXtreme Gradient Boosting” uses an ensemble 
of prediction models that are added iteratively to correct errors made by the previous model and improves 
model speed and accuracy while limiting resource costs. We also use the Python package Scikit-learn to 
identify model accuracy after it is run through XGBoost (https://scikit-learn.org/stable/about.html#cit-
ing-scikit-learn). In cross-validation, the model with the highest average accuracy score is considered the 
best model.

We co-locate AWS with the nearest model grid cell and use FöhnDA results to train a ML model for RAC-
MO2 and a ML model ERA5. We use Bayesian hyperparameter optimization which aims to identify the val-
ue of each hyperparameter of a machine learning algorithm that returns the best performance when meas-
ured on a validation data set. The Bayesian optimization approach uses the information from past trials to 
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Figure 2. AWS 18 data with co-located ERA5 and RACMO2 hindcasts for 
a föhn wind event (shaded in gray) for (a) Air Temperature, (b) Relative 
Humidity, (c) Wind Speed, in late May 2016. Pearson correlation values 
were calculated using AWS 18 (2015–2016) with co-located ERA5 and 
RACMO2 for the same years. RACMO, Regional Atmospheric Climate 
Model.

https://scikit-learn.org/stable/about.html#citing-scikit-learn
https://scikit-learn.org/stable/about.html#citing-scikit-learn
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improve model performance and identify the optimum parameters quickly, instead of manually assigning 
values to hyperparameters or conducting a grid search. We use the BayesSearchCV class of scikit-optimize, a 
wrapper of Scikit-learn, where we assign a range of hyperparameter values to test and run the optimization 
until the model accuracy no longer improves. After this iterative improvement, the trained models were 
extrapolated across the AP domain of each data set to create climatologies of föhn wind-induced surface 
melt occurrence.

2.6.1. Model Evaluation

We evaluated the best model according to F1-score (Van Rijsbergen, 1979. The F1 score is a function of 
Precision and Recall, defined as,




TruePositivePrecision
TruePositive FalsePositive

 




TruePositiveRecall
TruePositive FalseNegative 


 


Precision Recall1 2
Precision Recall

F 

Precision is defined as the number of true positives divided by the sum of true and false positives. It rep-
resents the proportion of AWS observed föhn melt events that the model predicted. Recall is defined as 
the number of true positives divided by the sum of true positives and false negatives. It represents the pro-
portion of AWS-observed föhn melt events that were accurately identified by the model. The F1 statistical 
metric assesses model accuracy using binary classification. It takes into account both false-negative clas-
sification and false-positive classification for a range between 0 and 1. A model that correctly classifies all 
events with only true positive results (i.e., with no false negatives and/or false positives) yields an F1-score 
of 1.0. Conversely, a model that produces no true positive event classifications, and only false negative and/
or false-positive results, yields an F1-score of 0.0.

A second way we evaluate model performance is to compare how well the model classification corroborates 
AWS-FöhnDA classified föhn events. We compared both ERA5 and RACMO2 classified föhn to 4 weather 
stations (AWS 14, AWS 15, AWS 17, and AWS 18) on the Larsen C ice shelf which measured the majori-
ty of AWS-identified föhn events. We divided FöhnDA-identified föhn-melt events into strong (T > 7°C), 
moderate (3.5°C < T < 7°C), and weak (T < 3.5°C) events based on air temperature at each AWS site. We 
compared each model classification to determine the percentage of each event type detected. We acknowl-
edge that ERA5 and RACMO2 output bias, such as the ERA5 warm bias in the AP region, may theoretically 
lead to more strong and moderate events. However, by using surface observations to inform the ML model, 
we combat these model biases, because the ML model identifies what the föhn signature looks like in each 
data set. Since we classify the föhn melt events using only the AWS temperature, we can directly compare 
how well each ML model detects these events. This diagnostic provides insight into which events are not 
captured by the ML models and helps estimate how much föhn-induced melt is not captured.

Last, we learn how the ML models make a prediction based on feature weights determined by Local Inter-
pretable Model-Agnostic Explanations (LIME), a feature attribution technique (Ribeiro et al., 2016). Since 
ML-learned classifiers are complex, non-linear models, it is difficult to attribute a prediction to input varia-
bles. LIME provides a way to identify the importance of input variables for any black-box classifier, by per-
forming perturbations to the inputs, observing the effect on the output, and estimating a feature importance 
weight for each variable in the input (the normalized importance weights sum to 1.0). To compute an over-
all ranking of each feature that applies to the whole data set, we first find the feature importance for points 
in each of the 10 folds of the data, then aggregate the importance weights of each feature by taking their 
mean. LIME thus ranks the importance of input variables to provide insight into how much a model uses 
the given features to make a classification, and this helps the user to combat model overfitting (Table A3). 
More information about LIME can be found at (https://github.com/marcotcr/lime).
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2.7. Surface Energy Budget and Melt

We calculate the surface energy budget as,

     2
net net S LM SW LW H H W m‐ 

where SWnet is the net of downward and upward components of shortwave radiation, LWnet is the net of 
downward and upward components of longwave radiation, and HS and HL are the turbulent fluxes of sen-
sible and latent heat. Our sign convention is that energy fluxes directed toward the surface are positive, so 
positive net energy warms or melts the surface. When the surface temperature exceeds the freezing point, 
all excess energy is used to melt the surface. We disregard a ground heat flux as it is small compared to other 
fluxes (Kuipers Munneke et al., 2012). ERA5 and RACMO2 produce and archive all energy fluxes. We also 
calculate the surface energy budget for the IMAU AWS that have radiometric instruments and measure 
SWnet and LWnet, while HS and HL are calculated using the bulk aerodynamic formulas for turbulence (Kui-
pers Munneke et al., 2012). We compare the estimated energy budgets for AWS that provide radiation fluxes 
to the ERA5 and RACMO2 surface energy budget in the co-located grid cell.

3. Results
3.1. Model Accuracy and Performance

The ML models are characterized by the 12 parameters (Table A3) that produce the most accurate summary 
statistics (Table 2). The three most influential parameters from Table A3 are: n_estimators which is the 
number of decision trees used in the forest, learning_rate which sets a learning speed so the ML models do 
not overfit or memorize to the training data, and max_depth which sets a maximum for the number of tree 
splits. More information about the other XGBoost parameters used and how to tune each can be found at 
(https://xgboost.readthedocs.io/en/latest/index.html).

Both ML models outperform the baseline model in all three accuracy metrics (Table 2). Despite fewer fea-
tures given to the ML algorithm, ML-RACMO2 outperforms ML-ERA5. Moreover, ML-RACMO2 has 33% 
less training data because it is provided at a 3-hourly timescale.

Table 3 provides föhn-melt classification statistics of how much of the föhn-induced in situ melt is caused 
by strong, moderate, and weak föhn events, and how much of that melt is captured by the ML models for 
each data set. Surprisingly, strong events account for about 7% of melt caused by föhn, while weak events 
account for about 72% of föhn-induced melt. It is important to identify which events the models capture in 
order to provide model diagnostics and an accurate melt climatology. Overall the ERA5-based model clas-
sifies enough föhn events to capture 90.9% of the AWS-identified föhn melt and the RACMO2-based model 
captures 94.4% of AWS identified föhn melt.

Both models perform particularly well for events classified by FöhnDA as strong (T > 7°C) and moderate 
(3.5°C < T < 7°C) (Table 3). ML-ERA5 correctly identifies all strong events measured by AWS, and 98.9% of 
the moderate events, while ML-RACMO2 correctly identifies all strong and 95.9% of medium events. Weak 
(T < 3.5°C) föhn events are harder to classify largely due to the more diffuse föhn-signature in the gridded 
models. However, ML-ERA5 classifies 87.8% of weak events and ML-RACMO2 classifies 93.5% (Table 3). 
Weak event classification skill is sensitive to AWS location. AWS 18 and 17, closer to the mountain slopes, 
have a higher weak event classification percentage (AWS 18 ∼95%, AWS 17 ∼92%), compared to AWS 15 
(∼74%) and AWS 14(∼88%) which are farther downwind. Föhn winds are funneled through local topogra-
phy that accelerates winds down mountain slopes then flow decelerates downstream from the mountains.

To understand the basis for the ML models classification decisions we examine the feature weights provid-
ed by LIME (Table A2). ML-ERA5's three highest weighted features are air temperature (0.174), distance 
to highest elevation (0.116), and 10-m wind gust (0.062). Air temperature and 10-m wind gust are logical 
indicators of the warm and windy föhn signature. Distance to highest elevation is also important for clas-
sification though may indicate some overfitting because the ML algorithm makes classification decisions 
based on one time step and does not take into account neighboring grid cells or location. ML-RACMO2's 
three highest weighted features (RACMO2 FöhnDA–0.183, Temperature–0.105, Relative Humidity–0.072) 
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include all the fields that define the föhn signature in the AWS data. Note 
that even though the baseline model (RACMO2 FöhnDA) does not pro-
duce high accuracy itself, it still improves the ML algorithm for classify-
ing föhn events.

3.2. Surface Melt Pattern

Figure 3 shows the annual mean föhn-induced surface melt for ERA5 (a) 
and RACMO2 (b) for the period 1979–2018. Both RACMO2 and ERA5 
datasets are conducive to ML use to identify the föhn signature, howev-
er, the ERA5 spatial melt pattern is inconsistent with satellite scatterom-
eter observations of melt days and inferred melt, and misses enhanced 
melt in Mill, Whirlwind, and Mobiloil inlets (Bevan et al., 2018; Trusel 
et al., 2013). ERA5 is a global data set that lacks the resolution to properly 
resolve föhn winds and therefore will not be used for further analysis of 
föhn wind-induced melt in this study. Below we use only RACMO2 out-
put to analyze föhn-induced melt, which resolves a surface melt pattern 
more consistent with surface melt satellite observations (Figure 3b). The 
highest föhn-induced melt (52 mm w.e. yr−1) occurs east of the AP on the 
Larsen C and B ice shelves at the foot of the AP mountains. High local-
ized melt is identified in Cabinet, Mill, Whirlwind, and Mobiloil inlets 
where föhn winds funnel through topography to form prevalent föhn jets 
(Elvidge et al., 2015, 2020). The inferred melt decreases eastward from 
the AP mountains across the LCIS as the relatively warm and dry föhn air 

mixes with the cold polar boundary layer which weakens the warm föhn signature. The northern portion 
of the LCIS experiences more melt compared to the southern portion. This is expected as the annual mean 
solar insolation increases equatorward. East of the AP mountains, RACMO2 indicates föhn-induced melt 
on the Ronne ice shelf (south of 75°S), farther south than previous research has indicated, however, melt 
quantity is much less than on the LCIS (Luckman et al., 2014; McGrath et al., 2012; Turton et al., 2018).

LAFFIN ET AL.

10.1029/2020JD033682

9 of 19

ERA5 model prediction accuracy summary

F1-score 79.9 ± 3.48

Recall 81.2

Precision 78.6

Improvement in F1-score over baseline model 27.4

RACMO2 model prediction accuracy summary

F1-score 81.3 ± 3.84

Recall 84.1

Precision 78.5

Improvement in F1-score over baseline model 23.1

Notes. The error estimates for F1 score were obtained using one standard 
deviation of the 10-fold F1 score means. RACMO, Regional Atmospheric 
Climate Model. Recall is defined as the number of true positives divided by 
the sum of true positives and false negatives. It represents the proportion 
of AWS observed föhn melt events that were accurately identified by the 
model. Precision is defined as the number of true positives divided by 
the sum of true and false positives. It represents the proportion of AWS 
observed föhn melt events the model predicted.

Table 2 
Statistics for Best Model for Each Data Set

ERA5 föhn classification

AWS classification

Föhn occurrence
Model classified 

correct
AWS identified 

föhn melt ML melt capturedERA5 (hr) AWS (hr)

Strong 48 (7.1%) 48 (6.4%) 100.0%  7.1% 7.1%

Moderate 212 (31.3%) 214 (28.6%) 98.9% 20.5% 20.3%

Weak 425 (62%) 483 (64.8%) 87.8% 72.4% 63.5%

Total föhn-induced melt captured 90.9%

RACMO2 föhn classification

AWS Classification Föhn occurrence
Model classified 

correct
AWS identified 

föhn melt ML melt captured

RACMO2 (hr) AWS (hr) – – –

Strong 48 (6.9%) 48 (6.4%) 100.0% 7.1% 7.1%

Moderate 205 (29.1%) 214 (28.6%) 95.9% 20.5% 19.7%

Weak 452 (64%) 483 (64.8%) 93.5% 72.4% 67.7%

Total föhn-induced melt captured 94.5%

Notes. The "Föhn occurrence" column represents how often each AWS classified event occurs. The "Model classified correct" column represents the percentage 
of each AWS föhn classification the ML model classifies correctly. The "AWS identified föhn melt" column is how much AWS identified melt is caused by 
each AWS classified event. The "ML melt captured" column identifies how much of the melt identified by AWS is accounted for by the ML model. AWS, with 
automatic weather station; RACMO, Regional Atmospheric Climate Model.

Table 3 
Classification Statistics for Each Data set AWS Classification of Strong (T > 7°C), Moderate (3.5°C < T < 7°C), and Weak (T < 3.5°C) Averaged Annually Over 
all AWS Sites.
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Figure 3. ERA5 (a) and RACMO2 (b) föhn-induced spatial melt patterns averaged from 1979 to 2018. RACMO2 decadal föhn-induced spatial melt pattern 
averaged from (c) 1979 to 1988, (d) 1989 to 1998, (e) 1999 to 2008, (f) 2009 to 2018. The thick black line indicates the grounding line from the Antarctic Surface 
Accumulation and Ice Discharge (ASAID) project (Bindschadler et al., 2011).
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Surface melt was also inferred west of the AP on the Wilkins, Bach, and George VI ice shelves. Because 
föhn winds are caused by large-scale cyclonic activity it is not uncommon to have föhn winds west of the 
AP spine, despite the westerly prevailing wind. The primary wind direction that leads to wind-induced 
melt east of the AP comes from the west where air forced over the AP mountains forms föhn winds. On 
the Wilkins, Bach, and George VI ice shelves, the primary wind direction is also downslope though is from 
the northeast/east, opposite the prevailing wind direction. This could be an indicator that melt is caused by 
dense katabatic wind formation, especially on George VI ice shelf where the AP mountains have a long gen-
tle slope which can inhibit föhn formation yet enhance katabatic wind formation. However, without direct 
observation in these regions, it is difficult to verify the mechanism behind the melt pattern.

To better explore the cause of the spatial melt pattern we examine the spatial pattern of the contribution of the 
positive energy balance components (sensible heat exchange and shortwave radiation) during föhn-induced 
melt events (Figures 4a and 4b). We find there are two melt regimes on the AP. East of the AP, surface melt 
during föhn events is dominated by turbulent sensible heat exchange (66%), while shortwave radiation has 
a more minor role (34%). This is consistent with strong föhn influence as the prevailing wind is forced over 
the AP spine. We also find increased sensible heat exchange in the major LCIS inlets compared to regions not 
impacted by strong föhn jets, previously acknowledged by A. D. Elvidge et al., 2020. West of the AP, turbulent 
sensible heat exchange plays an equal role with solar heating in surface melt. Sensible heat has a more central 
role in melt in inlets to the north and east on the Wilkins ice shelf, consistent with a northeasterly föhn influ-
ence. Farther south on the southern George VI and Bach ice shelves föhn-induced melt is driven more by clear 
skies and enhanced solar radiation common during föhn and less by turbulent exchange.

Overall, föhn-induced melt events occur 1.2% of the time spatially averaged over the AP, with increased 
occurrence East of the AP mountains (Figure 4c). Föhn-induced melt accounts for 3.1% of the total annual 
melt on the AP (Figure 4d). The föhn-induced melt percentage compared to the total annual melt is highest 
East of the AP spine at the base of the mountains, particularly in the major inlets of the LCIS. The average 
annual föhn-induced melt on LCIS is 3.7% of the total annual melt, however, at locations close to the AP 
mountains, such as at AWS 18, annual föhn-induced melt percent can reach as high as 17.7%. Even though 
föhn-induced melt only occurs 5.7% of the time in Cabinet inlet, that represents an average of 16.9% of the 
total annual melt highlighting the melting power of the föhn mechanism.

3.3. Temporal Variability and Evolution

We find the annual mean föhn-induced melt on the AP is 3.9 Gt yr−1 (Figure 5), about 3.1% of total annu-
al-mean AP melt estimated by RACMO2. Annual föhn-induced melt is variable ranging from 2 Gt yr−1 in 1980 
to 6.9 Gt yr−1 in 1995 (Figure 5a). Föhn-induced melt appears to increase through time (12% increase from 
1979 to 2018) although the trend is not significant at the 95% level of confidence (p = 0.48). A significant pos-
itive trend was identified for the period 1979–1998, where föhn-induced melt increased at 0.1 Gt y−1, however, 
this trend stabilized after 1998. These trends can be attributed to the rise in AP surface temperature from 1979 
to 1998, and the decline/stabilization in AP surface temperature from 1998-present (Turner et al., 2016).

There is a clear seasonal cycle for inferred föhn-induced melt consistent with the non-föhn melt season 
(Figures 5b and 5c). Föhn-induced melt is highest in the summer months (DJF) when surface tempera-
tures and shortwave radiation peak, and lowest in the winter months (JJA). Summer föhn melt constitutes 
53.89% of annual föhn-induced melt on the AP. Spring and Fall surface melt contribute less (Spring (SON) 
18.98%, Fall (MAM) 22.7%), while winter still experiences surface melt though much less (4.43%) than other 
seasons. Föhn-induced melt occurrence peaks in fall (MAM) (Figure 7a), however, the majority of föhn-in-
duced AP surface melt occurs in summer.

Compared to the Wilkes and George VI ice shelves, LCIS contributes the most föhn-induced melt (69%) to 
the AP annual total, largely due to its size, low latitude, and eastern position downwind of the AP mountain 
range compared to other ice shelves. Wilkins and George VI ice shelves constitute much smaller portions of 
the total inferred AP föhn-induced melt, 3.6% and 3.7%, respectively. Föhn-induced melt has decreased with 
time on the Wilkes and George VI ice shelves (Figures 3c–3e, 3f). While these trends are not significant they 
are consistent with the larger cooling trend in the southwestern AP attributed to changes in sea ice extent 
and strengthening of the southern jet (Turner et al., 2016; Van; Wessem et al., 2015).
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Figure 4. Map of the Sensible heat flux (a) and Shortwave radiation (b) components percent contribution of the positive energy balance during föhn-induced 
melt events from 1979 to 2018. (c) Map of the annual mean percent of time föhn-induced melt occurs per year from 1979 to 2018. (d) Map of the mean percent 
of total melt concurrent with föhn winds annually from 1979 to 2018.

Figure 5. (a) Annual föhn-induced meltwater volume. The dashed lines indicate the linear trends for the 
corresponding time, with the 95% confidence limits for the trends indicated by the shaded regions. (b) RACMO2 
monthly meltwater production concurrent with föhn over the AP. (c) Mean monthly (1979–2018) meltwater volume 
concurrent with föhn winds. AP, Antarctic Peninsula; RACMO, Regional Atmospheric Climate Model.
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3.4. Föhn-Induced Melt Regime Evolution

Figure 6 shows the energy balance components, föhn occurrence, and meteorological variables related to 
the annual variability of föhn-induced melt events from 1979 to 2018. Each of the graphs in Figure 6 com-
pares the föhn variable to the time series of föhn-induced surface melt, with the variable trend in color and 
the correlation (r) and significance level (p-value) shown. Each variable is important when trying to under-
stand the drivers of föhn-induced melt variability through time.

Unsurprisingly, föhn-induced surface melt annual variability is most closely correlated to föhn occurrence, 
since föhns must be present in order to produce föhn-induced melt (Figure 6a). This is in contrast to hourly 
drivers of surface melt where strong sensible heat exchange and enhanced shortwave radiation drive melt, 
particularly in LCIS inlets (A. D. Elvidge et al., 2020). Descending föhn winds mix the stable polar boundary 
layer causing clear skies and increased surface temperatures. Despite this föhn mechanism driving melt, sen-
sible heat exchange does not drive the annual variability in föhn-induced melt on the AP. Variability in the 
strength of the sensible heat flux has no real correlation to föhn-induced surface melt (Figure 6f). However, 
solar radiation, enhanced by the föhn mechanism, has a moderate correlation to föhn-induced melt, which is 
not unexpected because most melt in this region is driven by shortwave radiation (Figure 6b). Föhn occurrence 
or the number of hours föhn wind occurs AP-wide has a strong positive correlation to surface melt, implying 
melt variability is not driven by the strength of the föhn wind, but how much time föhn occurs (Figure 6a). 
This point is further illustrated by the moderate correlation of föhn-induced melt to air temperature and small 
air temperature variability during föhn, suggesting that föhn strength/temperature response does not change 
significantly through time and does not explain annual melt variability (Figure 6c).

Trends in föhn drivers indicate föhn has evolved through time. We find a long-term reduction in wind speed 
during föhn-induced melt events, which directly affects sensible and latent heat exchange (Figure 6d). We 
also see increases in shortwave radiation which are larger than the solar output variability. These trends 
suggest there may be sub-annual or seasonal changes through time that lead to changes in annual mean 
values. To better understand these seasonal changes we compared the monthly average of the first 20 years 
(1979–1998) to the second 20 years (1999–2018) (Figure 7). We attribute the föhn-induced melt evolution 
through time to a shift in seasonal föhn occurrence. We find föhn occurrence or the number of hours the 
AP experiences föhn-induced melt events exhibits a seasonal cycle that has changed through time. Figure 7 
shows the seasonal distribution of föhn occurrence. Föhn-induced melt occurrence has a bimodal distribu-
tion and peaks during the spring and fall when the storm track shifts poleward/equatorward (Figure 7a). 
Figure 7b shows the monthly difference in föhn occurrence between the first 20 years (1979–1998) and the 
second 20 years (1999–2018). We identify large decreases in föhn occurrence in July (−34%), September 
(−40%), March (−13%), and April (−20%) and increased föhn occurrence in October (+21%), November 
(+11%), and December (+25%).

Seasonal changes in föhn-induced melt occurrence drive the change in föhn-induced melt regime on the 
AP. Figures 7c–7f show the seasonal variability in daily melt rate (C), wind speed (D), sensible heat ex-
change (E), and shortwave radiation (F) during föhn-induced melt events. Föhn-induced melt rate has a 
similar seasonal pattern compared to solar radiation, with a high melt rate correlated with high solar radia-
tion. Föhn winds are strongest in the winter when vertical temperature gradients are largest due to the con-
sistent strong polar boundary layer inversion. Since sensible heat exchange is proportional to wind speed, 
we see increased sensible heat exchange during winter, when föhn winds are strongest. When we compare 
these seasonal patterns with seasonal changes in föhn occurrence we get a clear picture of the changing AP 
föhn-induced melt regime. The AP experiences less föhn-induced melt events in the months when solar 
radiation and melt rate are low and wind speed and sensible heat exchange are high. Conversely, more melt 
events occur when solar radiation and melt rate is high, and when wind speed and sensible heat exchange 
are low. These seasonal föhn occurrence changes affect the annual mean of föhn drivers and lead to the 
annual trends shown in Figure 6.

4. Discussion
We extracted the föhn-induced surface melt climatology for the AP from 1979 to 2018, using a novel ma-
chine learning method to identify the föhn signature in both regional climate model simulations and in 
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satellite-based reanalyzes. Building on many other studies that use vari-
able thresholds to identify föhn, we have added the additional step of us-
ing thresholds on AWS surface observations to inform a ML model what 
the föhn signature looks like in these datasets. Both RACMO2 and ERA5 
datasets are amenable to machine learning. It is important to note that 
ERA5 does not resolve föhn winds, as these winds are small scale (5–
20 km), especially in regions with föhn jets like Cabinet, Mill, Whirlwind, 
and to some extent Mobil Oil inlets (A. D. Elvidge et al., 2015). However, 
when we use ML informed by AWS observations, the model detects the 
combined changes in meteorological variables that indicate föhn pres-
ence. This means that to some extent, ERA5 represents föhn winds on 
the overall sense with warm, dry, and windy conditions that occur over 
the entire region when föhn occurs. In other words, when wind is moving 
from west to east, for example, over the AP mountains, the LCIS region 
at large will likely experience an increase in temperature, reduction in 
relative humidity, and increase in wind speed, which is identified by the 
ML algorithm, even though ERA5 does not explicitly resolve föhn events.

Our model performance was consistent with previous studies in identify-
ing the föhn-induced melt spatial pattern and meltwater volume in RAC-
MO2 model output (Datta et  al.,  2019; Kuipers Munneke et  al.,  2018). 
Although Datta et al., (2019) surface meltwater volume is slightly larger 
than our study (4.1 Gt yr−1 vs. 3.9 Gt yr−1), this can be attributed to re-
gional climate model differences, specifically grid-cell spatial resolution 
(Datta et al., 2019 7.5 km vs. This study at 5.5 km). Additionally, our es-
timates of polar night föhn induced melt agree with Kuipers Munneke 
et al. (2018) at AWS 18 (∼23% of total melt), however, our melt volume 
at AWS 18 is higher (+15.2%) than RACMO2, likely due to model physics 
and resolution.

Our investigation into the drivers of long-term (annual) föhn-induced 
melt variability points to föhn-occurrence (total number of hours of 
föhn) and enhanced shortwave radiation as the primary drivers of melt. 
What is surprising is that sensible heat exchange has the weakest corre-
lation to annual föhn-induced melt variability. This result contrasts with 
short-term (hourly) drivers of melt, when sensible heat is the main driver 
especially when shortwave radiation is limited (A. D. Elvidge et al., 2020; 
Kuipers Munneke et al., 2018). Locally, the influence of föhn and subse-
quent strength of the sensible heat exchange is primarily a function of 
how close a location is to the AP mountains and whether a föhn jet is 
present. If a location is between föhn jets or farther east on the LCIS, the 
sensible heat signature is less pronounced owing to a stronger shortwave 
radiation (cloud-clearing effect) influence (A. D. Elvidge et al., 2020). Be-
cause of this relationship, when all föhn-induced melt events are averaged 
annually on the AP, shortwave radiation and föhn-occurrence become 
the primary drivers of melt variability. Although, more research is still 
needed in regards to how effectively föhn winds reduce cloudiness and 
whether models over-represent the cloud-clearing effect and under-rep-
resent moisture during föhn (A. D. Elvidge et al., 2020; King et al., 2015).

We show that the föhn-induced melt regime has changed through time and attribute it to seasonal changes 
in föhn occurrence. The seasonal change in föhn occurrence may be driven by a more positive Southern 
Annular Mode (SAM) or Antarctic Oscillation, the defining mode of climatic variability in the AP region. 
A positive SAM index represents a constriction of the westerly winds toward Antarctica. Most notably the 
austral spring (SON) and summer (DJF) SAM index has become more positive, which shifts the storm track 
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Figure 6. Time series of annual föhn-induced melt (right axis, black line) 
compared to: (a) föhn-induced melt occurrence, (b) shortwave radiation 
(SW), (c) air temperature, (d) latent heat flux (LHF), (e) wind speed, (f) 
longwave radiation (LW), (g) sensible heat flux (SHF). Dashed lines in each 
panel represent the linear trend. R values show the correlation between 
melt and the corresponding variable and were calculated using the Pearson 
correlation. P-values were considered significant at the 95% significance 
level (<0.05). Bold r and p-values are statistically significant.
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southward over the AP which may cause more föhn events to occur in the region (Lubin et al., 2008). Re-
duced föhn occurrence in the period 1999–2018 in winter and fall is more difficult to attribute yet seems to 
be caused by decreased surface temperature trends identified on the AP (Turner et al., 2016). This means 
that there may be the same number of föhn events, though the föhn events that cause surface temperature 
to increase above freezing and lead to melt have decreased.

5. Conclusions
We identify föhn-induced melt events over the AP from 1979 to 2018 by using AWS surface observations to 
train two machine learning (ML) models to detect the föhn signature in RACMO2 and ERA5 datasets. Our 
ML algorithms, trained by AWS observations, performed well compared to manual classification and pre-
vious study methods. The surface melt pattern for both datasets conforms to previous work using satellite 
scatterometry data and model output, although ERA5 lacks the spatial resolution to resolve melt in fine-
scale AP inlets such as Mill and Mobiloil. We have identified new föhn-induced melt on the Wilkes, Bach, 
and George VI ice shelves, consistent with eastward föhn or katabatic winds. Föhn wind-induced melt ac-
counts for 3.1% of the total melt on the AP and can be as high at 18% close to the mountains where the winds 
funnel through mountain canyons to form föhn jets. Föhn-induced surface melt does not significantly in-
crease from 1979 to 2018, despite a more positive Southern Annular Mode, however, a significant increase 
and subsequent decrease/stabilization occurred from 1979 to 1998 and 1999–2018, consistent with the AP 
warming and cooling trends during the same time periods. Föhn-induced melt occurrence and enhanced 
shortwave radiation drive annual variability in melt, suggesting föhn occurrence and the cloud-clearing ef-
fect of downslope wind are more important than föhn strength. We also find that the seasonality of föhn-in-
duced melt events has evolved, driven by changes in seasonal föhn occurrence, with increased occurrence 
in summer, and decreased occurrence in fall, winter, and early spring. While surface temperature trends on 
the AP have been attributed to natural variability, changes in the SAM which affects föhn-induced surface 
melt occurrence, have been attributed to anthropogenic causes. This highlights the importance of further 
monitoring of the föhn-induced melt drivers, trends, and variability.
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Figure 7. (a) Monthly föhn-induced melt occurrence averaged over the AP. (b) Monthly difference in föhn-induced melt occurrence between the first 20 years 
(1979–1998) and the last 20 years (1999–2018). (c) Monthly föhn-induced melt rate (M). (d) Monthly shortwave radiation (SW) during föhn melt events. (e) 
Monthly sensible heat flux (SHF) during föhn melt events. (f) Monthly average wind speed (WS) during föhn melt events. AP, Antarctic Peninsula.
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ERA5 (hourly) RACMO2 (3-hourly)

Variable Feature weight Variable Feature weight

Time variant variables

Temperature (K) 0.174 RACMO FonDA 0.183

10m wind gust (m/s) 0.062 Temperature (K) 0.105

ERA5 FonDA 0.051 Skin Temperature (K) 0.073

Month (1–12) 0.041 Relative Humidity (%) 0.072

Direction to low pressure (°) 0.038 Sensible Heat Flux (W·m-2) 0.058

Direction to high pressure (°) 0.037 Latent heat flux (W·m-2) 0.05

Snow Albedo (0–1) 0.033 Direction to high pressure (°) 0.046

Runoff (m) 0.033 Wind from direction (°) 0.043

Ice temperature (k) 0.032 Wind speed (m/s) 0.039

Wind from direction (°) 0.028 Snow evaporation (m w.e.) 0.036

Skin temperature (K) 0.027 Direction to low pressure (°) 0.031

Wind speed (m/s) 0.019 Longwave Radiation (W·m-2) 0.027

Relative humidity (%) 0.017 Snow Albedo (0–1) 0.021

Sensible heat flux (W·m-2) 0.016 Distance to low Pressure (km) 0.02

Latent heat flux (W·m-2) 0.015 Month (1–12) 0.019

Distance to low pressure (km) 0.015 Distance to high pressure (km) 0.018

Distance to high pressure (km) 0.014 Shortwave radiation (W·m-2) 0.015

Evaporation (m w.e.) 0.014 Surface pressure (hPa) 0.012

Surface pressure (hPa) 0.013 Hour of the day (0–24) 0.01

Shortwave radiation (W·m-2) 0.012 Mean sea level pressure (hPa) 0.009

Snow evaporation (m w.e.) 0.011 – –

Longwave radiation (W·m-2) 0.011 – –

Mean sea level pressure (hPa) 0.009 – –

Cloud cover (0–1) 0.009 – –

Hour of the day (0–24) 0.008 – –

Snow depth (m w.e.) 0 – –

Time invariant variables

Distance to highest elevation (km) 0.116 Distance to highest elevation (km) 0.037

Elevation (m) 0.049 Latitude 0.022

Distance to steepest slope (km) 0.032 Longitude 0.021

Slope 0.029 Distance to steepest slope (km) 0.02

Longitude 0.021 Elevation (m) 0.012

Latitude 0.014 Slope 0.001

Note. Bold variables indicate the highest feature weight for each dataset.
Abbreviation: RACMO, Regional Atmospheric Climate Model.

Table A2 
Summary of Variables Used for Each Dataset
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Data set Algorithm Parameter description

ERA5 Gradient boosting n_estimators = 826, learning_rate = 0.0673, max_depth = 27, min_
child_weight = 3, scale_pos_weight = 43.65, subsample = 0.65, 
colsample_bylevel = 0.98, colsample_bytree = 0.73, gamma = 0.06, 
max_delta_step = 1, reg_alpha = 0.028, reg_lambda = 6.3e-09

RACMO2 Gradient boosting n_estimators = 995, learning_rate = 0.0263, max_depth = 50, min_
child_weight = 5, scale_pos_weight = 66.66, subsample = 1.0, 
colsample_bylevel = 0.09, colsample_bytree = 0.44, gamma = 8.8e-
09, max_delta_step = 0, reg_alpha = 1.78e-07, reg_lambda = 1e-09

Note. Each parameter is adjustable in the gradient boosting algorithm through XGBoost.
Abbreviation: RACMO, Regional Atmospheric Climate Model.

Table A3 
Machine Learning Model Summary
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