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ABSTRACT The relatedness of the equine-associated Escherichia coli strain ST1250
and its single- and double-locus variants (ST1250-SLV/DLV), obtained from horses
in Europe, was studied by comparative genome analysis. A total of 54 isolates of E.
coli ST1250 and ST1250-SLV/DLV from healthy and hospitalized horses across
Europe (Czech Republic [n=23], The Netherlands [n=18], Germany [n=9], Denmark
[n=3], and France [n=1]) from 2008 to 2017 were subjected to whole-genome
sequencing. An additional 25 draft genome assemblies of E. coli ST1250 and ST1250-
SLV/DLV were obtained from the public databases. The isolates were compared for
genomic features, virulence genes, clade structure, and plasmid content. The com-
plete nucleotide sequences of eight IncHI1/ST9 plasmids and one IncHI1/ST2 plasmid
were obtained using long-read sequencing by PacBio or MinION. In the collection of
79 isolates, only 10 were phylogenetically close (,8 single nucleotide polymorphisms
[SNP]). The majority of isolates belonged to phylogroup B1 (73/79 [92.4%]) and car-
ried blaCTX-M-1 (58/79 [73.4%]). The plasmid content of the isolates was dominated by
IncHI1 of ST9 (56/62 [90.3%]) and ST2 (6/62 [9.7%]), while 84.5% (49/58) of the blaCTX-M-1

genes were associated with the presence of the IncHI1 replicon of ST9 and 6.9% (4/58)
with the IncHI1 replicon of ST2 within the corresponding isolates. The operon for the
utilization of short-chain fructooligosaccharides (the fos operon) was present in 55 of 79
(69.6%) isolates, and all of these carried IncHI1/ST9 plasmids. The eight complete
IncHI1/ST9 plasmid sequences showed the presence of blaCTX-M-1 and the fos op-
eron within the same molecule. Sequences of IncHI1/ST9 plasmids were highly
conserved (.98% similarity) regardless of country of origin and differed only in
the structure and integration site of the multidrug resistance (MDR) region.
E. coli ST1250 and ST1250-SLV/DLV are phylogenetically diverse strains associ-
ated with horses. A strong linkage of E. coli ST1250 with the epidemic multidrug
resistance plasmid lineage IncHI1/ST9 carrying blaCTX-M-1 and the fos operon was
identified.
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Extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae, such as
ESBL-producing Escherichia coli (ESBL-PEc), are widespread in humans, food-pro-

ducing and companion animals, wildlife, and the environment (1). ESBLs can be
encoded by a variety of genes, among which the blaCTX-M gene family dominates. The
spread of blaCTX-M in ESBL-PEc is facilitated by mobile genetic elements, including mul-
tidrug resistance (MDR) plasmids of various incompatibility (Inc) groups (2, 3).

Antimicrobial resistance is of concern for a wide range of equine pathogens. ESBL-
producing Enterobacteriaceae have been increasingly isolated from wounds, as well as
from individuals with respiratory and urinary tract infections (4). Several studies have
reported the occurrence of CTX-M-1-producing E. coli in hospitalized but also nonho-
spitalized horses in many European countries, such as the Czech Republic (5, 6),
Denmark (7, 8), The Netherlands (9, 10), the United Kingdom (11), Germany (12, 13),
Sweden (14), Switzerland, and France (14), including Guadeloupe (15).

An epidemic IncHI1/ST9 plasmid lineage conferring multidrug resistance and har-
boring blaCTX-M-1 has been identified in E. coli isolates from hospitalized horses in the
Czech Republic (5) and later in isolates from healthy and diseased horses in France
(16), Sweden (14), and The Netherlands (10). Moreover, the fos operon, consisting of
seven genes (fosK, fosY, fosGH2, fosX, fosGH1, fosT, fosR) involved in the metabolism of
short-chain fructooligosaccharides (scFOS), has been detected on pEQ1, a conjugative
IncHI1/ST9 plasmid obtained from E. coli T23, originating from the feces of a hospital-
ized horse in the Czech Republic (6). The importance of the presence of the fos operon
arises from the fact that until Schouler et al. (17) detected the fos operon in extraintes-
tinal pathogenic E. coli, the fos operon occurred only in probiotic, not pathogenic, bac-
teria and only as part of a chromosomally encoded genomic island. However, none of
the studies mentioned above, except for that of Dolejska et al. (6), characterize the
complete sequence of an epidemic IncHI1/ST9 plasmid. The presence of the fos operon
might play a role in the coselection of multiresistance plasmids, since it provides bacte-
ria with a metabolic advantage and enables them to grow in environments where
pathogenic bacteria would normally not survive. The association of the blaCTX-M-1 gene
and the fos operon on plasmids is particularly worrying because of the specific role of
fructooligosaccharides in the horse diet and the ability of plasmids to be transferred
horizontally. scFOS are commonly used prebiotics, and they are often part of a supple-
mentary horse diet which should support gut health and beneficial microflora in horses
(18). However, our results indicate that using scFOS in a horse diet may contribute to
the spread of antibiotic resistance genes, so it is doubtful whether scFOS are indeed
beneficial. Moreover, the use of scFOS as prebiotics is not limited to horses; they are
part of many human probiotics and nutritional supplements for newborns. Therefore,
more attention should be paid to the relation between the ability to utilize scFOS and
antibiotic resistance.

In the current study and publicly available sequence data, E. coli ST1250 is found to
be a rare sequence type (ST) in hosts other than horses. Moreover, the close association
of E. coli ST1250 with IncHI1/ST9 has been observed (10, 14, 16). Clinical and nonclinical
isolates of E. coli ST1250 and its single- and double-locus variants (ST1250-SLV/DLV)
collected from horses in the Czech Republic, The Netherlands, Denmark, France, and
Germany were subjected to short-read DNA sequencing. E. coli ST1250 was selected
due to its frequent occurrence in horse samples. Other STs included are single- or dou-
ble-locus variants of ST1250 and were selected both for their close relationship (with
regard to the multilocus sequence type [MLST]) to ST1250 and for their frequent occur-
rence in horse samples. For the selected isolates, long-read sequencing was applied to
obtain complete nucleotide sequences of chromosomes and IncHI1 plasmids.
Additional sequences of E. coli ST1250 and ST1250-SLV/DLV were recovered from
EnteroBase before genomic features, clade structure, and plasmid content were exam-
ined by detailed phylogenetics. Our hypothesis is that E. coli ST1250 is adapted to
horses and has low pathogenic potential itself, while this study shows frequent

Valcek et al. Antimicrobial Agents and Chemotherapy

May 2021 Volume 65 Issue 5 e02556-20 aac.asm.org 2

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/a

ac
 o

n 
02

 D
ec

em
be

r 
20

21
 b

y 
13

1.
21

1.
12

.1
1.

https://aac.asm.org


association of E. coli ST1250 with HI1/ST9 multiresistance plasmids encoding blaCTX-M-1

and the fos operon.
(This work was partially presented at the One Health European Joint Program

Annual Meeting, Prague, Czech Republic, 27 to 29 May 2020 [online], in the poster sec-
tion [P 153].)

RESULTS AND DISCUSSION
Genomic characterization of the isolates. A total of 79 draft genomes of E. coli

ST1250 or ST1250-SLV/DLV, consisting of 54 sequences obtained in this study and 25
retrieved from EnteroBase or GenBank, were analyzed. The majority of isolates
belonged to phylogroup B1 (73/79 [92.4%]), followed by phylogroups A (5/79 [6.3%])
and E (1/79 [1.2%]). Since the collection studied was aimed at E. coli ST1250 and
ST1250-SLV/DLV, the majority of the isolates in the collection indeed belonged to
ST1250 (60/79 [75.9%]), followed by ST1250-SLV/DLV: DLV-ST4164 (4/79 [5.0%]), SLV-
ST826 (3/79 [3.3%]), SLV-ST4527 (2/79 [2.5%]), SLV-ST1686 (2/79 [2.5%]), SLV-ST11123
(2/79 [2.5%]), and SLV-ST2336, SLV-ST4552, SLV-ST7434, DLV-ST11033, SLV-ST11121,
and SLV-ST11122 (1/79 [1.2%] each). The common detection of E. coli ST1250, along
with ST1250-SLV/DLV, in horses as opposed to other sources suggests that this ST is
horse associated. This assumption is supported by our unpublished study of hospital-
ized and healthy horses across the Czech Republic, where 31.7% (20/63) of E. coli iso-
lates belonged to ST1250 (6/63 [9.5%]) or ST1250-SLV/DLV (14/63 [22.2%]). Similarly, in
a nationwide study conducted on nonhospitalized horses from The Netherlands (10),
the most prevalent group of isolates whose whole genomes had been sequenced
belonged to ST1250 (8/48 [16.7%]) or ST1250-SLV/DLV (9/48 [18.8%]). Isolates from
both the Czech Republic (unpublished data) and The Netherlands are included in this
study. Despite the limited number of publicly available draft genome assemblies of E.
coli ST1250, the association of E. coli ST1250 with horses (7/10 [70%]) was observed in
EnteroBase as well, where only 1 of 10 ST1250 isolates was of human origin, while 2
were of undefined origin.

Antibiotic susceptibility testing of the isolates that were physically available (n=54)
showed that all exhibited a multidrug ($3 antibiotics) resistance profile corresponding
to a resistance genotype, except for one (d16-1) that was resistant to ciprofloxacin but
susceptible to nalidixic acid, yet no qnr gene was detected. Among the 79 sequences
analyzed for antibiotic resistance gene (ARG) content, the most prevalent ESBL genes
included blaCTX-M-1 (58/79 [73.4%]), blaCTX-M-2 (6/79 [7.6%]), and blaSHV-12 (7/79 [8.9%]).
While 4 isolates carried both blaCTX-M-1 and blaSHV-12, 12 isolates did not encode any
ESBL. The whole-genome sequence (WGS) data from 79 isolates showed the presence
of genes conferring resistance to tetracycline, trimethoprim, sulfonamides, gentamicin,
streptomycin, and chloramphenicol (see Fig. S1 in the supplemental material). Neither
the resistance profile nor the plasmid content was influenced by the source of isolation
(feces or clinical material). A complete profile of ARGs, along with the results of antibi-
otic susceptibility testing, can be found in Fig. S1.

Analysis of virulence genes showed the presence of the siderophore synthase-
encoding operon ent and the enterobactin export-encoding gene fes in all 79 isolates
and the enterobactin uptake-encoding operon fep in 75 (94.9%) isolates. These genes
are common for the majority of Gram-negative bacteria (19) and may be considered
beneficial for the animal hosting the bacteria carrying these genes. This has been
observed in Caenorhabditis elegans, where the bacterial enterobactin promoted the
growth of C. elegans via mitochondrial iron uptake (20). More than half of the isolates
(56/79 [70.9%]) harbored the fli operon, which is involved in the biosynthesis and func-
tioning of the flagellar organelle (21). Twelve of the 79 isolates (15.2%) carried a fim op-
eron, encoding type I fimbriae. The results of in silico screening for virulence genes sug-
gest that the isolates did not carry any virulence factors enabling their classification
into E. coli pathotypes. These findings support the observation that E. coli ST1250 and
related STs are part of the commensal equine microbiota (10).

Comparative Analysis of Escherichia coli ST1250 Antimicrobial Agents and Chemotherapy

May 2021 Volume 65 Issue 5 e02556-20 aac.asm.org 3

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//j

ou
rn

al
s.

as
m

.o
rg

/jo
ur

na
l/a

ac
 o

n 
02

 D
ec

em
be

r 
20

21
 b

y 
13

1.
21

1.
12

.1
1.

https://aac.asm.org


Regarding the plasmid content, the most common plasmid replicons among the
collection of 79 isolates were three IncHI1-related replicons (62/79 [78.5%]) of ST9 (56/
62 [90.3%]) and ST2 (6/62 [9.7%]). The high prevalence of conjugative IncHI1/ST9 and
its association with blaCTX-M-1 have been reported recently (16). IncHI1/ST9 appears to
be very well adapted to E. coli in horses, especially E. coli ST1250.

Comparison of E. coli ST1250 and E. coli K-12 chromosomes. The results revealed
that unlike E. coli K-12, the majority of E. coli ST1250 and ST1250-SLV/DLV strains did
not carry genes encoding products facilitating adhesion and colonization (yadN, ygiL,
paa, yde) (22, 23), a type II secretion pathway (gspCO) (24, 25), the stress response
(ygfK, yqeK, ydfO) (26–28), short-chain fatty acid and xanthosine metabolism (ato, xapA)
(29, 30), or a toxin-antitoxin system (rnlAB) (31). This finding suggests that E. coli
ST1250 does not contain many virulence genes and represents a lineage with low
pathogenicity that is adapted to the horse gut. Generally, in terms of genetic features
that are conserved and specific for E. coli ST1250, no per se pathogenic genes were
detected in the genome.

High diversity of ST1250 and ST1250-SLV/DLV. Phylogenetic analysis based on
the core genome from whole-genome sequences of 79 isolates showed high diversity
of E. coli ST1250 and ST1250-SLV/DLV (Fig. 1; also Fig. S1). The core genome alignment
was created from 2,556 core genes and had a length of 3,382,416 bp. The isolates dif-
fered in 0 to 10,490 single nucleotide polymorphisms (SNP), with 10 phylogenetically
close isolates differing in only 0 to 8 SNP.

The isolates in the minimum spanning tree were clustered regardless of their geo-
graphical origin and the carriage of IncHI1 plasmids (Fig. S2). Despite the high variabili-
ty, three noteworthy clusters with one subcluster, marked A, BI, BII, and C, emerged
(Fig. 1). Cluster A consisted of six ST1250-SLV/DLV isolates, including ST4164 (four iso-
lates) and ST4527 (two isolates), from The Netherlands, the Czech Republic, and
Germany. Their SNP differences ranged from 29 to 321, while the lowest SNP difference
(29 SNP) was between a Dutch and a German isolate (15S04665-1 and IHIT_19665).
Cluster B was made of subclusters BI and BII, consisting of three and four Czech ST1250
isolates with SNP differences of 1 to 16 and 0 to 8, respectively. Cluster C consisted of
nine ST1250 isolates and one novel SLV. The isolates in this cluster differed in 0 to 530
SNP and originated from Switzerland, The Netherlands, the Czech Republic, Denmark,
and Germany. However, presumed clonal spread of some isolates occurred only sporadi-
cally, usually within the same country. For example, no SNP differences in cluster C were
observed between two couples of Swiss isolates (ESC_JA8778AA with ESC_ZA2274AA and
ESC_JA8764AA with ESC_ZA2276AA).

Our findings suggest that even though there are clusters (A and C) of closely related
international isolates, the isolates in these clusters belonged to several different sero-
types (Fig. 1), and no clonal spread (,10 SNP) of E. coli ST1250 was demonstrated.
Closely related isolates were observed only within subclusters BI and BII, which consist
largely of isolates from the same country, sampling site, and year. Subcluster BI con-
sisted of three isolates obtained within the same horseback riding center in 2015.
Subcluster BII consisted of four isolates, of which three were obtained from a horse
clinic in 2008 and one (isolate 97989) from a horseback riding center in 2015. Isolate
97989 was closely related (8 SNP) to the three isolates obtained from the horseback ri-
ding center. However, it is not clear whether this relatedness is caused by the persist-
ence of the clone within the sampling sites over several years or by repeated introduc-
tion of the clone to the horse outside the hospital.

Phylogenetic analysis of our international collection of E. coli ST1250 isolates,
including ST1250-SLV/DLV, indicates that E. coli ST1250 is genetically highly variable
yet apparently associated with horses, since to our knowledge, this ST was not com-
monly detected in nonequine studies. However, there is no evidence of transmission
of ESBL-PEc ST1250 to humans, except for one record of E. coli ST1250 of human origin
in EnteroBase, with no further information. Moreover, E. coli ST1250-SLV/DLV are
closely related to E. coli ST1250 clonal lineages, highlighting the importance of whole-
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FIG 1 Phylogenetic tree depicting the diversity of E. coli ST1250 and ST1250-SLV/DLV isolates with highlighted clusters A, BI, BII, and C. Isolates marked *M
or *PB were sequenced on MinION or PacBio, respectively. Metadata for country of origin, year of isolation, source, ST, phylogroup, and serotype are
included. Colored boxes indicate the presence of the IncHI1 plasmid and its ST, the fos operon, and ESBL genes. The designations of physically obtained
isolates are set in boldface, and data sets from EnteroBase start with “ESC.” N/A, not available; E, equine; Env, equine clinic environment; H, human; NT, not
typeable; NL, The Netherlands; DK, Denmark; CZ, Czech Republic; DE, Germany; CH, Switzerland; US, United States; GP, Guadeloupe; FR, France; CA, Canada.
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genome sequencing and analyses based on the core genome rather than conventional
7-allele MLST profiling.

Comparative genomics of IncHI1 plasmids. IncHI1 plasmids were identified in the
genomes of 62 E. coli strains in this study. Comparison of draft genomes and complete
IncHI1 plasmids revealed two lineages of IncHI1: ST2 (6/62 [9.7%]) and ST9 (56/62
[90.3%]). These lineages are distinguished by one SNP in repHIA (allele HCM1_064),
plasmid nucleotide identity (between p10068 [IncHI1/ST2] and p99063 [IncHI1/ST9])
of .99.9%, and .96% query coverage. They differ in the structure of the multidrug re-
sistance (MDR) region and by the presence of the fos operon in IncHI1/ST9 plasmids.
Once these regions were removed, comparison of the plasmid backbones of p10068
and p99063 showed nucleotide identity and query coverage of 99.98% and 99%,
respectively.

The majority (45/56 [80.4%]) of isolates with IncHI1/ST9 plasmids harbored a class 1
integron with a dfrA17-aadA5 gene cassette. Isolates carrying IncHI1/ST2 plasmids (5/6
[83.3%]) were associated with a class 1 integron with a dfrA12-aadA2 cassette array.
The other genetic features of the isolates harboring IncHI1/ST2 and IncHI1/ST9 plas-
mids are described in the figures presented below and in the supplemental materials.
Eight complete nucleotide sequences of IncHI1/ST9 were obtained using PacBio (n=4)
and MinION (n=4) long-read sequencing. Overall, they exhibited high nucleotide iden-
tities (.98%) to pEQ1 and to each other. Figure 2 shows a comparison of complete
and draft genome assemblies of IncHI1/ST9 plasmids. Two different variants of the
integration of an MDR region were identified within the eight complete plasmid
sequences. Five plasmids harbored an MDR region of 41,754 bp (p15S04714-1) to
49,700 bp (p15S0829-4) between genes encoding a hypothetical protein of the back-
bone (Fig. 3, p15S04714-1). The very same position of the MDR region is found in
pEQ1, of equine origin, and pHCM1 (GenBank accession no. AL513383), of human ori-
gin, designated a type 2 IncHI1 plasmid based on integration sites of the MDR region
inside the plasmid backbone (32). The other three plasmids contained an MDR region
divided into two parts (14,708 bp and 34,143 bp) by a part of the inverted plasmid
backbone of 14,228 bp (Fig. 3, p99063). This inversion was presumably mediated by
two copies of IS26 flanking the backbone part (14,228 bp) and the larger, 34,143-bp
part of the MDR region. This finding points to the existence of two variants of highly
conserved epidemic IncHI1/ST9 plasmids differing in genetic structure, length, and the
integration site of the MDR region. Besides blaCTX-M-1, each of the eight complete
IncHI1/ST9 plasmids carried genes encoding resistance to tetracycline [tet(B)], trime-
thoprim (dfrA17), gentamicin [aac(3)-IId], sulfonamides (sul1, sul2), and streptomycin
[aph(6)-Id, aph(39')-Ib, aadA5] in the MDR region. However, they differed in the pres-
ence of the mph(A), aph-(39)-Ia, catA1, and blaTEM-1 genes. A Mauve comparison of the
MDR region variants and their rearrangements is shown in Fig. S3. The mer operon,
qacED1 gene, and chrA gene, encoding determinants for resistance to mercury, quater-
nary ammonium compounds, and chromium, respectively, were present in each com-
plete IncHI1/ST9 plasmid, too (Fig. 2).

The MDR region of the complete IncHI1/ST2 plasmid obtained using MinION
(p10068) was integrated between genes encoding a hypothetical protein of the back-
bone, identical to the integration site in IncHI1/ST9 type 2 plasmids. Unlike IncHI1/ST9
plasmids, IncHI1/ST2 plasmids did not harbor the fos operon. Since only one complete
IncHI1/ST2 plasmid was obtained, the identity of p10068 could not be properly
assessed in comparison with the draft genome assemblies from other IncHI1/ST2 plas-
mids (n=5) in this study. However, a BLAST Ring Image Generator (BRIG) comparison
of p10068 with the draft genome assemblies of the other five IncHI1/ST2 plasmids (Fig.
S4) showed low variability in the backbone and the MDR region of IncHI1/ST2 plasmids
from the Czech Republic, Canada, and Switzerland, pointing toward the geographically
widespread potential of the IncHI1/ST2 plasmid lineage. Plasmid p10068 harbored the
blaCTX-M-1, tet(B), sul1, sul2, aac(3)-IId, aadA2, dfrA12, aph(6)-Id, and aph(39')-Ib genes
within the 40,759-bp MDR region.
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Even though IncHI1/ST9 and IncHI1/ST2 plasmids have highly conserved backbones
and differ mostly within the MDR region, IncHI1/ST2 plasmids did not harbor the fos
operon. A higher prevalence of IncHI1/ST2 over IncHI1/ST9 has been observed only in
Swedish isolates so far (14); however, no data on the presence of the fos operon are
available from that study. In summary, comparison of IncHI1/ST9 plasmids of various
geographical origins showed a highly conserved structure and high nucleotide iden-
tity, highlighting the epidemic potential of IncHI1/ST9 plasmids. Similarly, plasmid line-
age IncI1-Ig, harboring Ambler class A and C genes from E. coli and Salmonella enterica
of animal and human origins, has been found to be epidemic (33), and IncX3 plasmids
encoding NDM-type enzymes within different enterobacterial species (34) or specific
NDM-5-encoding IncX3 plasmids from E. coli strains of diverse sequence types have
been obtained from five different pig farms from different geographical regions of
China (35).

The fos operon is highly diffused among ST1250 strains and is carried by
IncHI1/ST9 plasmids. The collection of 79 E. coli ST1250 and ST1250-SLV/DLV isolates
was screened in silico for the presence of the 8,896-bp fos operon, which is involved in
the metabolism of scFOS. Fifty-eight (58/79 [73.4%]) isolates harbored the fos operon,

FIG 2 BRIG comparison of IncHI1/ST9 plasmids including draft genome assemblies with pEQ1 as a reference. The fos operon and the blaCTX-M-1 gene are
annotated in red. The origins of the samples are color-coded as follows: light blue, Czech Republic; yellow, Denmark; light green and dark green, The
Netherlands (different studies); dark blue, France; purple; Germany; turquoise, Switzerland.
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while 1 isolate (ESC_ZA2274AA_AS) lacked the fosK gene, suggesting the presence of a
nonfunctional operon. The majority (56/58 [96.6%]) of isolates harboring the fos op-
eron also harbored an IncHI1/ST9 plasmid. A BRIG comparison including all IncHI1/ST9
draft genome assemblies from short-read sequencing data (n=56) showed that the fos
operon is highly conserved and is carried by this plasmid lineage (Fig. 2). The associa-
tion of the fos operon with IncHI1/ST9 plasmids was first observed in equine isolates
from the Czech Republic (6) and subsequently in The Netherlands (10) and France (16).

The broader genetic surrounding of the fos operon was examined within eight com-
plete IncHI1/ST9 plasmids obtained using long-read sequencing. In all plasmids, the fos
operon was conserved with 100% identity and surrounded by IS903B. As observed pre-
viously in pEQ1, the operon was part of a 24-kb module inserted between the repE (FIA
replicon) and hns genes of the plasmid backbone (6). Only one of eight plasmids
(p15S04779-4) differed within the 24-kb module; it harbored IS1203 upstream of the
fos operon.

Although the association of the fos operon and the IncHI1/ST9 plasmid was evident,
the fos operons of two E. coli ST1250 isolates (99783-3RV and T20) had different
genetic contexts. Analysis of the genetic surroundings of the fos operon of the 99783-
3RV isolate showed the presence of an IncFIB(K) replicon on the same contig, suggest-
ing the carriage of the fos operon by plasmids other than IncHI1/ST9 plasmids. The lim-
ited information provided by the short-read sequencing did not enable us to identify
the genetic context of the fos operon within the T20 strain. However, plasmid replicons
IncFIB(K) and IncY were identified in T20, suggesting the possibility that the fos operon
is either mediated by plasmid types other than IncHI1/ST9, as in the 99783-3RV isolate,
or chromosomally encoded, as observed previously for E. coli BEN2908 (GenBank
accession no. AY857617) (36).

It has been suggested that a plasmid-mediated sugar metabolic element, such as
the fos operon, could play a key role in strain fitness, contributing to the successful dis-
semination and maintenance of the fos operon-containing MDR IncHI1/ST9 plasmids in
the equine intestinal microbiota (6). We suppose that the absence of the fos operon in
IncHI1/ST2 plasmids might contribute to their generally low prevalence, in contrast to
IncHI1/ST9 plasmids, among equine E. coli isolates, as observed in our study, since the
fos operon seems to provide isolates with a selective advantage in the presence of
scFOS. The equine diet is usually rich in scFOS, which may, along with the usage of
antibiotics, provide positive selective pressure for bacteria carrying this fos operon-
associated plasmid lineage. However, the question of whether factors such as different
amounts of scFOS in the horse feed or the geographical origin of the isolate are influ-
encing the selection of the IncHI1/ST9 plasmid lineage needs to be clarified by further
studies.

Interestingly, the presence of the fos operon in E. coli BEN2908 was linked to an
increased ability to colonize the avian intestine (17). We hypothesize that the widespread

FIG 3 Comparison of two variants of the MDR regions occurring in the HI1/ST9 plasmids that were studied. Diagrams of two representative plasmids are
shown: p15S04714-1 (top) and p99063 (bottom). Plasmid backbone gene products are shown in blue, antimicrobial resistance gene products in red,
transposases in orange, and hypothetical proteins (HP) in gray, unless they are part of the backbone (blue). An asterisk at an insertion sequence (IS)
indicates ,100% nucleotide identity with the reference IS.
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presence of the fos operon in E. coli ST1250 and ST1250-SLV/DLV isolates, as observed in
our study, may compensate for the absence of known chromosomally encoded coloniza-
tion factors in these strains. Further elucidation of the role of the fos operon in the coloni-
zation of the horse intestine by E. coli ST1250 would require in vivo experiments.

The genomic study of E. coli ST1250 and ST1250-SLV/DLV isolates of equine origin
has shown great chromosomal diversity, which could not be linked to specific geo-
graphic regions. In comparison, the highly prevalent ESBL-encoding IncHI1/ST9 plas-
mids in these strains show little diversity beyond the presence of specific MDR regions
and the fos operon. To summarize, E. coli ST1250 and E. coli ST1250-SLV/DLV isolates
seem to be well adapted to horses as hosts, and E. coli ST1250 in particular often shows
an association with IncHI1/ST9 multiresistance plasmids encoding CTX-M-type
enzymes and harboring the fos operon, which may contribute to the coselection of
these plasmids.

MATERIALS ANDMETHODS
E. coli isolates. A total of 54 ST1250 and ST1250-SLV/DLV isolates from healthy and hospitalized

horses in several countries across Europe from 2008 to 2017 were collected (Fig. S1 in the supplemental
material, isolates in boldface). The isolates originated from the Czech Republic (n= 23) (5; unpublished
data), The Netherlands (n= 18) (9), Germany (n= 9), Denmark (n= 3) (7), and France (n= 1) (14). Forty-
two and 12 isolates were obtained by selective cultivation on MacConkey agar (MCA) with cefotaxime (1
or 2mg/liter) and on MCA without antibiotics, respectively. The complete details regarding processing
of the samples can be found in the corresponding studies mentioned above. The majority of the isolates
originated from feces (42/54), various clinical materials (10/54), and environmental swabs (2/54) (Fig. S1).
Susceptibility to 22 antibiotics (ampicillin [AMP], streptomycin [S], sulfonamides [S3], tetracycline [TE], tri-
methoprim-sulfamethoxazole [SXT], C chloramphenicol [C], cefazolin [KZ], nalidixic acid [NA], ceftazidime
[CAZ], gentamicin [CN], amoxicillin-clavulanic acid [AMC], ciprofloxacin [CIP], fosfomycin [FOT], ertape-
nem [ETP], imipenem [IMP], meropenem [MEM], aztreonam [ATM], nitrofurantoin [F], azithromycin
[AZM], colistin [TC], tigecycline [TGC], cephalothin [KF]) was tested by disk diffusion according to the
CLSI (37), and the ESBL phenotype was determined by the MASTDISCS test (D68C1 AmpC & ESBL detec-
tion set; Mast Diagnostics, UK).

Short-read sequencing. All isolates were subjected to whole-genome sequencing (WGS) with at
least 50� expected coverage. Genomic DNA was extracted using the NucleoSpin Tissue kit (Macherey-
Nagel, Germany) and was used for DNA library preparation with a Nextera XT Library Preparation kit.
Sequencing was performed on a MiSeq system (Illumina) using 2� 250-bp paired-end sequencing.

Publicly available data. We searched EnteroBase (http://enterobase.warwick.ac.uk/species/index/
ecoli) for sequence data for E. coli ST1250 and ST1250-SLV/DLV, and assemblies along with correspond-
ing metadata were downloaded. Available data sets for ST1250 isolates irrespective of the plasmid con-
tent and ST1250-SLV/DLV variants harboring IncHI1 were selected. Thirteen draft genome assemblies
originating in Switzerland (n= 7), Germany (n= 2), Canada (n= 1), the United States (n= 1), and unknown
origin (n = 2) were retrieved from EnteroBase. Additional ST1250 and ST1250-SLV/DLV sequences from
horses in The Netherlands (n= 11) and Guadeloupe (n=1) were retrieved from BioProject (record num-
bers PRJEB34847 [10] and PRJNA388339 [15], respectively). In total, 25 draft genome assemblies of E. coli
ST1250 and ST1250-SLV/DLV isolates were obtained from the public databases; among these, 22 origi-
nated from horses, 2 were of unknown origin, and 1 isolate was of human origin (Fig. S1).

Long-read sequencing. PacBio sequencing was used to obtain complete high-quality reference
chromosomal and plasmid sequences. Subsequently, sequences of randomly selected IncHI1 plasmids
were obtained using MinION sequencing. For PacBio sequencing, genomic DNA was extracted using a
NucleoSpin Microbial DNA kit (Macherey-Nagel, Germany). Libraries were prepared according to the mi-
crobial multiplexing protocol. Shearing was performed using g-tubes (Covaris, USA), and no size selec-
tion was done during library preparation. Sequencing was performed with the Sequel I platform (Pacific
Biosciences, Menlo Park, CA, USA). For Oxford Nanopore Technologies (ONT) sequencing, the DNA was
extracted using a Gentra Puregene Yeast/Bact. kit and a DNeasy blood and tissue kit (Qiagen, Hilden,
Germany). Libraries were prepared using a 1D ligation barcoding kit (catalog no. SQK-LSK109 and EXP-
NBD104; ONT, Oxford, UK) and were sequenced in R9.4.1 and Flongle flow cells with a MinION Mk1B
(ONT).

Sequence data analysis. Raw data from short-read sequencing were adaptor and quality (Q# 20)
trimmed using Trimmomatic (38), v 0.36. De novo assembly was performed using SPAdes (39), v3.13.1,
with the “careful” option. For PacBio data, HGAP4 (40) in SMRT Link, v.6, was used to perform the assem-
blies with a minimum seed coverage of 30. Long reads from MinION were demultiplexed and converted
from fast5 to fastq format using Guppy, v3.2.1 (ONT). The adaptors and low-quality ends (Q# 8) were
trimmed using Porechop, v0.2.2 (https://github.com/rrwick/Porechop) and BBDuk (https://sourceforge
.net/projects/bbmap/), respectively. De novo hybrid assembly using short reads from Illumina and long
reads from MinION was performed with Unicycler (41), v0.4.7. The complete chromosomal and plasmid
sequences were annotated using RASTtk (42) and were manually curated according to GenBank in
Geneious, v9.0.5.
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Genomic characterization. The draft genome assemblies from WGS and EnteroBase were analyzed
for the presence of antibiotic resistance genes (ARGs), virulence genes, plasmid replicons, and serotypes.
For this purpose, ABRicate (https://github.com/tseemann/abricate) was used with thresholds set to 90%
identity and 95% query coverage against the databases ResFinder (43), VFDB (44), PlasmidFinder (45),
and EcOH (46), respectively. Plasmid multilocus sequence typing (pMLST) was performed using pMLST
by the Center for Genomic Epidemiology (45). MLST profiles were verified by mlst (https://github.com/
tseemann/mlst), and the phylogroups were assessed using ClermonTyping (47).

Phylogenetic analysis. The phylogenetic relatedness of isolates was evaluated. The open reading
frames were predicted from draft genome assemblies using Prokka (48), and GFF3 files were used for
core genome alignment in Roary (49) with default settings (the percentage of isolates a gene must be in
to be considered a core gene is 99%). The alignment was then used in RAxML (50) for calculating the
phylogenetic tree under the GTR1GAMMA model supported by 1,000 bootstraps. The tree was visual-
ized in iTOL, v4 (51), and GrapeTree (52). The nucleotide similarity between the isolates was determined
by assessing the number of single nucleotide polymorphisms using snp-dists (https://github.com/
tseemann/snp-dists) with the core genome alignment as an input.

Comparative genomics. Comparison of four high-quality annotated complete chromosomal E. coli
ST1250 sequences obtained from PacBio sequencing with E. coli K-12 as a reference (GenBank accession
no. U00096) was performed using progressiveMauve (53). E. coli K-12 was selected especially because of
the lack of virulence genes and the high level of characterization its genetic content. Therefore, the com-
parison allowed us to see if there are virulence factors or any other genes that could offer an advantage
for E. coli ST1250, since E. coli K-12 is a nonpathogenic strain. The complete annotated plasmid sequen-
ces were compared with respect to their plasmid replicon and plasmid ST using BLAST Ring Image
Generator (54). The structure of the fos operon (nucleotides 61904 to 70800 of pEQ1 [GenBank accession
no. KF362121]) was examined and compared to the sequence within pEQ1.

Data availability. The draft genome assemblies, the complete plasmid and chromosomal sequen-
ces, and the raw data from short-read sequencing have been deposited in GenBank and SRA, respec-
tively, under BioProject number PRJNA638007. The complete nucleotide sequences of the plasmids
have been deposited in GenBank under accession numbers MT586601 to MT586609.

SUPPLEMENTAL MATERIAL

Supplemental material is available online only.
SUPPLEMENTAL FILE 1, PDF file, 8.3 MB.
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