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Organelle distribution in neurons: Logistics behind

polarized transport
Max Koppers and Ginny G. Farias

Abstract

Highly polarized neurons need to carefully regulate the distri-
bution of organelles and other cargoes into their two morpho-
logically and functionally distinct domains, the somatodendritic
and axonal compartments, to maintain proper neuron ho-
meostasis. An outstanding question in the field is how organ-
elles reach their correct destination. Long-range transport
along microtubules, driven by motors, ensures a fast and
controlled availability of organelles in axons and dendrites, but
it remains largely unclear what rules govern their transport into
the correct compartment. Here, we review the emerging con-
cepts of polarized cargo trafficking in neurons, highlighting the
role of microtubule organization, microtubule-associated pro-
teins, and motor proteins and discuss compartment-specific
inclusion and exclusion mechanisms as well as the regulation
of correct coupling of cargoes to motor proteins.
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Introduction

Neurons are highly polarized and compartmentalized
cells with two morphologically distinguished subdo-
mains, the somatodendritic and the axonal domain. It is
well known that organelles have a specific distribution in
neurons. For example, somatodendritic vesicles, rough
endoplasmic reticulum (ER), Golgi, and Golgi outposts
are present in the somatodendritic domain and not
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found in the axon, whereas lysosomes, mitochondria,
and smooth ER are present in both somatodendritic and
axonal domains, and presynaptic precursor vesicles are
mainly distributed along the axon [1]. The transport of
these organelles and other cellular cargoes into specific
neuronal domains must be finely regulated to fulfill local
demands for proper neuronal function. Alternatively,
dysregulation of this process may contribute to neuro-
logical disease pathogenesis [2].

However, it remains unclear how organelles are trans-
ported into dendrites or the axon. What are the mech-
anisms that regulate the entrance of somatodendritic
and axonal organelles into the correct domain? In this
review, we will mainly discuss recent studies that show
complementary mechanisms are in place to ensure the
highly organized and compartmentalized distribution of
organelles in neurons. These mechanisms include (1) a
differential microtubule (MT) array, MT stability, and
association to different M'T-associated proteins (MAPs),
which allow molecular motors to bind MTs with
different affinities; (2) exclusion and inclusion mecha-
nisms of organelles into the axon and dendrites; and (3)
the regulation of motor—cargo recognition by adaptor
proteins and interorganelle interactions.

How motors navigate MT diversity for
polarized cargo transport

From lower organisms to highly complex mammalian
neurons, it has been well documented that the orien-
tation of M'Ts differs between the axon and dendrites.
In mammalian neurons, axonal M'Ts are oriented with
the growing plus-end-out, whereas dendritic M'Ts have
an equally mixed orientation, with both plus-end and
minus-end out M'Ts [3,4]. In addition to this differential
MT orientation, MTs in these compartments have
different post-translational modifications, which are
associated with more stable or dynamic M'T arrays. The
axon is featured by the presence of more acetylated/
detyrosinated MTs (stable MTs), whereas dendrites
contain two different pools of M'Ts—acetylated/detyr-
osinated MTs and tyrosinated (dynamic) MTs [3,4].
How do the many different kinesin and cytoplasmic
dynein motors present in neuronal cells coordinate cargo
trafficking and navigate along these complex arrays of
MTs? [5]. Initial studies using motor translocation
assays have shown that most kinesin motor domains
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accumulate in axon tips, whereas only a few of them,
including kinesin-3 members, also accumulate in den-
dritic tips [6].

An outstanding question is how the MT array, diversity
of MTs, and MT motor selection contribute to the
polarized transport of organelles. Recent studies have
revealed how motors navigate the diverse M'Ts in neu-
rons. Tas et al. developed a novel motor—based nano-
scopy technique termed motor-PAINT, in which the
incorporation of purified and fluorescently labeled
Drosophila kinesin heavy chain plus-end motor proteins
in neurons, after extraction and fixation, allowed the
study of motor navigation in relation to MT orientation,

Figure 1

modifications, and stability [3]. This revealed an unan-
ticipated dendritic MT array, spatially segregated into
bundles by orientation and modifications, in which
minus-end-out—oriented MT bundles are more stable
and acetylated, whereas the plus-end-out M'T bundles
are more dynamic and tyrosinated. The use of kinesin-1
and kinesin-3 rigor mutants, which can bind to MTs but
not dissociate from nor walk along them, revealed how
kinesin-1 highly prefers more stable M'T" bundles with a
minus-end-out orientation, whereas Kkinesin-3 binds
more to dynamic MT bundles with a plus-end-out
orientation [3]. These observations could explain how
kinesin-1 selectively transports cargoes into the axon
and why kinesin-3 can transport cargoes into both
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Regulation of polarized transport by MTs, MAPs, and motor proteins. Polarized transport of organelles/cargoes into dendrites and axons is
determined by several mechanisms. (a) Diversity in MT orientation, post-translational modifications (PTMs) and stability in dendrites, the proximal axon,
and the distal axon. The exact array of dynamic and stable MTs is less clear in the axon. (b) Various microtubule-associated proteins (MAPs) have a
specific distribution in each neuronal subdomain. This figure panel shows examples of conventional and unconventional MAPs with a highly polarized
distribution. (¢) The landing of motor proteins to specific MTs and their processivity can be coordinated by MAPs. Both DCLK1 and Septin-9 have been
shown to promote kinesin-3 transport into dendrites while they inhibit kinesin-1 loading, possibly preventing kinesin-1 from landing on dynamic MTs.
Dynein likely binds and travels along both stable and dynamic MTs in both dendrites and axons. MAP7D2 and the ER-resident protein P180 are able to
bind to both MTs and kinesin-1 and thereby possibly promote landing of kinesin on stable MTs in a preaxonal region. In more distal axons, Tau can bind
both stable and dynamic microtubules and affect MT landing of both kinesin-1 and kinesin-3.
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dendrites and the axon. Moreover, although initial
binding of dynein to M'Ts has been shown to be facili-
tated by MT tyrosination # vitro and along axonal M'Ts
[7,8], they can likely also bind to and travel along stable
M'Ts. Together with the finding of spatially segregated
MT arrays with a mixed orientation in dendrites, this
could explain why cargoes that bind to both kinesin-1
and dynein do not accumulate in the tips of dendrites
after kinesin-1 disruption in mammalian neurons
(Figure 1).

Considering that axonal M'Ts are mostly plus-end-out-
oriented, highly acetylated, and stable, it remains un-
known whether mixed properties or spatially segregated
bundles account for the navigation of kinesin-1 and
kinesin-3 motors into the axon. Mapping how the +15—
20 identified kinesins navigate dendritic and axonal
MTs with high spatiotemporal resolution will help to
understand how MT motor recognition guides the
transport of specific cargoes into the different neuronal
domains.

MAPs: adding clues to MT-driven motors for
polarized cargo transport

In addition to the intrinsic properties of MTs, MT di-
versity is further expanded by extrinsic factors that can
associate with specific sets of MTs, called MAPs.
Diverse canonical and noncanonical MAPs decorate M'Ts
and show domain-specific spatiotemporal expression
and distribution. In polarized neurons, the MAPs, MAP2
and Tau, are classically used as markers for dendrites and
the axon, respectively. Recent studies have started to
uncover the distribution of several other MAPs, showing
that they can have a preferential distribution along
dendrites or the proximal and distal axon (Figure 1).

Although initial work has described MAPs as M-
stabilizing factors, recent studies have proven that they
can have additional functions. For instance, MAPs act as
cytoskeletal crosslinkers, organize specialized MT arrays,
connect MTs and membranes, and regulate motor
binding, activity, and processivity on MTs [9]. The
currently emerging concept is that a “MAP code” has the
capacity to bias directed transport along specific sets of
M'Ts [9,10]. Supporting this model, recent findings have
revealed important roles for MAPs in loading or
preventing the landing of motor proteins onto specific
sets of MTs in different neuronal domains (Figure 1). For
instance, doublecortin-like kinesin-1 (DCLK1) guides
kinesin-3-mediated cargo transport in dendrites along
tyrosinated MT bundles and was also found to inhibit
kinesin-1 binding 7z vitro [10,11]. In addition, Septin-9,
which binds MTs at proximal dendrites, selectively en-
hances the motility of the kinesin-3 member KIF1A
while preventing kinesin-1 from entering dendrites. This
is probably achieved by preventing its interaction with
dynamic plus-end-out-oriented M5, as in intact

dendrites, kinesin-1 prefers stable minus-end-out-ori-
ented MTs [3,4,12]. The MAP7 member MAP7D2
locally promotes kinesin-1-mediated cargo transport into
the axon by inducing the recruitment of kinesin-1 to M'Ts
at the proximal axon [13]. MAPG6, also enriched in the
proximal axon, mediates M'T stabilization, allowing the
efficient trafficking of organelles into the axon [14].
Although most of the identified MAPs are cytosolic, the
association of MAPs to membranous compartments has
also been observed. MAP6 shuttles between its associa-
tion to Golgi-derived vesicles and axonal M'Ts [14], and
the ER-resident and M'T-associated protein P180 binds
to and stabilizes MT at the proximal axon [15].

It remains unknown how different MAPs localize to the
distinct neuronal compartments and how the local dis-
tribution contributes to motor-driven polarized organ-
elle transport. Some studies have shown that MAP
phosphorylation controls dissociation from MTs, MAP
relocation within the cell, or can alter MAP function
[16]. In addition, it was shown that palmitoylation of
MAP6 controls its shuttling between vesicles and local
recruitment onto M'Ts at the proximal axon [14]. Other
studies have proposed that competition between MAPs
determines the correct distribution and balance of
motor activity [17].

Thus, both the distribution of specific MAPs in each
neuronal compartment and the relative abundance of
MAPs can contribute to polarized transport by regu-
lating motor protein binding to MTs.

Regulation of MT motor selectivity by cargo
binding

Although the motor domain of kinesins and their
binding to specific set of MTs is essential for selective
organelle translocation, the current ‘smart motor’
model, in which the motor domain defines trans-
location selectivity, has recently been revised in light of
new findings. For instance, the tail domain of the
kinesin-3 member KIF13A was shown to bind trans-
ferrin receptor (TfR) carrier vesicles, which are
restricted to the somatodendritic domain [18]. Full-
length KIF13A expression displays a somatodendritic
distribution, whereas its motor domain alone is trans-
located mainly into the axon, and its tail domain is
preferentially distributed in dendrites [6,18,19].
Another example is the kinesin-2 member KIF17,
which is distributed in the somatodendritic domain and
binds somatodendritic vesicles containing N-methyl-D-
aspartate (NMDA) receptors, but its motor domain has
a preferential axonal translocation [18,20,21]. These
examples suggest a ‘cargo-steering’ model, in which
selective motor translocation into the correct neuronal
compartment is not solely defined by the properties of
its motor domain but can be modified by cargo
regulation.
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It remains unknown how cargo—tail interactions might
influence the efficiency of motor proteins to interact
with MTs and translocate. The development of novel
techniques to track only activated motor—cargo navi-
gation and compare it with motor domain translocation
with high spatiotemporal precision is required to
advance our knowledge of how motor—cargo in-
teractions regulate polarized trafficking of different sets
of vesicles and organelles. It will be particularly inter-
esting to elucidate the trafficking rules for a single cargo
binding to different motors, as well as for different
cargoes recognized by same motor.

Mechanisms of organelle exclusion and
inclusion at the proximal axon

Given that dendrite-entering kinesins can also enter the
axon, additional mechanisms must be in place to pre-
vent axonal entry of dendritic cargoes. This could
include cargo regulation, as more than one motor protein
is able to interact with a single cargo. In addition to this,
the axon initial segment (AIS) is known to act as a
surface diffusion barrier and an intracellular traffic filter
that prevents the entrance of somatodendritic proteins
into the axon [22,23]. Several models have been pro-
posed, in which actin filaments at the AIS halt soma-
todendritic vesicles and serve as tracks for retrograde
myosin-driven cargo transport [24,25]. However,
although myosin-Vaccumulated in actin-rich hotspots at
the AIS has been shown to arrest kinesin-driven cargoes,
it does not transport them back to the soma [26].
Instead, after the arrest of cargoes, local activation of the
minus-end—directed motor dynein could then retrieve
cargoes into the soma aided by the dynein regulator
NDELI1 through its recruitment and localization to the
AIS by the AIS master regulator Ankyrin-G [27].
Accordantly, KIF17 relieves autoinhibition after cargo
binding and targets cargoes into both dendrites and the
axon, but in the AIS, they are halted and retrogradely
transported to the soma by dynein to relocate cargo into
dendrites [21]. Additional mechanisms have been
observed that ensure the retrieval of somatodendritic
vesicles from more distal axons [28].

If the main barrier for somatodendritic vesicles to access
the axon is located in the AIS and there is an equal
targeting of motor-coupled cargoes into dendrites and
the axon, it would be expected that somatodendritic
cargoes can actively enter the AIS at the same rate as
they enter proximal dendrites. However, most somato-
dendritic vesicles, as well as the Golgi and the rough ER,
are already excluded from the axon at a region preceding
the AIS, called the preaxonal exclusion zone (PAEZ) or
axon hillock [1,29,30]. A comparative analysis of the
sorting of somatodendritic TfR-containing vesicles
showed that approximately 84.5% of these vesicles are
transported directly into dendrites, and only 15.5% of
the vesicles reach the proximal axon, where they can

either return to the soma or travel on more distally [30].
The PAEZ, devoid of somatodendritic organelles, is the
region in which bundles of closely and regularly spaced
MTs, termed MT fascicles, are organized and enter the
AIS [31,32]. It is characterized by the presence of the
acentrosomal minus-end-bundling protein CAMSAP2,
as well as by the plus-end MT-bundling protein
"TRIM46, which organizes parallel MT fascicles and is
also present in the AIS [33,34]. TRIM46-dependent
fasciculation of parallel MTs could regulate cargo in-
clusion into the axon, as TRIM46 disruption has been
shown to reduce cargo transport into the axon [33,34].
Kinesin-1 binds with high affinity to these MT fascicles
in the proximal axon, as shown by the preferential
binding site of the kinesin-1 rigor mutant [30]. Coupling
of a somatodendritic cargo to a kinesin-1-binding pro-
tein is sufficient to drive the transport of a somatoden-
dritic vesicle containing many cargoes through the
proximal axon toward the distal axon [30]. Together, this
suggests that the initial sorting of organelles/cargoes into
the axon starts at the proximal axon, where M'T fascicles
could serve as specialized tracks for the inclusion and
transport of organelles into the axon.

We propose that many different exclusion and inclusion
mechanisms are in place to ensure the correct distri-
bution of organelles into the axon, in which somato-
dendritic cargoes that escape sorting at the proximal
axon can be halted and retrieved from the AIS back into
the somatodendritic domain. The presence of a unique
MT array at the proximal axon can promote efficient
axonal motor-dependent organelle translocation into the
axon (Figure 2). In dendrites, a physical barrier has not
been identified; however, organelle exclusion and in-
clusion models have also been proposed, including the
previously mentioned preferred binding of kinesin-1 to
minus-end-out-oriented MTs and the role of MAPs in
promoting or preventing motor landing in dendritic MTs
(Figures 1 and 2).

Mechanisms of motor—cargo recognition
for polarized cargo transport

Adaptor proteins together with GTPases link cargoes to
the tail domain of motor proteins for cargo transport.
Although several adaptor proteins and GTPases have
been identified, most of these studies have focused on
the transport of a specific cargo-containing vesicle [5,35].
For organelles that are actively transported by different
motors to both dendrites and the axon, such as mito-
chondria and lysosomes, the role of adaptor proteins is
crucial to regulate cargo—motor selectivity (Figure 3).
The G'TPase Miro and the adaptor protein TRAK (TRAK
1/2) link kinesin-1 and dynein motors to the mitochon-
drial membrane, thereby regulating mitochondrial
transport. TRAK2 preferentially associates to dynein and
is more abundant in dendrites, whereas TRAKI is pref-
erentially distributed in the axon and binds kinesin-1 for
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Inclusion and exclusions mechanisms regulating neuronal cargo distribution. Several inclusion and exclusion mechanisms exist in both dendrites and
axons that ensure the proper distribution of organelles/cargoes in neurons. In dendrites, exclusion of kinesin-1-bound axonal cargoes is achieved by the
minus-end-out orientation of stable MTs and via inhibition of MT landing by MAPs such as DCLK1 and Septin-9. Conversely, there is an inclusion of kinesin-3-
dependent cargoes into dendrites mediated by MT organization and MAPs. Kinesin-1-dependent axonal cargoes preferentially bind to stable MT bundles
formed at the preaxonal exclusion zone (PAEZ). Somatodendritic cargoes are sorted at the PAEZ, in which cargoes lacking the binding to an axonal motor are
prevented from entering the axon. Somatodendritic cargoes that escape this sorting are halted at actin patches (1) in the AlS via their association with Myosin-
V (2). NDEL1 subsequently activates local dynein (3) which returns escaped somatodendritic cargoes back to the somatodendritic domain (4). Somato-
dendritic cargoes can also be retrieved from more distal axonal regions and can be transported back toward the soma by dynein.

anterograde transport into the axon. TRAKI1 has been
shown to enhance efficient transport even in crowded
environments through a direct interaction with MTs
[36,37]. For lysosomes, the adaptor protein complex
BORC and the GTPase Arl8 ensure the polarized trans-
port of lysosomes into the axon by linking lysosomes to
the kinesin-binding protein SKIP, which binds to the
kinesin light chain—kinesin-1 motor [38,39]. The
regulation of lysosome transport into dendrites is less
clear, but they could be transported along stable minus-
end-out—oriented MTs by dynein, mediated by the
recruitment of the adaptor protein RILP and the GTPase
Rab7 to the lysosomal membrane. Alternatively, kinesin-
3 could transport lysosomes along dynamic M'Ts oriented
plus-end-out, mediated by recruitment of BORC and
Arl8 [40,41], although this is unlikely because BORC and
Arl8 disruption mainly affect axonal transport of lyso-
somes [38]. Interestingly, BORC and Arl8 have also been
found to play a role in the axonal transport of the kinesin-
3-dependent synaptic vesicle precursors (SVPs) in
C. elegans neurons [42], which raises the question if two
different kinesins, kinesin-1 and kinesin-3, can use the
same adaptor complex to couple lysosomes and SVPs,

respectively, or whether they are transported together in
the same compartment. Studies in mouse and rat hip-
pocampal neurons showed that SVPs are transported into
the axon in lysosome-related compartments, in which
25%—85% of lysosome and SVPs markers are co-
transported [39,43]. However, neurons from a BORC
KO mouse model showed that lysosomes but not SVPs
required BORC for anterograde transport into the axon
[39], suggesting other adaptor proteins could compen-
sate or play a more prominent role in the transport of
SVPs into the axons of mammalian neurons. From these
two studies, it remains unknown if the 25%—85% co-
transported markers correspond to a single organelle
with mixed protein composition and whether or not they
are binding to both kinesin-1 and kinesin-3 motors using
the same adaptor proteins. The tracking of endogenous
markers using gene-editing technology combined with
super-resolution imaging would help to clarify the nature
of these co-transported cargoes, including which motors
and adaptors are involved [44].

An often-overlooked type of motor—cargo regulation is
the role of interorganelle interactions in organelle
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Adaptor proteins and interorganelle interactions regulate polarized transport into dendrites and the axon. Various organelle—adaptor pro-
tein—motor protein complexes have been identified in neurons. This figure highlights mechanisms of polarized organelle-motor coupling that enable their
entrance into dendrites or the axon. The ER, mitochondria, lysosomes, and RNP granules are distributed in both neuronal domains, suggesting a fine
regulation is in place to meet local demands. For instance, mitochondria are transported into dendrites via the TRAK2/Milton complex and dynein,
whereas TRAK1/Milton couples mitochondria to kinesin-1 for their anterograde transport into the axon. Lysosomes are transported into axons, but not into
dendrites, via coupling to the BORC/ArI8/SKIP complex and kinesin-1. The mechanism of lysosome transport into dendrites is unclear but this could be
mediated via dynein and RILP/Rab7 or via kinesin-3 and an unknown adaptor. Both RNP granules (via ANXA11) and ER tubules use hitchhiking on
lysosomes for their axonal translocation. Synaptic vesicle precursors possibly use kinesin-3 and the BORC/Arl8 complex for axonal transport in

mammalian neurons.

transport (Figure 3). In different cell types, including
neurons, several organelles frequently form dynamic
contacts with each other, without fusing their mem-
branes [45—47]. Emerging evidence has shown that
these interorganelle contacts play key roles in organelle
transport [48,49]. For instance, the ER-resident protein
protrudin acts as a receptor for kinesin-1 and transfers
this motor onto lysosomes for proper lysosome trans-
location [50]. Another study recently showed that ER
tubules promote translocation of lysosomes from the
soma into the axon mediated by an interaction between
P180, kinesin-1, and MT fascicles at the proximal axon
[51]. ER tubules themselves are transported into the
axon by kinesin-1 [15], but adaptor proteins coupling
the ER to motor proteins have not been identified.
Interestingly, recent studies have also shown that the
ER can ‘hitchhike’ on endosomes or lysosomes using
their motors and adaptors, in fungi, mammalian cell
lines, and neurons [48,52,53]. This ‘hitchhiking’ on
endolysosomes using specific adaptor proteins was also

shown to drive the transport of RNA granules [54,55]
and miRNAs [56] into axons.

Future perspectives

As outlined here, various mechanisms and a large
number of molecular players operate together to ensure
proper polarized transport of organelles and cargoes into
the different neuronal domains. However, our knowl-
edge on selective organelle/cargo transport in neurons
remains fragmented, with only a few known examples
that highlight the complexity of polarized organelle
transport. The development of novel techniques to
visualize active motors at single-molecule level on intact
neuronal MTs and their correlation with M'T modifica-
tions and distribution of MAPs will be required to un-
cover the trafficking rules for all neuronal motors. More
studies are necessary to identify which motors, adaptor
proteins, and GTPases are bound to specific organelles
in the different neuronal compartments. This could be
achieved using recently developed proximity labeling
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techniques such as APEX2 and BiolD and their de-
rivatives, possibly in combination with (microfluidic)
devices to separate neuronal compartments [57—59]. In
addition, it has become clear that organelles should no
longer be studied in isolation because a fine coordination
and interplay between them plays an essential role in
polarized transport important for neuronal development
and function.
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