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Abstract
On the Caribbean island of St. Eustatius, Coralita (Antigonon leptopus) is an aggressive 
invasive vine posing major biodiversity conservation concerns. The generation of dis-
tribution maps can address these conservation concerns by helping to elucidate the 
drivers of invasion. We test the use of support vector machines to map the distribu-
tion of Coralita on St. Eustatius at high spatial resolution and use this map to identify 
potential landscape and geomorphological factors associated with Coralita pres-
ence. This latter step was performed by comparing the actual distribution of Coralita 
patches to a random distribution of patches. To train the support vector machine 
algorithm, we used three vegetation indices and seven texture metrics derived from 
a 2014 WorldView-2 image. The resulting map shows that Coralita covered 3.18% 
of the island in 2014, corresponding to an area of 64 ha. The mapped distribution 
was highly accurate, with 93.2% overall accuracy (Coralita class producer's accuracy: 
76.4%, user's accuracy: 86.2%). Using this classification map, we found that Coralita is 
not randomly distributed across the landscape, occurring significantly closer to roads 
and drainage channels, in areas with higher accumulated moisture, and on flatter 
slopes. Coralita was found more often than expected in grasslands, disturbed forest, 
and urban areas but was relatively rare in natural forest. These results highlight the 
ability of high spatial resolution data from sensors such as WorldView-2 to produce 
accurate invasive species, providing valuable information for predicting current and 
future spread risks and for early detection and removal plans.

Abstract in Dutch is available with online material.
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1  |  INTRODUC TION

Invasive alien species (IAS) are an important driver of worldwide 
biodiversity loss, as successful invasions may lead to biotic homog-
enization at the expense of endemic species (Bellard et al. 2016; 
McKinney & Lockwood, 1999, Olden et al. 2004, Santos et al. 2011). 
The most profound impacts of IAS on biodiversity would therefore 
be expected in areas with high levels of endemism (Berglund et al. 
2009; Sakai et al. 2001). Island archipelagos may exhibit such high 
levels of endemism, driven by unique evolutionary histories (Brown 
& Sax, 2004; Myers et al. 2000). These characteristics contribute to 
many islands being part of global biodiversity hotspots (Myers et al. 
2000; Sloan et al. 2014), but also highlight their susceptibility to the 
impacts of IAS (Sakai et al. 2001; D’Antonio & Dudley, 2011; but see 
Vilà et al. 2011). The problem is particularly pronounced for (sub)
tropical islands, where in some cases half of the plant species are 
now of exotic origin (Sax et al. 2002), and globally they are the re-
cipients of disproportionate numbers of IAS (Turbelin et al. 2017).

Within (sub)tropical island systems, knowledge of the distribu-
tion of IAS at high spatial resolution is critical for understanding the 
local drivers of invasion and identification of areas at risk (Andrew 
& Ustin, 2009; Gottschalk et al. 2011). However, the need to collect 
data at high spatial resolution, while covering IAS distributions at the 
landscape scale, often limits the feasibility of traditional field sam-
pling (Dronova et al. 2017). High spatial resolution remote sensing 
imagery provides a powerful, systematic, and repeatable method to 
identify and monitor the distribution of plant species at the land-
scape scale (He et al. 2011; Santos et al. 2016). Although imaging 
spectroscopy provides the most opportunities to distinguish inva-
sive plants from native species (Santos & Ustin, 2018), its utilization 
to map IAS is still mostly restricted to handheld or airborne plat-
forms (Asner et al. 2008; Asner, Knapp, et al., 2008 but see Somers 
& Asner 2012, 2013). In cases where the IAS is clearly detectable, 
however, it may also be detected with satellite sensors providing 
multispectral imagery (Santos & Ustin, 2018). For such IAS, this is 
a particularly promising option, as these sensors can cover large 
geographic extents and with high spatial resolution, at relatively low 
user costs (Huang & Asner, 2009; Robinson et al. 2016). Whether 
these advantages of multispectral imagery can be utilized depends 
on the ability to detect invasive species with the limited number of 
spectral bands (Dronova et al. 2017). In addition, the challenges in-
volved in vegetation classification from multispectral imagery can 
be reduced by modern classification methods (Sluiter & Pebesma, 
2010; Tarantino et al. 2019). Specifically, Support Vector Machines 
(SVMs) provide a robust image classification algorithm and have 
been successfully applied to infer IAS distributions. Although the 
ability of SVMs to detect IAS has been tested with high spatial res-
olution multispectral data (Cho et al. 2015; Pouteau et al. 2012; Xun 
& Wang, 2015) understanding the full potential of applying SVMs to 
mine these data requires further exploration (Royimani et al. 2019).

Antigonon leptopus (Hook. & Arn.), commonly known as Coralita, 
is a widespread invader of (sub)tropical regions around the world. 
This herbaceous perennial vine is originally from Mexico, and its 

spread has been driven by its appeal as a cultivated garden plant 
(Burke & DiTommaso, 2011). The infestation of Coralita on the 
northern Caribbean island of St. Eustatius is arguably the most ex-
treme example of this plant's invasive capability, with previous esti-
mates (based on ground surveys) indicating that the plant appears on 
15–33% of the island's area, although its cover does not reach 100% 
at all locations indicated in these studies (Berkowitz, 2014; Ernst & 
Ketner, 2007). Thus, understanding Coralita's geographic extent and 
the potential factors influencing its distribution on St. Eustatius are 
of high importance. Moreover, analyzing the associations between 
IAS presence and landscape and environmental characteristics is 
a crucial step toward identifying areas at risk of further invasion 
(Bartuszevige & Gorchov, 2006).

In this study, we map the distribution of Coralita on St. Eustatius 
at high spatial resolution (i.e. 2 m by 2 m) and evaluate the potential 
associations of local environmental conditions with Coralita pres-
ence over the complete distribution of this population. We focus on 
five landscape and environmental characteristics that we hypothe-
size are associated with Coralita presence. Specifically, our goals for 
this study were to: (1) evaluate the potential of SVMs to accurately 
detect Coralita at high spatial resolution with WorldView-2 imagery 
and (2) identify fine-scale spatial associations between Coralita and 
several landscape and geomorphological variables which we hypoth-
esize are linked to spread and persistence of Coralita. These analy-
ses may serve to identify the fine-scale environmental conditions of 
habitats occupied by Coralita in non-native locations, and to assess 
the potential of the proposed approach for large-scale monitoring 
of this species.

2  |  METHODS

2.1  |  Study area

St. Eustatius (17°28′ N, 62°58′ W) is a small island (area ~21 km2) that 
is part of the Cenozoic lesser Antilles volcanic arc (Figure S1). The 
climate is tropical, with a mean annual temperature of 25.7°C and 
mean annual precipitation of 1073 mm (Rojer, 1997). Precipitation is 
likely higher on the slopes of the southern Quill volcano, which has 
a maximum height of 601 m (Rojer, 1997). The lower outer slopes of 
the Quill are covered by dry evergreen forests, (semi-) evergreen, 
and deciduous seasonal forests, whereas (secondary) rain forest can 
be found on the highest elevations (van Andel et al. 2016; de Freitas 
et al. 2014; Stoffers, 1956). Most of the island's bedrock is of vol-
canic origin, with clay loam soils in shallow areas and stonier and 
sandier loam soils on steeper slopes of both the northern and south-
ern volcanic complexes (De Freitas et al. 2014; Veenenbos, 1955).

2.2  |  Mapping Coralita distribution

The construction of a Coralita distribution map for St. Eustatius con-
sisted of four steps (Figure 1; extended in Figure S5).
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F I G U R E  1  Flowchart showing how a Coralita distribution map for St. Eustatius was developed, using a Support Vector Machine learning 
algorithm. The procedure consisted of Steps 1–4 described in the main text. A more detailed flowchart is provided in the Supplementary 
Information (Figure S5). Acronyms used in figure: WV-2: WorldView-2; GLCM: Gray-level co-occurrence matrix; ROC: Receiver operating 
characteristic. Asterisks indicate references: *Mücher et al. (2014); **Ustün et al. (2007)
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2.2.1  |  Step 1: Satellite data acquisition and pre-
processing

The WorldView-2 satellite acquires high spatial resolution 
(2 × 2 m) images over 8 spectral bands, with six bands in the vis-
ible light spectrum and two bands in the near-infrared spectrum 
(DigitalGlobe Inc.). In the visible spectrum, four bands span the 
colors Blue (450–510  nm), Green (510–580  nm), Yellow (585–
625 nm), and Red (630–690 nm), while two extra bands cover the 
visible light spectrum edges. First, the Coastal band (400–450 nm) 
distinguishes particular shades of blue and violet. Second, the 
Red-edge band (705–745 nm) covers the range of wavelengths in 
which vegetation's interaction with light changes rapidly from ab-
sorption to reflection. The two near-infrared bands are referred to 
as NIR1 (770–895 nm) and NIR2 (860–1040 nm). We used a cloud-
free WorldView-2 image that was taken on 24 August 2014, which 
was orthorectified and atmospherically corrected (GIM, Leuven, 
Belgium, Supplementary Information).

2.2.2  |  Step 2: Field data acquisition

We visited 162 sampling points on St. Eustatius in July 2015. 
Although there was a time difference of 11  months between the 
image and reference data collection, we assumed that Coralita 
patches that were present in 2014 persisted in 2015. We also as-
sumed that Coralita-covered locations sampled in 2015 (typically 
near the Coralita patch centers) were already covered by Coralita 
in 2014. These assumptions are based on observations suggesting 
that the majority of Coralita growth is clonal via sprouting from tu-
berous storage structures buried in the soil (Ernst & Ketner, 2007). 
These characteristics create persistent Coralita patches, but they 
also constrain the rate of outward spread to a few meters per year 
(Ernst & Ketner, 2007). Moreover, no extreme events such as hur-
ricanes occurred on the island during this period (Eppinga & Pucko, 
2018). Sampling points were selected with a mixed procedure, with 
direct selection of target (i.e., Coralita) points to ensure sufficient 
representation and random selection of non-target points (i.e., other 
land cover types and landscape features). We visited n = 32 points 
where Coralita was the dominant species, that is, occupying ≥50% 
of the surface/canopy area. These points were found using informa-
tion from previous studies (Ernst & Ketner, 2007; Smith et al. 2013), 
and opportunistically while sampling other types of surface cover 
(see below). At the remaining n = 130 sampling points, Coralita was 
not present. These points were sampled in a stratified random man-
ner according to slope, to ensure that a variety of habitats and veg-
etation types was captured. Additionally, 28 not-Coralita sampling 
points of inaccessible features, such as building roofs, were visually 
inspected using the WorldView-2 image, and their coordinates were 
added to the reference data. We also included three Coralita points 
using GPS locations from three large Coralita patches recorded in a 
previous study (Smith et al. 2013). Thus, a total of 193 reference data 
points were used.

At each sampling point, geographic coordinates (datum: 
WGS1984) were recorded with a Trimble Geo7x handheld GNSS 
receiver (Trimble Inc.) at the corners and center of a 4 × 4 m plot. 
This plot size ensured that at least one pixel of the WorldView-2 
image was completely captured. One-minute measurements at each 
plot corner and center yielded 60 independent coordinate readings, 
which were later differentially corrected using data from the nearest 
Continuously Operating Reference Station (St. Maarten, 60 km from 
St. Eustatius) and the Trimble GPS Pathfinder Office software. This 
procedure yielded horizontal accuracies ranging from 0.1 to 12.1 m, 
with a median accuracy of 0.3 m.

2.2.3  |  Step 3: Building and applying the 
SVM algorithm

In this step, the reference data were used to identify 35 Coralita 
and 158 not-Coralita pixels on the WorldView-2 image. As the image 
provides for each pixel the reflectance values for the eight spectral 
bands, a number of variables was derived to test their ability to effec-
tively distinguish Coralita from not-Coralita pixels. In addition to the 
eight spectral bands, multiple spectral band values were combined 
into spectral indices. We considered 20 indices that were shown 
to be successful in classifying vegetation with WorldView-2 data 
(Nouri et al. 2014; Oumar & Mutanga, 2013, Table S1). Additional 
variables were also created by combining scores of neighboring pix-
els, thereby describing spatial patterning and heterogeneity in re-
flectance values (Haralick et al. 1973). Specifically, variable scores 
were converted to a gray scale, and the distribution of co-occurring 
pixel values was computed, creating a grayscale level co-occurrence 
matrix (GLCM). From the GLCM, a number of texture variables can 
be calculated (Haralick et al. 1973, Supplementary Information). 
Texture variables have also been shown to improve vegetation clas-
sifications (Khatami et al. 2016). In total, 92 candidate variables were 
considered: 8 spectral bands, 20 vegetation-based spectral indices 
and 64 texture variables. This pool of candidate variables was re-
duced to a set of 10 variables based on two criteria (Supplementary 
Information): (1) potential contribution to distinguishing Coralita pix-
els; (2) sufficient independence from other variables.

The selected 10 variables included three vegetation indices 
(Table 1): Total Red-edge Slope (TRES), NDVI of Red-edge and Coastal 
bands, and the ratio between the second near-infrared and red bands 
(NIR2:Red). Both TRES and NIR2:Red describe differences in absorp-
tion of red and near-infrared wavelengths, which typically depend 
on chlorophyll content and other leaf properties (Horler et al. 1983; 
Walter-Shea & Norman, 1991). In contrast, the Red-edge and Coastal 
NDVI typically correlates with non-homogeneous (urban) features 
that stand out from the background landscape (Wolf, 2010). The 
remaining selected variables were seven texture variables (Table 1). 
Six of these texture variables described spatial patterning in red and 
near-infrared wavelength reflectance between neighboring cells. The 
remaining texture variable described spatial patterning in reflectance 
of the Blue band (Table 1). For each input variable, we compared the 
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TA B L E  1  Input variables included in Coralita SVM model

Variable (SVM feature weight 
rank) Definition

Test statistic Coralita – Not 
Coralita comparison (p-value)

Total red-edge slope (1) The first derivative of reflectance between red and near infra-red 
wavelengths

D35,158 = 0.800 (p < 0.001)

GLCM meanRed-edge (2) The mean value of the gray-tone spatial dependence matrix of the red-edge 
band

D35,158 = 0.616 (p < 0.001)

GLCM homogeneityRed (3) The inverse square of the gray-tone spatial dependence matrix of the red 
band

D35,158 = 0.331 (p = 0.003)

NDVIRed-edge and Coastal (4) A spectral index comprised of the normalized difference between the red-
edge and coastal bands

D35,158 = 0.500 (p < 0.001)

GLCM entropyNIR1 (5) The negative logarithm of the probability mass function of the gray-tone 
spatial dependence matrix of the first near-infrared band

D35,158 = 0.256 (p = 0.039)

NIR2:Red (6) The ratio of reflectance at near infra-red and red wavelengths D35,158 = 0.430 (p < 0.001)

GLCM second momentBlue (7) The sum of squares of the gray-tone spatial dependence matrix of the blue 
band

D35,158 = 0.322 (p = 0.004)

GLCM dissimilarityNIR1 (8) The probability mass function of the gray-tone spatial dependence matrix 
of the first near-infrared band, where each pixel pair is weighed 
according to the linear distance between pixels,

D35,158 = 0.331 (p = 0.003)

GLCM correlationRed (9) The measure of linear dependence between pixels of the gray-tone spatial 
dependence matrix of the red band

D35,158 = 0.278 (p = 0.019)

GLCM correlationNIR1 (10) The measure of linear dependence between pixels of the gray-tone spatial 
dependence matrix of the first near infra-red band

D35,158 = 0.230 (p = 0.083)

Note: Input variables included in the SVM classification model ranked according to SVM relative feature weight. The first column lists the input 
variable names and the SVM feature weight ranking (for further information, see Methods section “Mapping the occurrence patterns of Coralita” 
and Supplementary Table S1). The second column defines the variables in terms of the WorldView-2 bands used to calculate them. The third column 
shows the results of two-sample Kolmogorov–Smirnov tests comparing the distributions of Coralita (n = 35) and not-Coralita (n = 158) points on each 
variable (as also shown in Figure 2).
Abbreviations: GLCM, gray-level co-occurrence matrix; NIR, near-infrared.

F I G U R E  2  Plot displaying the distributions of values for the 10 input variables used to build and apply the Support Vector Machines 
model, separated by classification category. Data for each input variable are displayed by paired boxplots overlain with raw data points and 
probability distributions of the two classification categories. Variables TRES, Red-edge GLCM mean, NDVI Red-edge, Coastal, and NIR2:Red 
show the largest separation for the classification categories according to two-sampled Kolmogorov–Smirnov tests (p < 0.001). Abbreviations 
used on x-axis: GLCM, Gray-Level Co-occurrence Matrix; NDVI, Normalized Difference Vegetation Index; NIR, near-infrared; TRES, Total 
Red-edge Slope. Colors refer to the corresponding WV-2 bands used to calculate the indices. Symbols indicate significant differences: 
***p < 0.001, **p < 0.01, *p < 0.05, †p < 0.1



946  |    HABER et al.

distribution of values of Coralita and not-Coralita points using two-
sample Kolmogorov–Smirnov tests.

Using the 10 input variables and the reference data (Figure 1), 
we employed a binary SVM classification distinguishing two classes: 
‘Coralita’ and ‘not-Coralita’. An SVM is a supervised non-parametric 
machine learning algorithm to classify image data into categories, 
such as vegetation types or species (Mountrakis et al. 2011). Support 
Vector Machines have been shown to successfully handle small train-
ing data sets, even with many input variables, and often outperform 
other classification or regression approaches (Khatami et al. 2016; 
Mantero et al., 2004; Schwieder et al. 2014). Through machine learn-
ing, support vectors are generated as combinations of input variables, 
with the aim of separating data points of different classes by a sup-
port vector hyperplane (Cortes & Vapnik, 1995). Importantly, support 
vectors consisting of linear combinations of input variables may not 
be effective in separating classes and creating a reliable classification 
(Sha & Bai, 2013). Instead, SVMs allow for considering a wide range of 
non-linear combinations of input variables by transforming them via a 
kernel operation (Rumpf et al. 2010).

The support vectors that best separated the two classes were 
found by tuning them to a subset of reference points used as training 
data. Specifically, we randomly split the 193 reference points into a 
training set (70%) and a testing set (30%). To enable non-linear com-
binations of input variables, we used a Gaussian radial basis function 
kernel. Within the SVM framework, tuning consists of optimizing 
two parameters. First, the cost parameter determines how strongly a 
model fit is penalized for incorrectly classifying training data points. 
Second, the gamma parameter controls the width of the kernel, and 
thereby the way in which data points are separated from each other 
(e.g. Mountrakis et al. 2011). In this study, optimal values for cost and 
gamma were searched for within a parameter search space bounded 
by e−5 - e15 and e−15 - e3 (using multiplicative step sizes of e1), respec-
tively. The performance of the SVM is defined as its ability to cor-
rectly assign the training data to the Coralita and not-Coralita classes. 
As direct estimates of performance tend to overfit, a ten-fold cross-
validation was performed (see Supplementary Information). The re-
sulting optimized (i.e., best performing) set of support vectors was 
used in the final SVM model to predict the probabilities of Coralita 
presence over the entire image. The outcome of applying the SVM 
model is a map indicating the probability for each pixel of belonging 
to the Coralita class. The SVM model was tuned, built, and imple-
mented in R v.3.3.1 (R Development Core Team 2017), using package 
e1071 (Meyer et al. 2014).

The structure of the final SVM model depends on the specific 
split made between training and test data. For a different training 
data subset, the optimized values for cost and gamma, as well as the 
accompanying support vectors, may change. Such changes may be 
important, as SVMs are relatively sensitive to even small changes in 
parameter values. To increase the robustness of the SVM-based pro-
jections, we used a process called bagging (Breiman, 1996). The idea 
of bagging is to generate an ensemble projection, which we generated 
here by creating 50 different SVM models, using randomized splits 
between training and test data for each model. As each model yielded 

an output map, we could create an ensemble map containing for each 
pixel the average probability of belonging to the Coralita class. We 
verified that these average probabilities had converged after 50 iter-
ations (Figure S3).

2.2.4  |  Step 4: Threshold determination and 
accuracy assessment

Converting the continuous probability maps generated in Step 3 
into classified maps required setting a threshold probability value 
above which pixels were assigned to the Coralita class. The opti-
mal threshold value minimizes the frequency of false positives and 
false negatives and can be found by maximizing the area under the 
receiver operator characteristic (ROC) curve (e.g., Pouteau et al. 
2012). Applying this procedure for each of the 50 maps generated 
in Step 3 yielded an average optimal threshold probability value of 
0.4432, which was then used to create a binary ensemble map. We 
verified that this optimal threshold probability had converged after 
50 iterations (Figure S4). After post-processing (see Supplementary 
Information), we also calculated four metrics indicating classifica-
tion accuracy (e.g., Fitzgerald & Lees 1994; Raju et al., 2001): (1) the 
producer's accuracy indicates the likelihood of assigning non-target 
pixels erroneously to the target class; (2) the user's accuracy indicates 
the likelihood of assigning target pixels erroneously to the not-target 
class; (3) the overall prediction success quantifies the agreement be-
tween reference points and the SVM-based classification of the 
corresponding pixels; (4) the Kappa statistic is derived from overall 
prediction success, but also accounts for the probability that pixels 
were classified (in)correctly by chance. The four metrics were calcu-
lated for each map using the test datasets for each of the 50 SVM 
model iterations. Area under ROC curve and optimal probability 
thresholds were calculated using the R package ROCR (Sing et al. 
2005). Classification accuracy metrics were calculated using the R 
package caret (Kuhn, 2015).

2.3  |  Associations between Coralita presence and 
local environmental variables

To reach the study's second goal, we selected several landscape 
and environmental variables we hypothesize to be associated with 
Coralita presence: distance to roads, geomorphological characteris-
tics, and land cover. First, the spread of invasive plants is often asso-
ciated with disturbance concurrent with human activities and roads 
present both a conduit for spread and a habitat for establishment 
and persistence (Arteaga et al. 2009; Christen & Matlack, 2009). 
Moreover, observations from Coralita's native range suggest that 
such disturbed areas provide suitable habitat for this species (Burke 
& DiTommaso, 2011; Muniappan et al. 2002; Vandebroek et al. 
2018). Thus, the distance to the nearest road was calculated for 
each pixel using a digitized roads GIS layer. Second, since Coralita 
thrives in moist soils (Raju et al., 2001), presence of the species may 
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be associated with the geomorphology of the landscape, determin-
ing where water flows converge and infiltrate (Parolo et al. 2008). To 
assess geomorphological variables, we computed slope and upslope 
drainage area, which can be combined to calculate a Topographic 
Wetness Index (TWI; Beven & Kirkby, 1979). Slope was calculated 
using a high spatial resolution DTM (Mücher et al., 2014), which 
was smoothed and resampled to remove noise. From this adjusted 
DTM we also calculated upslope drainage area and delineated drain-
age channels in TauDEM v 5.3 (http://hydro​logy.usu.edu/taude​
m/, Tarboton, 1997). Lastly, the land use and disturbance history 

of a site can affect the establishment of invasive plants (Lundgren 
et al. 2006; Mattingly & Orrock, 2013), with frequently disturbed 
areas having higher incidence of IAS. On St. Eustatius, there is a 
long history of land use for agriculture, which has left its legacy in 
the predominance of disturbed vegetation and land cover types (de 
Freitas et al. 2014; Hartog, 1976). Based on previous observations 
of Coralita's affinity to such disturbed areas (Burke & DiTommaso, 
2011; Ernst & Ketner, 2007), we hypothesize that Coralita will be 
found more often in such areas. We assessed the relationship be-
tween land cover and Coralita presence with the land cover map 

F I G U R E  3  Map of the distribution of Coralita on St. Eustatius. Areas classified as Coralita are shown in pink and are locations where 
Coralita covers >50% of a pixel (spatial resolution 2 × 2 m). The total area classified as Coralita is 64 ha, or 3.18% of the total land area of St. 
Eustatius

http://hydrology.usu.edu/taudem/
http://hydrology.usu.edu/taudem/
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generated by Helmer et al. (2008), who created a nearly cloud free 
image of St. Eustatius using a mosaic of Landsat 7 ETM+images (spa-
tial resolution: 30 m). The image was classified into nine land cover 
categories on St. Eustatius. In this study, we aggregated these nine 
land cover categories into five: urban, grasslands, disturbed forest, 
natural forest, and ‘other’ land use types (including e.g., cliffs and 
bare soil).

We tested spatial correlation of Coralita patches with roads, 
streams, slope, and TWI value as well as the occurrence in the land 
cover categories. Therefore, we chose one point randomly located 
in each of the mapped contiguous Coralita patches. As the distribu-
tion map contained 1852 Coralita patches, we randomly selected 
the same number of not-Coralita points for comparison. For each 
local environmental variable, we compared the distribution of values 
of Coralita and not-Coralita points using two-sample Kolmogorov–
Smirnov tests. We also compared differences in the median score of 
both groups using Mann–Whitney U tests. For the nominal variable 
land cover, we compared differences between both groups using a 

Chi-square test. All statistical analyses were performed in MATLAB v 
9.0 (MathWorks, 2016).

3  |  RESULTS

3.1  |  Mapping the occurrence patterns of Coralita

Higher scores on the three vegetation indices indicated that Coralita pix-
els exhibited relatively strong absorption in the Red-edge band (Figure 2; 
Table 1), as absolute reflectance values in the Red-edge band were rela-
tively high around Coralita pixels (Figure 2; Table 1). Reflectance in the 
Red band was relatively uniform in the pixels around Coralita (Figure 2; 
Table 1). Coralita pixels exhibited high reflectance in the NIR1 band, 
which were spatially more heterogeneous around Coralita pixels than 
around not-Coralita pixels (Figure 2; Table 1). A similar spatial pattern 
was observed for the Blue band (Figure 2; Table 1). These patterns are 
consistent with observations of Coralita having distinctive bright green 
leaves (Figure S2), with relatively high chlorophyll content and photo-
synthetic activity.

According to the resulting classification map produced for August 
2014, Coralita was the dominant plant on 64 ha of the island, which 
translates to 3.18% of the total horizontal land area (Figure 3). The 
average patch size was 345 ± 5 m2. The averages and standard er-
rors of classification accuracy metrics are presented in Table 2. The 
average overall prediction success for this classification was 93.2% 
(SE ±0.56%) while the average Kohen's Kappa statistic was 0.761 (SE 
±0.02). The average producer's accuracy of the Coralita class was 
76.4% (SE ±2.01%), and the average user's accuracy of the Coralita 
class was 86.2% (SE ±1.91%), whereas the average producer's and 
user's accuracies of the not-Coralita class were 97.2% (SE ±0.38%) 
and 94.7% (SE ±0.50%), respectively.

TA B L E  2  Classification accuracy for Coralita SVM model

Index Mean value
Standard 
error

Overall prediction success 93.2% 0.56%

Kappa 0.761 0.02

Producer's AccuracyCoralita 76.4% 2.01%

Producer's AccuracyNotCoralita 97.2% 0.38%

User's AccuracyCoralita 86.2% 1.91%

User's AccuracyNotCoralita 94.7% 0.50%

Note: Accuracy indices for Coralita SVM classification. Producer's 
accuracy and user's accuracy for the Coralita class are 76.4% and 
86.2%, respectively. Both of these accuracy measurements have a 
standard error of ±2%.

F I G U R E  4  Analysis of distance to roads of Coralita patches vs. not-Coralita patches. Patches of the invasive plant Coralita grew closer 
to the roads of St. Eustatius (Caribbean) than would be expected if the species occurred randomly over the island. (a) Boxplot (with a 
logarithmic y-axis) showing the median, 25th and 75th percentiles of distances from the nearest road of n = 1852 points on the island covered 
by Coralita, compared to n = 1852 randomly selected, non-Coralita points on the island. (b) Cumulative distributions of Coralita points and 
non-Coralita points. 40% of Coralita locations were within 50 m of a road; 80% of Coralita locations were within 220 m of a road
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3.2  |  Associations between Coralita presence and 
local environmental variables

Distances to roads were significantly differently distributed for 
Coralita points and randomly selected not-Coralita points (two-sample 
Kolmogorov–Smirnov test: D1852,1852  =  0.197, p  <  0.001). Coralita oc-
curred closer to roads than expected from a random distribution over 
the island (Figure 4a; mean distance from roadsCoralita: 209.8  m (SE 
±7.2 m), mean distance from roadsNot-Coralita: 321.0 m (SE ±9.2 m), Mann–
Whitney U test: U1852,1852 = 1.3 × 106, p < 0.001). Approximately 40% of 
Coralita locations were within 50 m of a road (for random, non-Coralita 
points: 116 m, Figure 4b), and approximately 80% of Coralita locations 
were within 335 m of a road (for random, not-Coralita points: 527 m, 
Figure 4b; Figure S7).

Slopes, TWI scores, and distances to drainage channels all 
showed significantly different distributions for Coralita points and 
randomly selected not-Coralita points (two-sample Kolmogorov–
Smirnov tests: Slope: D1852,1852  =  0.236, p  <  0.001; TWI: 
D1852,1852 = 0.197, p < 0.001; Drainage channels: D1852,1852 = 0.158, 
p < 0.001). Coralita occurred on shallower slopes than expected 
from a random distribution over the island (Figure 5a; Figure S8; 
mean slopeCoralita: 9.9% (SE ±0.2%), mean slopeNotCoralita: 15.3% (SE 
±0.3%), Mann–Whitney U test: U1852,1852 = 1.34 × 106, p < 0.001). 
Coralita also occurred in areas with higher TWI scores (Figure 5b; 
Figure S9; TWICoralita=7.3 (SE ±0.05), TWINotCoralita=6.5 (SE ±0.05), 
Mann–Whitney U test: U1852,1852  =  1.27  ×  106, p  <  0.001), and 
in areas closer to drainage channels (Figure 5c; Figure S10; dis-
tance from channelsCoralita: 87.4  m (SE ±1.9  m), distance from 
channelsNotCoralita: 127.7  m (SE ±2.8  m), Mann–Whitney U test: 
U1852,1852 = 1.37 × 106, p < 0.001).

The occurrence of Coralita across land cover types (Figure 6a) 
was significantly different than expected from a random distribution 
over the island (Figure 6b,c; Chi-square test: �2

4
 = 304, p < 0.001). 

Coralita occurred predominantly in specific land cover types: grass-
lands, disturbed forest, and urban areas. In total, 85% of Coralita's 
cover appeared in these land cover types, where 60% of cover would 
be expected for a randomly distributed species (Figure 6b,c). In con-
trast, the occurrence of Coralita was relatively rare in natural forest. 
In total, 11% of Coralita's cover appeared within this land cover type, 
where 29% of cover would be expected for a randomly distributed 
species (Figure 6).

4  |  DISCUSSION

We present a cost-effective approach to obtain an accurate and fine-
scale distribution of an invasive species over an entire Caribbean is-
land. Knowing the distribution of an invasive species population over 
an entire land unit is essential for monitoring programs of invasive 
species (Jones, 2011), while high spatial resolution data is needed to 
study ecological mechanisms of spread of invasive species patches 
(Dronova et al. 2017). Although previous studies have demonstrated 
that SVMs are powerful tools to create accurate classification 

schemes (Khatami et al. 2016; Mantero et al., 2004; Mountrakis 
et al. 2011), the potential of these approaches to infer invasive spe-
cies presence from novel multispectral data sources has remained 

F I G U R E  5  Associations between geomorphological variables 
and the occurrence of the invasive plant species Coralita on 
St. Eustatius (Caribbean). Results are shown as boxplots (with 
logarithmic y-axes) indicating the median, 25th and 75th percentiles 
of n = 1852 points on the island covered by Coralita, and n = 1852 
randomly selected, not-Coralita points on the island. (a) Patches 
of the invasive plant Coralita grew in areas with shallower slopes 
than would be expected if the species occurred randomly over 
the island. (b) Patches of Coralita grew in moister areas (indicated 
by Topographic Wetness Index (TWI) scores) than would be 
expected if the species occurred randomly over the island. (c) 
Coralita patches occurred closer to drainage channels than would 
be expected if the species occurred randomly over the island
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largely unexplored (Royimani et al. 2019). In this study, we reached 
high accuracy with an SVM classifier of a WorldView-2 image, which 
could be attributed to the distinct coloring of the target invasive spe-
cies Coralita (Figure 2; Figure S2). Moreover, the prominent inclusion 
of texture metrics in the classifier suggest that Coralita has distinct 
canopy characteristics that are detectable with multispectral data 
compared with other land cover types (Figure 2; Figure S2).

We found that Coralita is the dominant canopy cover on 64 ha, or 
3.18%, of the island. It should be noted, however, that any estimate 
based on a classification system with <100% accuracy is subject to 
propagation of error and hence uncertainty (Olofsson et al. 2014). Also, 
dominant canopy cover is a different metric than appearance, which 
was reported in previous studies (Berkowitz, 2014; Ernst & Ketner, 
2007). Previous estimates of appearance were based on ground-based 
interpolation of observations made from main and secondary roads 
(Berkowitz, 2014; Ernst & Ketner, 2007). The spatial grain size used in 
the latter type of analyses is typically larger than the 2 m by 2 m resolu-
tion considered in our study. Comparisons of metrics derived at differ-
ent spatial grains are subject to Modifiable Area Unit Problem (Jelinski & 
Wu, 1996; Wong, 2004). Within the context of invasive species analysis, 
increasing the spatial grain size of observation may lead to increasing 
estimates of cover based on presence, and decreasing estimates of area 
dominated. In other words, metrics obtained at different spatial scales 
provide different kinds of ecological information. In addition, expert-
opinion range maps can be prone to errors of commission (Rondinini 
et al. 2006) because they tend to overestimate occupancy at small spa-
tial scales (Hurlbert & Jetz, 2007; Jetz et al. 2008). On the other hand, 
despite the relatively high classification accuracy of our map, the un-
filtered classification yielded a considerable number of single, isolated 
pixels classified as being occupied by Coralita. Such pixels are typically 
removed by the application of moving filter approaches (e.g., Hamada 
et al. 2007), which we also employed in this study (Supplementary 
Information). Filtering may remove some possibilities for early detection 
of the invasive species. Moreover, optical data do not penetrate through 

the canopy, hindering the detection of subcanopy species except during 
leaf-off conditions. The presence of Coralita under trees and shrubs, 
even in low densities, may provide important information for managers 
regarding the recovery potential of vegetation types following distur-
bance (see e.g. Horvitz et al. 1995, 1998). Although our observations 
from the field suggest that occurrence of Coralita in the understory is 
rare (E.A. Haber, M.B. Eppinga, and M.J. Wassen, pers. observations), 
the potential impacts may warrant monitoring using alternative, field-
based approaches. In terms of methodology, a disadvantage of expert-
interpreted maps is the non-transferability of the method (Morrison, 
2016), making it difficult to accurately monitor over time. In contrast, 
an imagery-based classification is both standardized and repeatable, 
allowing for consistent comparisons of changes in distribution of inva-
sive plants over time. These advantages and constraints of each method 
should be considered before using distribution maps for management.

Our study enabled a detailed characterization of how the occur-
rence of Coralita on St. Eustatius is associated with local environ-
mental variables, which can be compared to observations from the 
species’ native habitat. In its native habitat in Mexico, Coralita is char-
acterized as a roadside weed and its presence is also associated with 
channels (Burke & DiTommaso, 2011; Vandebroek et al. 2018). We 
observed similar patterns in the invasive habitat, as Coralita grew in 
relatively close proximity to roads and channels (Figure 4). However, 
we also observed that Coralita's distribution is not confined to these 
habitats (Figures 3 and 5). Although it may be difficult for Coralita 
to invade the climax vegetation states that develop under the high 
precipitation regimes of the northern Caribbean (Figure 6b), the spe-
cies may benefit from the relatively moist conditions in areas that 
experienced recent disturbance (van der Burg et al. 2012). Such con-
ditions are ideal habitats for ruderal plant species and species which 
thrive with disturbance, which include invasive species (Jauni et al. 
2015; Lu et al. 2013). Hence, our analyses emphasize recent recom-
mendations for control of Coralita in this specific type of Caribbean 
habitat (Figure 6; Debrot et al., 2018). An important next step to aid 

F I G U R E  6  Association between land cover type and the occurrence of the invasive plant species Coralita on St. Eustatius (Caribbean). (a) 
A land cover type map (derived from Helmer et al., 2008) was used to identify the land cover for each of 1852 points occupied by Coralita, 
and for 1852 not-Coralita points. (b) Frequency distribution of Coralita points across land cover types. (c) Frequency distribution of not-
Coralita points across land cover types. Comparing of (b) and (c) shows that Coralita occurs relatively frequently in grasslands, disturbed 
forest and urban areas, and relatively rarely in natural forest and other types of land cover (such as coastal, cliffs, sand and rock)
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management could focus on creating a habitat suitability model for 
Coralita on St. Eustatius, which could inform risk assessments of 
future spread (cf. Jiménez-Valverde et al. 2011). Furthermore, this 
approach could then be extended to other regions (i.e., Caribbean 
islands) as well (cf. FitzPatrick et al. 2007).

In the Caribbean biodiversity hotspot, centuries of overharvest-
ing, habitat loss, invasive ungulates, and land conversion for agricul-
ture have drastically reduced the extent of pristine vegetation types 
such as lowland deciduous forests (Maunder et al. 2008). Although 
the studied island St. Eustatius is relatively small, its biodiversity is 
of unique value. It is home to two endemic plant species, the Statia 
morning glory (Ipomoea sphenophylla) and the Statia milkweed 
(Gonolobus aloiensis) (Axelrod, 2017), and the critically endangered 
Lesser Antillean Iguana (Iguana delicatissima). The invasion by Coralita 
and subsequent habitat alteration may impact organisms at higher 
trophic levels (Jesse et al. 2020), including negative impacts on the 
iguana population (Debrot et al. 2014; Powell et al. 2005). More gen-
erally, due to Coralita's capacity to overgrow and out-compete other 
vegetation, including shrubs and trees, it has been characterized as 
the most problematic invasive plant for several Caribbean islands (van 
der Burg et al. 2012). The presented approach provides a promising 
avenue toward monitoring the extent of invasive species distribu-
tions, and inferring the ecology of their spread from existing patches, 
to be tested in future studies.
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