
Remote Sensing of Environment 255 (2021) 112270

Available online 28 January 2021
0034-4257/© 2020 Elsevier Inc. All rights reserved.

Resilience of vegetation to drought: Studying the effect of grazing in a 
Mediterranean rangeland using satellite time series 

J. von Keyserlingk a,b,c,*,1, M. de Hoop d,1, A.G. Mayor d, S.C. Dekker d, M. Rietkerk d, 
S. Foerster c 

a University of Potsdam, Institute of Environmental Sciences and Geography, Karl-Liebknecht-Str. 24-25, D-14476 Potsdam, Germany 
b TU Berlin, Ecohydrology and Landscape Evaluation, Institute of Ecology, Ernst-Reuter-Platz 1, D-10587 Berlin, Germany 
c GFZ German Research Centre for Geosciences, Section Remote Sensing and Geoinformatics, Telegrafenberg, D-14473 Potsdam, Germany 
d Utrecht University, Environmental Sciences, Copernicus Institute of Sustainable Development, Postbus 80.115, 3508TC Utrecht, the Netherlands   

A R T I C L E  I N F O   

Keywords: 
Landsat 
Time series 
Change detection 
Resilience 
Resistance 
Recovery 
Grazing 
Drought 

A B S T R A C T   

Understanding how resilient rangelands are to climatic disturbances such as drought is of major importance to 
land managers. The resilience of ecosystems can be reduced by livestock grazing and by environmental condi-
tions. Most studies quantifying resilience are based on model simulations. However, natural time series from 
satellite data offer the possibility to infer aspects of resilience from real systems. The objective of this study was 
to investigate two aspects of ecological resilience, namely resistance to climate variability and recovery from 
drought, by applying a change detection method (Breaks For Additive Seasonal and Trend; BFAST) spatially on a 
28-year Landsat NDVI time series in a dry rangeland in southern Cyprus. First, we used the number of break-
points fitted by the BFAST model as an inverted proxy for long-term vegetation resistance to climate variability 
(the ability to withstand change during a disturbance reduces the likelihood to trigger a breakpoint in the time 
series). Second, we used the linear slope of the BFAST model after a known drought as a proxy of the recovery 
rate of the vegetation. This information was then used to analyse the spatial distribution of the total number of 
breakpoints and of the NDVI recovery trend in relation to grazing and environmental properties. Our results 
show that high NDVI and a northern orientation (i.e. favourable environmental conditions) were associated with 
a highly resilient system, due to high resistance to climate variability and fast recovery after drought. Inter-
mediate conditions were associated with low resistance. Unfavourable conditions and high grazing intensities 
were associated with an unresponsive ecosystem state characterised by high resistance and slow recovery after a 
drought event. Low grazing intensities positively affected the NDVI recovery trend, but did not improve resis-
tance. On northern slopes, terrain slope had a positive effect on the NDVI recovery trend, while on southern 
slopes it had a negative effect. Our satellite-driven approach has a strong potential for resilience monitoring, 
because it can be applied on broad spatial and temporal scales in areas with low availability of field data. 
Moreover, it allows to jointly extract two important components of resilience: resistance and recovery rate.   

1. Introduction 

In southern Europe, rangelands are strained by an erratic Mediter-
ranean climate with frequent droughts and intensive land use practices, 
such as livestock grazing. This combination of anthropogenic and cli-
matic stressors makes them particularly susceptible to land degradation. 
In the last decades, there has been an increase in temperature 
throughout Europe as well as decreasing precipitation in southern 

Europe (IPCC, 2014). A marked increase in extreme climate events, such 
as heavy precipitation events and droughts is predicted for Europe due 
to climate change (IPCC, 2014). How resilient rangelands are to climatic 
anomalies and how this is affected by land use, is therefore of major 
importance to land managers. We developed an innovative satellite- 
driven approach to spatially quantify two aspects of ecological resil-
ience: (i) resistance to climate variability and (ii) recovery from drought, 
with different pressures due to grazing. 
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Ecological resilience has been described by Holling (1973, 1996) as a 
system’s ability to absorb perturbations and persist without being flip-
ped into another regime of behaviour, also termed “basin of attraction”. 
In resilience theory, this concept has often been characterised by use of a 
“ball-in-a-cup” model (see e.g. Fig. 2 in Scheffer et al., 2012 for a 
graphical representation), where valleys represent basins of attraction 
and the ball represents the system state (Dakos et al., 2014; Holling, 
1973; Peterson et al., 1998; Scheffer et al., 2001, 2012, 2015; van Nes 
and Scheffer, 2007). In this picture, resilience is theoretically depicted as 
the size of the basins of attraction. However, ecological resilience is hard 
to measure directly (van Nes and Scheffer, 2007). As a good proxy for 
the size of the basin of attraction the rate of recovery after small per-
turbations has been proposed (Scheffer et al., 2015; van Nes and 
Scheffer, 2007). The recovery rate becomes slower when ecological 
resilience is reduced. This relationship has been shown to hold true also 
for larger experimental or natural perturbations (van de Leemput et al., 
2018; van Nes and Scheffer, 2007). In this work, we use the recovery rate 
of vegetation after a drought to approximate the ecological resilience of 
the system to drought. To complement recovery rate as a measure of 
resilience, we additionally assess the long-term resistance of the 
ecosystem to climate variability over 28 years. This was motivated by 
recent studies that emphasize the need to jointly consider recovery and 
resistance when measuring the resilience of ecosystems to disturbance 
(Hodgson et al., 2015; Ingrisch and Bahn, 2018; Nimmo et al., 2015). We 
base our measure of resistance on Hodgson et al. (2015), where resis-
tance is described as the “instantaneous impact of exogenous distur-
bances on the system state”. In our study, we consider climate variability 
as an external process affecting vegetation dynamics. 

Most studies attempting a quantification of ecological resilience have 
been based on simulated data. Yet, with increasing availability of 
remotely sensed data, satellite-driven approaches have been established 
(see e.g. Washington-Allen et al., 2008; Frazier et al., 2013; De Keers-
maecker et al., 2015; Schwalm et al., 2017). In this study, we use 
remotely sensed time series of the Normalized Difference Vegetation 
Index (NDVI), which provide an excellent basis to study long-term 
vegetation dynamics as well as vegetation responses to disturbances 
such as drought. Satellite data have the advantage of being consistently 
collected over time at a global scale. This consistency in measurement 
makes it possible to monitor vegetation dynamics at a high cadence, 
instead of reverting to temporal snapshots, e.g. before and after a 
disturbance. According to Kennedy et al. (2014) a temporal consistency 
of observation is critical for understanding ecosystem dynamics. The 
Landsat archive contains the longest record of global-scale medium 
spatial resolution earth observation data (Hansen and Loveland, 2012). 
The Landsat 5 TM, 7 ETM+ and 8 OLI sensors have a repeat cycle of 16 
days each, while satellite orbits are offset to allow 8-day repeat coverage 
of any Landsat scene when two Landsat sensors are flying concurrently. 
Landsat TM, ETM+ and OLI data are collected at a spatial resolution of 
30 m in the VIS, NIR and SWIR spectral bands. Their spatial scale make 
Landsat data especially suitable for addressing ecological questions 
(Kennedy et al., 2014) and allows for the detection of small changes 
(Zhu and Woodcock, 2014). However, their relatively low temporal 
frequency is a drawback, especially since the number of pixels available 
for the analysis of vegetation dynamics is reduced by cloud coverage. 
Furthermore, there is large variation in the regional annual coverage of 
Landsat 5 data due to technical problems with downlinking acquired 
data to the ground stations (Goward et al., 2006). In most places of the 
world outside the United States this large variation yields a far lower 
frequency of available images, with several long data gaps, especially in 
the 80s and 90s. After the launch of Landsat 7 ETM+ in 1999 the number 
of acquisitions increased with the introduction of a global acquisition 
plan. Accordingly, some international ground stations switched their 
reception from Landsat 5 TM to Landsat 7 ETM+. However, several of 
them changed their operations again to Landsat 5 TM after the failure of 
the Landsat 7 ETM+ scan line corrector system in May 2003 (Kovalskyy 
and Roy, 2013). 

The NDVI is a measure of the photosynthetic activity of plants. Since 
the earliest reported use of the NDVI in the Great Plains study by Rouse 
et al. (1973) it has already been widely applied to study vegetation 
dynamics, monitor habitat degradation, as well as effects of disturbances 
such as drought (Pettorelli et al., 2005). While the NDVI is known to be 
affected by soil background, Weiss et al. (2004) demonstrated its 
effectiveness for capturing the intra- and inter-annual variation in 
dryland vegetation. Gaitán et al. (2013) found the NDVI to be the best 
predictor of ecosystem attributes, such as vegetation cover, compared to 
several other vegetation indices in a dryland. Furthermore, NDVI vari-
ability was shown to agree with precipitation variability (Gaitán et al., 
2013; Helman et al., 2014), and to correlate with drought in large areas 
of the world (Vicente-Serrano et al., 2013). Therefore, in this study we 
use the NDVI as a well-established vegetation index to assess the 
response of vegetation to climate variability. 

Satellite time series offer the possibility to infer aspects of resilience 
from real world systems. van Nes and Scheffer (2007) suggest estimating 
recovery rates after stochastic disturbances in natural time series as an 
alternative to experimental perturbations. However, especially in sea-
sonal, climate-driven time series of vegetation with large natural vari-
ation, it is difficult to distinguish between the intrinsic seasonal 
variation and a disturbance (e.g. see extensive review on change in 
grasslands in Henebry, 2019). To this effect, several change detection 
methods have been developed, which are able to detect abrupt changes 
(henceforth “breakpoints”) in time series, while accounting for season-
ality and trends present in the data (Ben Abbes et al., 2018). One of these 
methods is the Breaks For Additive Seasonal and Trend (BFAST) method 
(Verbesselt et al., 2012, 2010a, 2010b). BFAST type approaches have 
been validated and tested for detecting and monitoring abrupt vegeta-
tion changes in forested landscapes (DeVries et al., 2015b; Dutrieux 
et al., 2015; Lambert et al., 2013; Verbesselt et al., 2010a, 2012), as well 
as in drylands (Browning et al., 2017; Watts and Laffan, 2014), and were 
found successful in detecting drought induced trend changes (Huang 
et al., 2014; Verbesselt et al., 2012). Even though the original BFAST 
method was developed for regularly spaced time series, adapted ver-
sions of the algorithm that are able to deal with missing data have been 
applied in several studies (de Jong et al., 2013; DeVries et al., 2016; 
Verbesselt et al., 2012). In this study, we applied an adapted version of 
BFAST, based on DeVries et al. (2016), to a dense long-term Landsat 
time series of the NDVI, making use of all available data. 

Intensive livestock grazing has been shown to reduce the resilience of 
dryland ecosystems (Holling, 1996; Ruppert et al., 2015). For example, 
rangelands in savannas of southern Africa used for cattle grazing lose 
species diversity in favour of grazing resistant species, which are often 
less resilient to drought; this loss in diversity increases the likelihood for 
the system to flip into another system state dominated by woody shrubs 
(Dougill et al., 1999; Holling, 1996). Overgrazing reduces vegetation 
cover (Kawamura et al., 2005) and trampling further damages the soil, 
which strongly enhances the ecosystems susceptibility to soil erosion 
(Zhou et al., 2010). Southern-oriented slopes (in the northern hemi-
sphere), as well as steep slopes, are particularly vulnerable to soil 
erosion processes. A southern orientation means a maximum exposure to 
solar radiation, which leads to particularly high evapotranspiration 
rates. On steep slopes, the time for water infiltration into the soil is low, 
yielding high water runoff rates. In both cases, the conditions are 
unfavourable for vegetation. The combined effect of a loss of vegetation 
cover and soil erosion reduces the capacity of the ecosystem to resist and 
recover from drought (Mayor et al., 2013; Zhou et al., 2010). 

In this study, we aimed to investigate two aspects of ecological 
resilience: (i) resistance to climate variability and (ii) recovery from 
drought by applying a change detection method (BFAST) spatially on a 
28-year Landsat NDVI time series in a dry rangeland in southern Cyprus. 
As a relative inverted measure of ecosystem resistance to climate vari-
ability, we use the total number of breakpoints fitted by BFAST during 
the study period (1984–2011). This choice was motivated by studies that 
validated and tested BFAST type approaches, showing that breakpoints 
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can be used to find drought induced trend changes (Huang et al., 2014; 
Verbesselt et al., 2012). Using the number of breakpoints as an inverted 
measure of ecosystem resistance is an innovative approach which, to our 
knowledge, has not been used in previous studies. As a proxy for the 
recovery rate of the vegetation after a drought, we used the modelled 
linear slope of the NDVI (henceforth “NDVI recovery trend”), succeeding 
breakpoints that occurred during a prolonged dry period (hydrological 
years 2005 to 2008 from 01.10.2004 until 30.09.2008). Our research 
objectives were: 1) to quantify and map ecosystem resistance to climate 
variability and the recovery rate after a drought (total number of 
breakpoints, NDVI recovery trend) in our study area, and 2) to analyse 
the spatial distributions of our measures for resistance and recovery in 
relation to grazing intensity, mean NDVI, terrain slope and aspect. 

In our study area, we assumed that climatic forces were the main 
driver of breakpoints, because besides grazing no other large-scale 
temporal causes of changes in vegetation dynamics were known by 
local land users. We expected that the likelihood of individual pixels to 
experience a breakpoint (i.e. our inverse measure of resistance) and the 
recovery after a drought would be affected by the spatial variation of 
grazing intensity and environmental factors. We assumed that a healthy 
ecosystem has a higher resilience (being resistant and recovering fast) to 
climate variability than a degraded one. Regarding our proxy for re-
covery rate after drought, we expected a negative relationship with all 
factors that promote degradation in our study area, namely a high 
grazing intensity, a southern orientation and steep slopes. The same 
holds true for the mean NDVI, which can serve as a relative inverted 
proxy for degradation related to a loss of vegetation cover. When looking 
at the spatial density distribution of resistance to climate variability, we 
expected a bimodal shape with regard to the degradation state of the 
ecosystem (Fig. 1): pixels with few breakpoints (i.e. high resistance) 
should be overrepresented in areas that are likely to be in a healthy 
ecosystem state (phase C in Fig. 1; associated with low grazing, very 
high NDVI, shallow, northern slopes), while pixels with many break-
points (i.e. low resistance) should be overrepresented in areas that a 
likely to be in transition to a degraded state (phase B in Fig. 1). However, 
once the ecosystem has reached a strongly degraded state (associated 
with very high grazing intensity, very low NDVI, steep, southern slopes), 
or in areas with rocky surfaces, it cannot react to climate variability any 
longer (phase A in Fig. 1). In such an unresponsive ecosystem state, we 
also expected an overrepresentation of pixels with no or one breakpoints 

(i.e. high resistance); yet in this case high resistance would not be an 
indication of ecosystem health, and would be expected to occur in 
combination with a low recovery rate. 

Our hypothesis about resistance and recovery with regard to the 
degradation state of the ecosystem is supported by López et al. (2013). 
They suggested that a healthy ecosystem state would be associated with 
high resistance in combination with high recovery potential; beyond a 
critical threshold the ecosystem would become unstable, which would 
be associated with a reduction in resistance and recovery potential; in a 
highly degraded state the ecosystem would reach an indifferent stable 
dynamic equilibrium, which would be associated with enhanced resis-
tance to a disturbance factor, but with loss of recovery potential (López 
et al., 2013). Our hypothesis is further in line with the two steady state 
model by Noy-Meir (1975), where there is a stable/resistant state with 
regard to grazing at high plant biomass as well as at low plant biomass 
(in the later phase, most of the soil is bare and only less palatable plant 
species are present). Between those two stable/resistant states is a 
“turning point” where the ecosystem has low resistance. 

2. Materials and methods 

2.1. Study area 

The study area, Randi Forest, is located in southern Cyprus, near 
Pissouri town (34◦40′20”N 32◦38′50”O). The area was originally a pine 
woodland, which was cut around 1930 (pers. comm. local farmer). Since 
then, the area is covered by an open shrubland with mosaics of vege-
tation patches including some grasses. It is grazed mostly by goats, but 
also some sheep. There is a wide diversity of shrubs both palatable (e.g. 
Sarcopoterium spinosum) and unpalatable (e.g. Urginea maritima). Woody 
vegetation in the area consists mainly of small bonsai-type shrubs. This 
shape is caused by the goats that eat the outer palatable sprouts while 
avoiding the thorny inner parts. Palatable perennial herbs mainly grow 
within thorny shrubs, thereby being protected from grazing. The di-
versity of annuals is large, including small grasses, legumes and forbs. 
The area is not owned by the shepherds, but they are commons open to 
all. Since the 1970s grazing pressure has strongly increased, due to a 
growing tourism development and coastal urbanization in the Pissouri 
district, which reduced the total area available for livestock grazing. 
This development has led to strong overgrazing in the Randi Forest 

Fig. 1. Graphical hypothesis of resistance related to ecosystem state. The spatial density distribution of Landsat pixels representing high resistance were expected to 
show a bimodal pattern with regard to ecosystem state (blue line). Maxima were expected at a strongly degraded (phase A) as well as at a very healthy (phase C) 
ecosystem state. Pixels representing areas with low resistance (red line) were expected to be concentrated at intermediate ranges of ecosystem health, associated with 
areas in transition between states (phase B). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of 
this article.) 
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(Daliakopoulos and Tsanis, 2014). 
The climate is Mediterranean: summers are dry and hot, while 

winters are relatively wet (see Fig. S1 for monthly rainfall and temper-
ature). The average annual rainfall in our study period 
(1.10.1983–30.09.2012) was 396 mm. Mean daily maximum tempera-
ture varies between 30 ◦C (July and August) and 17 ◦C (January and 
February). In the last decades there has been an increasing trend in 
aridity due to rising temperatures and a higher frequency of years with 
low precipitation and drought (Republic of Cyprus: Meteorological 
Service, 2019). The soils are derived from marls and are shallow Calcaric 
Regosols (IUSS Working Group WRB, 2015) with a light colour and high 
calcium carbonate content (60–70%). The area is moderately hilly with 
an elevation between 65 and 281 m above sea level. Most hillslopes 
range between 10◦ and 20◦ and are predominantly facing south-west 
(based on SRTM v3.0 digital elevation model). 

Based on interviews with local farmers, we selected our area of in-
terest. In our study area, there used to be seven farms (Fig. 2). According 
to the farmers, the goats usually walk a maximum distance of 800 m 
away from the farms. Therefore, we included everything within a 1000 
m distance from the 7 farms (using an extra buffer of 200 m). Between 
2000 and 2006, a highway was built. To eliminate disturbances by this 
road, we excluded the area at the southern side of the highway that 
blocked cattle from accessing this area. Further, we drew a circle with a 
radius of 800 m around a farm north of our study area. This region was 
excluded to eliminate the influence of this farm. This selection process 
resulted in our area of interest (Fig. 2), covering 3.1 km2 (3439 Landsat 
pixels). 

2.2. Satellite data acquisition and data pre-processing 

This study uses all available Landsat 5 and 7 data available for the 
time period 1984–2011. The spectral response functions of the bands 
required for the calculation of the NDVI of the TM and ETM+ sensors 

aboard Landsat 5 and 7 are almost identical. This allows inter-sensor 
comparability of the information collected by these bands, which is 
essential when aiming at time series analysis that is by nature highly 
sensitive to external error sources. Landsat TM, ETM+ data are collected 
decentralized via several ground stations around the globe. Both the 
archives from the U.S Geological Survey (USGS) and the European Space 
Agency (ESA) have acquired a comprehensive collection of Landsat 
scenes, which can be downloaded for free. However, the data collections 
in neither archive are complete, and at the time of our study, at WRS-II 
path/row 176/36, most scenes from the 80s were only available in the 
ESA archive. We therefore downloaded all available level-1 ground- 
terrain-corrected TM and ETM+ (excluding SLC-off) Landsat imagery 
(542 scenes in total) from the ESA archive for the time period 
1984–2011. 

The collected data were atmospherically corrected to surface 
reflectance using the Landsat Ecosystem Disturbance Adaptive Pro-
cessing System (LEDAPS, version 2.7.0) (Masek et al., 2006; Schmidt 
et al., 2013). All scenes were included independent of total cloud cover, 
but subsequently pixels affected by clouds, cloud shadow, snow and 
missing data were masked out on pixel level based on the “QA” layers 
produced by LEDAPS. Hence, the total number of valid observations 
used for our analysis varies slightly within our study area (Fig. S2). Since 
we found that there were geospatial shifts in the sub-pixel range present 
in the data that would hamper multi-temporal analyses, all scenes were 
geospatially co-registered to a master scene using the software AROSICS 
(Scheffler et al., 2017). For details about the coregistration with ARO-
SICS see S2. Finally, several erroneous scenes were sorted out, e.g. 
scenes where the co-registration failed due to high cloud cover, or scenes 
that were shifted over the sub-pixel range. In total, 476 Landsat scenes 
(414 TM and 62 ETM+ scenes) were included in our analysis (Fig. S3). 
On average we have 17 (± 6.3 SD) scenes per year. There are no 
extensive data gaps in the time series but temporal image density varies 
(Fig. 5F). In 1999 to 2002 image density is higher than average, while in 

Fig. 2. Area of interest (3.1 km2, 3439 Landsat pixels). Red stars show all 7 farms in the area of interest. Blue triangles represent farms outside the area of interest. 
Grey circles of 1000 m radius are drawn around the farms of interest to show the grazing area related to those farms. Final area for the grazing study is outlined in 
red. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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1990 and 2003 very few images were available. All datasets were pro-
jected to UTM (Universal Transverse Mercator) coordinate system zone 
36 N (WGS 1984). 

2.3. Change detection in NDVI time series and extraction of proxies for 
resistance and recovery 

We chose the NDVI as a climate driven indicator of ecosystem dy-
namics. Regarding the effect of the choice of vegetation index on BFAST 
performance, a study by Watts and Laffan (2013), which used NDVI and 
the Enhanced Vegetation Index (EVI) in a BFAST time-series analysis in a 
semi-arid environment, concluded that there was no clear advantage in 
using one particular index. Here, NDVI is used as a proxy for physical 
vegetation properties like fraction cover or biomass. NDVI is similarly 
frequently used in other studies in a range of environments including 
drylands (Vicente-Serrano et al., 2013; Watts and Laffan, 2013) because 
of its strong relation to structural and functional characteristics of 
vegetation (Gaitán et al., 2013; Simoniello et al., 2008) and its simplicity 
in use. 

The NDVI was calculated for each scene, resulting in an irregular 
time series for each pixel of our study area. Additive season-trend 
models were fitted to our data as described in detail in Verbesselt 
et al. (2010b), using the R package “bfast” (Verbesselt et al., 2010a, 
2010b, 2012), where the data are decomposed into a linear trend and a 
harmonic, seasonal part. Since our time series is irregularly spaced, we 
used a frequency of 365. To describe the seasonality in our data, we used 
three harmonic terms. Using a higher order resulted in over-fitting, 
while a lower order did not adequately capture the intra-annual varia-
tion in our data. 

To detect breakpoints in the time series, we followed the “break-
point” approach originally described in Bai and Perron (1998) and 
implemented in the R package “strucchange” by Zeileis et al. (2003, 
2002). First, an ordinary least squares (OLS) residuals-based Moving 
Sum (MOSUM) test was performed to test for a deviation from structural 
stability. If the MOSUM test was significant (p-value <0.05), breakpoints 
were fitted. The optimal number of breakpoints was determined by 
minimizing the Bayesian Information Criterion (BIC) and the position of 
the breakpoints (breakdates and confidence intervals) were chosen by 
globally minimizing the residual sum of squares. The parameter “h”, 
which sets the minimum number of observations required between two 
breakpoints, was set to 0.15, based on recommendations in Bai and 
Perron (1998) as well as Watts and Laffan (2013); the latter found an 
advantage of using h values of 0.2 or smaller. With our 476 scenes, 
setting “h” to 0.15 results in a minimum of 71 scenes (approximately 3.4 
years, depending on data availability and cloud conditions) between two 
breakpoints. The total number of breakpoints and their time of occur-
rence for each pixel was extracted and saved for further analysis. 

To study how the NDVI recovery trend after a drought was affected 
by grazing and topographic properties, we selected pixels that experi-
enced a drought-associated breakpoint in the hydrological years 2005 to 
2008 (01.10.2004–30.09.2008) on a pixel by pixel basis. During this 
time period, a majority (77%) of the pixels in the study area experienced 
at least one breakpoint (Fig. 5D). This widespread occurrence of 
breakpoints throughout our study area cannot be explained by small- 
scale disturbances or local land use change, nor by temporal variation 
in data availability. A denser time series increases the likelihood to 
detect a breakpoint, yet it is not above average during the time period in 
question (Fig. 5F). Climatic drivers, however, affected the area as a 
whole. The hydrological years 2005 to 2008 (01.10.2004–30.09.2008) 
were relatively dry, including two major droughts (2006 and 2008). This 
dry period was preceded by three successive wet years (from 2002 until 
2004) (Fig. 5E). In this study we therefore assume that the widespread 
occurrence of breakpoints throughout our study area between 2005 and 
2008 was driven by drought. To make this assumption more robust, we 
calculated the relative change in the mean NDVI of the three years 
before and after the breakpoint. Only if the NDVI dropped by at least 

10% the pixels were included in further analysis (81% of all breakpoint 
pixels). In the rare case that more than one breakpoint was found be-
tween 2005 and 2008 the first one was selected for further analysis. 
Additive season-trend models (Verbesselt et al., 2010b) were fitted to 
the segment after the breakpoint, using the robust regression approach 
described in DeVries et al. (2016) that is particularly robust to outliers. 
The slope of the linear trend component was extracted from the model 
parameters and used as a measure for the recovery rate of the vegetation 
after a drought (“NDVI recovery trend”). 

Finally, maps of the number of breakpoints and the NDVI recovery 
trend, together with the location and size of the farms in 1987 and 
terrain contour lines, were produced for our study area. All satellite data 
processing steps are summarized in Fig. 3. The code for the adapted 
BFAST analysis and for extraction of the number of breakpoints and 
NDVI recovery trend can be found at “https://github.com/jennifervk/ 
resInd”. 

The BFAST analysis, together with two high resolution satellite im-
ages taken in August 2003 and 2009 (before and after drought), is shown 
for three exemplary Landsat pixels (A, B, C) located in the south of our 
study area (Fig. 4 & Fig. 5A-C). The pixels show varying dynamics: pixel 
A is located on a southeast-facing slope with few shrubs, little grass 
cover and visible rill erosion (Fig. 4). It has three breakpoints (i.e. low 
resistance), and a low NDVI recovery trend after the drought breakpoint 
in 2005 (Fig. 5A). This combination indicates low ecosystem resilience. 
Compared to pixel A, pixel B has higher vegetation cover that also 
contains an herbaceous layer (Fig. 4). It has only two breakpoints and 
shows a steeper recovery trend after the drought breakpoint in 2006 
(Fig. 5B). This combination indicates higher ecosystem resilience (i.e. 
higher resistance and faster recovery) compared to pixel A. Pixel C 
mostly contains bare soil (Fig. 4) and has no breakpoints (i.e. high 
resistance) (Fig. 5C). This pixel represents the almost barren, unre-
sponsive state, for which we expected no or one breakpoint. 

2.4. Topographic properties and grazing 

Both aspect and terrain slope can affect the vegetation resilience to 
climate variability. We obtained these topographic properties from the 
digital elevation model provided by the Shuttle Radar Topography 
Mission (SRTM v3.0) at a spatial resolution of 1 arc-second. To align the 
elevation cells with the Landsat raster, a bilinear resampling was per-
formed in ArcGIS 10.6.1. Thereafter, aspect (in degrees) and terrain 
slope (in %) were obtained with the ArcGIS Spatial Analyst Toolbox. 

Grazing by goats affects the vegetation dynamics both directly, by 
reducing vegetation cover, and indirectly, by trampling. In this paper, 
we look at the combined effects without differentiating between direct 
and indirect aspects. Local farmers were interviewed to estimate the 
grazing intensity in our study area. The farmers explained that the goats 
can walk freely throughout the study area during several hours of the 
day throughout the whole year. The farmers occasionally give additional 
fodder, mainly in summer, due to sparse palatable vegetation in this 
season. The amount of fodder given varies a lot between year and sea-
son. The animals prefer to stay close to the farm, so our estimated 
grazing intensity decreases with the distance to the farm. The farmers 
also explained that when the animals want to reach an area up- or 
downhill, they do not walk straight uphill. Instead, they have created 
walking paths along the hills, thereby increasing the distance to walk 
uphill. We received information about the number of animals for each of 
the seven farms around 1987 and 2007, respectively. 

This information from the local farmers was used to estimate the 
relative grazing intensity (livestock/m) for each 30 × 30 m pixel (x,y) 
with the path distance tool in ArcGIS. As input variables, we used the 
number of animals per farm (i) and the distance between the pixel and 
the farm: 

Grazing intensityx,y =
∑n

i=1

animalsi

distancei(x,y)
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This calculation is in agreement with other studies (e.g. Manthey and 
Peper, 2010), which show that grazing can be estimated by the inverse 
distance from a hotspot, which is in our case the farm. A vertical friction 
factor (symmetric inverse linear with the default slope of − 1/45 in 
ArcGIS) was added to the distance to represent the extra ‘friction’ for the 
goats to walk up- or downhill as explained by the local farmers. The 
distribution of estimated grazing intensity is strongly right skewed. 
Therefore, we removed all grazing values above the 97.5% quantile. 
These calculations resulted in estimations of the grazing intensities for 
both 1987 and 2007 (S4). Our estimates of 0–9 livestock/m are in the 
same range as found in another semi-arid rangeland by Manthey and 
Peper (2010). For the statistical analysis of the NDVI recovery trend, we 
have log-transformed the grazing intensities with log (grazing intensity – 
1). This transformation gave the best approximation to a normal 
distribution. 

2.5. Data analysis 

To study the relationship between grazing intensity, terrain slope, 
aspect, mean NDVI and the number of breakpoints spatially on a pixel by 
pixel basis, we sorted all pixels into breakpoint categories from zero to 
four. Pixels with five breakpoints were excluded, because only two 
pixels were in this category. The mean NDVI was calculated based on all 
available observations between 1984 and 2011 for each individual pixel. 

We calculated the spatial Kernel probability density distributions of 
each breakpoint category over grazing intensity, mean NDVI, terrain 
slope and deviation from south (i.e. deviation from maximum solar ra-
diation), and compared them to the overall distributions of these vari-
ables in our study area. We assumed that a random sample of pixels 
should not deviate considerably from the overall distribution of the 
studied variable; if a distinct deviation can be observed, it must be 
caused by some mechanism related to that variable. A two-sample 
Kolmogorov-Smirnov test (henceforth “KS-test”) was performed to test 
against the null hypothesis that the breakpoint categories were drawn 
from the same underlying continuous distributions as the overall dis-
tributions of the respective variables in our study area, using the R 
package “stats” (R Core Team, 2017) at a significance level of α = 0.01. 
To visually highlight the differences to the overall distributions of 
grazing intensity, mean NDVI, terrain slope and aspect, we divided the 
density of each breakpoint category (estimated at 1000 equally spaced 

points between the min. and max. data ranges), by the overall density of 
the studied variables in our study area, keeping the bandwidth for 
estimating the smoothing kernels constant. We thus created a “Relative 
Density Breakpoint Index (RDBI)”: 

RDBIi= DBi
DT 

with i = {0,…,4} 
DB stands for the density of the respective breakpoint category (i) 

and DT for the overall density of the studied variables in our study area. 
A value of 1 signifies no difference to the overall distribution of the 
studied variable; a value larger than 1 signifies an overrepresentation of 
the breakpoint category at this data range and a value below 1 an 
underrepresentation. 

To study the relationship between the NDVI recovery trend, grazing, 
topographic properties and the mean NDVI (calculated for the three 
years before the breakpoint), we applied generalized linear regression 
analysis with the “gls” function in the “nlme” package in R (Pinheiro 
et al., 2018). Scaled factors were used to obtain the β-values. Spatial 
autocorrelation is present in the data. We tested six autocorrelation 
structures within the “gls” function, namely exponential, gaussian, 
spherical, linear and rational quadratic. In all cases, the rational 
quadratic models had the lowest AIC values and were therefore used for 
our analysis. 

3. Results 

3.1. Spatial distribution of breakpoint categories and NDVI recovery trend 

Between 1984 and 2011, pixels experienced between zero and five 
breakpoints in our study area (3439 pixels in total). 41.6% pixels had 
two breakpoints, followed by one breakpoint (29.1%), three breakpoints 
(18.6%), zero breakpoints (6.4%), four breakpoints (4.2%) and five 
breakpoints (0.1%). The spatial distribution of the number of break-
points shows a large variability, with some breakpoint classes appearing 
more clustered (0, 4, 5), and others (1,2) more evenly distributed in the 
whole area (Fig. 6A). 

In the relatively dry hydrological years between 2005 and 2008, 77% 
of the pixels in the study area experienced at least one breakpoint 
(Fig. 5D). Of those breakpoints, 81% were associated with a relative 
decrease in NDVI of at least 10%. Following this decrease in NDVI, 
nearly all pixels (99.7% of the pixels experiencing a decrease in NDVI of 
at least 10%) showed a positive NDVI recovery trend, although there 

Fig. 3. Scheme of the satellite data processing steps.  
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was a large spatial variability in the magnitude of the NDVI recovery 
trend (Fig. 6B). 

3.2. Analysis of breakpoint category distributions in relation to spatial 
patterns of topographic properties, mean NDVI and grazing intensity 

The 1- and 2-breakpoint categories dominate over all data ranges of 
grazing intensity, mean NDVI terrain slope and deviation from south (i. 
e. deviation from maximum solar radiation) (Fig. 7A-D). The relative 
density distributions of the individual breakpoint categories discernibly 
differ in shape (Fig. 7E-H): while some follow the shape of the overall 
distributions of the studied variables, others deviate clearly from the 
latter, indicating that their behaviour in relation to that variable is not 
random. The distribution of the 2-breakpoint category was not affected 
significantly by any of the variables, which fits to the visual impression 
that this category appears randomly spread in space (Fig. 6A). 

For grazing intensity, the distributions of the 0-, 3- and 4-breakpoint 
categories differed significantly from the overall distribution in our 
study area (KS test, α = 0.01; Table S5). When interpreting the results of 
different grazing levels, one has to note that the distribution of grazing is 
strongly right skewed (Fig. 7A). Thus, we used the 25% and 75% 
quantile to differentiate between low (<1.8), medium (1.8–2.8) and 
high (>2.8) grazing intensities. Relative to the overall distribution of 

grazing intensity (Fig. 7E&I) the 0-breakpoint category is particularly 
overrepresented at high to very high grazing levels, corresponding 
mostly to areas in the vicinity to farms. The 3-breakpoint category is 
slightly overrepresented at high grazing levels and the 4-breakpoint 
category is overrepresented at different ranges from medium to high 
grazing levels. 

For mean NDVI, the distributions of the 0-, 1- and 3-breakpoint 
categories differed significantly from the overall distribution in our 
study area (KS test, α = 0.01; Table S5). Relative to the overall distri-
bution of mean NDVI (Fig. 7F&J) the 0-breakpoint category is strongly 
overrepresented at low NDVI levels (< 0.2), the 1-breakpoint category at 
extremely low (< 0.16) as well as extremely high (> 0.27) NDVI values, 
and the 3-breakpoint category at medium NDVI values. 

For the topographic properties, only aspect showed significant re-
sults. The distributions of the 1- and 3-breakpoint categories differed 
significantly from the overall distribution of aspect (measured as devi-
ation from south) in our study area (KS test, α = 0.01; Table S5). The 1- 
breakpoint category was overrepresented on northern slopes, the 3- 
breakpoint category on western slopes. 

Fig. 4. Example 30 × 30 m Landsat pixels A, B & C. Two Quickbird images (panchromatic, spatial resolution: 0.6 m) taken on 27.08.2003 and 04.08.2009 (before 
and after drought). The BFAST analyses for pixels A, B & C are shown in Fig. 5A-C. 
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3.3. The effect of grazing and topographic properties on the NDVI 
recovery trend 

To study what affects the recovery after the drought between the 
hydrological years 2005 and 2008, we used linear regression models. 
The simple linear regression shows that there is a clear positive relation 
between the mean NDVI three years before the breakpoint and the NDVI 

recovery trend after the breakpoint (Fig. 8A). This relationship indicates 
that ‘greener’ pixels recover faster. However, no significant relationship 
(α = 0.05) was found between terrain slope and the NDVI recovery trend 
(Fig. 8B). A significant relationship has been found between aspect and 
the NDVI recovery trend (Fig. 8C). Namely, southern pixels have a low 
NDVI recovery trend, while the recovery trend significantly increases 
when the orientation turns towards north (Fig. 8C). This relationship 

Fig. 5. BFAST results for example pixels A, B, C. The 
two arrows indicate the time point of the Quickbird 
images shown in Fig. 4. Relative frequency of 
breakpoints (D) and rainfall anomaly (μ = 396 mm, 
SD = 92 mm) (E) in the study area for the hydro-
logical years 1984–2012. The red borders around the 
bars in E and F indicate the period of drought (hy-
drological years 2005–2008) that was selected to 
study the NDVI recovery trend after a drought 
breakpoint. (F) Number of available TM and ETM+

(excluding SLC-off scenes) scenes from the ESA 
archive that were included in the analysis. All scenes 
irrespective of cloud cover were included; clouds and 
cloud shadows were masked on pixel level. (For 
interpretation of the references to colour in this 
figure legend, the reader is referred to the web 
version of this article.)   
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Fig. 6. (A) Number of breakpoints fitted by BFAST on pixel basis in the period 1984–2011. Circles depict goat farms with the size of the circle proportional to the 
estimated number of animals in 1987. (B) NDVI recovery trend ( ∆NDVI

day × 10,000) after the 2005–2008 relatively dry hydrological years for pixels that experienced a 
breakpoint in this time period. Results are only shown for pixels that experienced a relative decrease in NDVI of at least 10% using average NDVI of the three years 
before and after the breakpoint. Circles depict goat farms with the size of the circle proportional to the estimated number of animals in 2007. 
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indicates that northern-oriented pixels recover faster. The grazing in-
tensities for 1987 (Fig. 8D) and 2007 (S6B) have a slightly negative 
relationship with the NDVI recovery trend. 

When combining all factors that could explain the NDVI recovery 
trend after the breakpoint in one multiple regression model including 
significant interaction factors (using backward elimination), the re-
lationships have a similar direction and two significant interaction fac-
tors were found (Table 1). The variance inflation factor (VIF) was below 
1.6 among factors, indicating that there is low multicollinearity between 
the explanatory factors. The most significant interaction factor is be-
tween aspect (measured by deviation from south) and terrain slope. 
While the NDVI recovery trend was not significantly related to terrain 
slope when using simple linear regression (Fig. 8B), this relationship 
changes when including aspect (Fig. 9A). The relationship between 
NDVI recovery trend and terrain slope is positive for northern-oriented 
slopes, while it is negative for southern-oriented slopes. Thus, on 
northern slopes, terrain slope has a positive effect on the NDVI recovery 
trend, while on southern slopes it has a negative effect. The second 
interaction factor is between deviation from south and the mean NDVI 
before the breakpoint. In the simple linear regression, there was a sig-
nificant positive relationship between the deviation from south and the 
NDVI recovery trend (Fig. 8C). Yet, when grouping the data based on the 

upper and lower 25% of NDVI values, this positive relationship was only 
significant for the group with the low NDVI data (Fig. 9B). 

4. Discussion 

4.1. Deriving spatial indicators for resistance and recovery using a BFAST 
model 

The first objective of this study was to quantify and map vegetation 
resistance to climate variation and recovery from drought using a dense 
irregular Landsat time series. We used the spatial distribution of the 
number of breakpoints fitted by a BFAST model as an inverse indicator 
for vegetation resistance to climate variation. The NDVI recovery trend 
after a drought breakpoint, derived from the BFAST model, was used as 
an indicator for the vegetation recovery rate. Our results (Fig. 6A) show 
that between 1984 and 2011, zero to five breakpoints occurred on a 
pixel level, with most pixels experiencing two breakpoints. We thus 
considered pixels with zero or one breakpoint to have relatively high 
resistance and pixels with three or more breakpoints to have relatively 
low resistance to natural climatic variation such as droughts. Note that 
in this study resistance is not used as direct measure for ecosystem 
health, but that we did expect high resistance at both ends of the 

Fig. 7. Spatial distributions of breakpoint categories over grazing intensity 1987 (livestock/m), mean NDVI 1984–2011, terrain slope and deviation from south. 
Number of pixels in each breakpoint category: 0 breakpoints: 220, 1 breakpoint: 1001, 2 breakpoints: 1432, 3 breakpoints: 639, 4 breakpoints: 145, total: 3439. A-D: 
stacked frequency histograms of breakpoint categories showing absolute numbers of pixels. E-H: kernel density estimations for each breakpoint category separately 
and for all pixels combined (bandwidth = 0.27 (E), 0.01 (F), 2.50 (G), 9.91 (H)). Breakpoint categories for which the KS test indicated a significant deviation (α =
0.01) from the overall distribution are marked with a star. I-L: Relative Density Breakpoint Index (RDBIi): the densities of the breakpoint categories i = {0,…, 4} 
divided by the overall density of grazing intensity, mean NDVI, terrain slope and deviation from south. Note that the RDBI is a relative measure that only applies to 
the distribution of the data within each category in relation to the overall distribution of the studied variable. 
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ecosystem state: in a very healthy, as well as in a degraded, or barren 
unresponsive ecosystem state (Fig. 1). The spatial frequency of pixels 
with relatively high resistance (36%) exceeded those with relatively low 
resistance (23%). During the period of drought in 2005–2008, more than 
¾ of the pixels within our study area showed a breakpoint, and of those 
99.7% displayed a positive NDVI recovery trend afterwards. These re-
sults indicate that overall our study area has a positive recovery po-
tential and that areas with high resistance exceed those with low 

resistance. 

4.2. Vegetation resistance and recovery in relation to grazing, mean NDVI 
and topographic properties 

Our second objective was to study the spatial distributions of resis-
tance to climate variability and recovery from drought in relation to 
controlling factors for vegetation resilience: grazing, mean NDVI, terrain 
slope, aspect. For resistance, the spatial distribution of the breakpoint 
categories related to grazing and topographic properties in our study 
area partially agreed with our expectations. High NDVI and/or a 
northern orientation (i.e. favourable conditions) were associated with 
an overrepresentation of pixels with high resistance (few breakpoints). 
Contrary to our expectations, low grazing intensities did not signifi-
cantly promote resistance. Potentially strongly degraded areas, with 
medium to high grazing and/or low NDVI were associated with an 
overrepresentation of pixels with high resistance. At variance with our 
expectations, a southern orientation was not clearly associated with high 
resistance. Intermediate conditions (intermediate grazing and/or NDVI 

Fig. 8. Simple regression analysis between the NDVI recovery trend ( ∆NDVI
day × 10,000) and A) NDVI before the breakpoint (β = 0.278, p < 0.001) B) terrain slope (β 

= 0.003, p = 0.932) C) aspect measured as deviation from south (β = 0.242, p < 0.001), D) estimated grazing intensity in 1987 (β = − 0.192, p = 0.010). Regression 
lines are shown for significant relations (α = 0.05). Additional regression analyses can be found in S6. 

Table 1 
Multiple regression between NDVI recovery trend and the independent variables 
including significant interactions.  

Independent variable β p-value 

Deviation from south (degrees) 0.295 <0.001 
NDVI before breakpoint 0.211 <0.001 
Log grazing intensity 1987 (livestock/m) − 0.121 0.042 
Terrain slope (%) − 0.005 0.866 
Deviation from south*Terrain slope 0.097 <0.001 
Deviation from south*NDVI before breakpoint − 0.059 0.012  
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values, and/or western/eastern slopes) were associated with an over-
representation of pixels with low resistance (many breakpoints). Over-
all, this spatial pattern of resistance is in accordance with the bimodal 
pattern we expected for resistance related to ecosystem state: potentially 
healthy areas, as well as potentially degraded areas (e.g. with sparse 
vegetation cover) were associated with an overrepresentation of pixels 
with high resistance. 

Regarding recovery from drought, the multiple regression analysis 
showed that the NDVI recovery trend was positively affected by in order 
of importance: a northern orientation, high NDVI values before the 
drought breakpoint and low grazing intensities (Fig. 8; Table 1). These 
results indicate that, as expected, recovery of vegetation prevails in lo-
cations that have more favourable conditions (low stress levels by 
grazing and sunshine) and/or higher NDVI values and agrees with other 
studies: Del Barrio et al. (2010) found that trends to improve vegetation 
are represented most in land in good or unusually good condition, while 
degrading or static trends of vegetation in drylands are found to prevail 
in degraded or unusually degraded land. In other words, the recovery is 
expected to be fastest in areas where vegetation is already in a good 
condition. 

When studying the impact of terrain slope by itself, it was neither 
related to resistance nor to the recovery rate. This was contrary to our 
hypothesis that steep slopes promote the unresponsive ecosystem state 
characterised by high resistance and low recovery rates. The multiple 
regression model revealed that there was a significant interaction be-
tween terrain slope and orientation: on southern-oriented slopes, the 
NDVI recovery trend was indeed negatively related with terrain slope 
(Fig. 9A). This finding implies that the negative effects of southern 
orientation and steep terrain slope were synergetic. It agrees with our 
expectations that southern steep slopes have low recovery rates. How-
ever, for northern-oriented pixels, the relationship between NDVI re-
covery trend and terrain slope is positive. This result indicates that steep 
terrain slope alone does not necessarily yield a permanently degraded 
state, but that amplifying effects by other factors are needed. A second 

interaction factor showed that the positive relationship between the 
NDVI recovery trend and deviation from south was stronger for pixels 
with lower mean NDVI before the drought breakpoint (Fig. 9B). Thus, 
regarding the recovery rate, pixels with low mean NDVI before the 
drought breakpoint benefit more from a northern orientation than pixels 
with high mean NDVI. Pixels with low mean NDVI before the breakpoint 
are associated with scarcer vegetation and thus are more susceptible to 
the negative effects of strong solar radiation. 

In our study, potentially strongly degraded areas (i.e. areas with very 
low NDVI and/or high grazing intensities) displayed low recovery rates 
and were associated with a strong overrepresentation of pixels with high 
resistance. These results conform with our hypothesis that these areas 
have likely reached an unresponsive permanently degraded state with 
no or little vegetation cover. It agrees with findings by De Keersmaecker 
et al. (2015), who showed that drought sensitive vegetation with a high 
fraction of bare soil displayed the strongest vegetation memory effects, 
resulting in particularly low recovery speed after a drought. Further, in a 
study on vegetation cover resilience in Italy (Simoniello et al., 2008), 
Sparsely Vegetated Areas and Pastures (i.e. potentially stressed lands) 
were the only Corine land cover type for which mean positive recovery 
trends did not exceed the negative trends during the period 1992–2003; 
the main clusters with a negative recovery potential were corresponding 
to areas at risk of desertification. Our result that strong grazing intensity 
promoted an unresponsive ecosystem state matches with a study by 
Schneider and Kéfi (2016), who found that grazing increases the bi- 
stability domain of a desert and a vegetated state. The authors argue 
that strong grazing reduces ecosystem resilience, thereby making a 
transition to a stable, permanently degraded desert state more likely. 
That strong grazing not only increases the domain of a desert state, but 
also makes the transition to such a state more likely, might explain why 
we also found a slight overrepresentation of pixels with low resistance at 
high grazing intensities. Since we did not similarly find an over-
representation of pixels with low resistance at low NDVI values, areas 
with low resistance that were associated with high grazing intensities do 

Fig. 9. Simple linear regression for significant interaction factors for the NDVI recovery trend ( ∆NDVI
day × 10,000) after the drought breakpoint. A) Simple linear 

regression between the terrain slope and the recovery trend of the NDVI after the breakpoint. The relationship is positive for northern-oriented slopes (Aspect >315◦

or < 45◦ indicated by black circles, β = 0.251, p = 0.012), while it is negative for southern-oriented slopes (135◦ > Aspect<225◦, indicated with blue triangles, β =
− 0.191, p = 0.001). B) Simple linear regression between aspect (measured as deviation from south) and the NDVI recovery trend. The relationship is not significant 
for the 25% of the data with the highest NDVI before the breakpoint (indicated by black circles, β = 0.107, p = 0.105), while it is significantly positive for the 25% of 
the data with the lowest NDVI before the breakpoint (indicated with blue triangles, β = 0.231, p < 0.001). Regression lines are shown for significant relations (α =
0.05). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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not represent a totally degraded state (with low NDVI). However, they 
might be in transition to a degraded state due to reduced ecosystem 
resilience (in our study indicated by low resistance and low recovery). 

Our result that potentially degraded areas were associated with high 
resistance and low recovery also matches with findings by Saruul et al. 
(2019), who showed that highly degraded grasslands in Mongolia had 
high resistance to and low recovery from natural disturbances. However, 
in the same study moderately degraded grasslands displayed higher 
resistance and recovery than slightly degraded and undegraded ones. 
Saruul et al. (2019) ascribe their finding to positive effects of interme-
diate grazing levels on species composition and richness and relate it to 
the intermediate disturbance hypothesis. Contrarily, we found that in-
termediate NDVI and grazing levels were associated mostly with low 
resistance, and intermediate recovery. In areas with very high NDVI 
however, as well as on northern-oriented slopes, we did find a significant 
overrepresentation of pixels with high resistance, which might indicate 
that these areas are in a healthy ecosystem state. That intermediate 
levels of grazing did not seem to have any positive effects on ecosystem 
resilience in our case might be ascribed to the fact that the area has been 
overgrazed for decades. Thus, the vegetation might not benefit from the 
continuation of even intermediate grazing intensities, and such areas 
were probably more than “moderately degraded”. 

In conclusion, the effects of grazing on resistance appears to depend 
on the ecosystem state as a whole: if highly grazed areas are associated 
with a strongly degraded state (in our case indicated by very low NDVI 
values), grazing seems to increase ecosystem resistance to climatic 
variation such as droughts. In this state the ecosystem cannot react to 
climate variability any longer. By removing vegetation cover, grazing 
even more promotes this state. Otherwise, strong grazing appears to 
lower ecosystem resistance, as also reported in a study by Whitford et al. 
(1999) and in De Keersmaecker et al. (2016). Whitford et al. (1999) 
further found that heavy grazing reduced the recovery rate from 
drought, which corresponds to our results. However, the effects of 
grazing on resistance and recovery should be treated cautiously, since 
they depend on many factors. Maestre et al. (2016) pointed out that the 
effects of grazing on ecosystem structure and functioning in drylands 
vary with the intensity of grazing, the composition of herbivore as-
semblages, the shared evolutionary history of plants and herbivores, the 
way grazing pressure is measured and the spatial scale. The authors also 
found that grazing effects on resilience to climatic stresses are highly 
modulated by grazing interactions with species composition and rich-
ness. In our study area, we observed during field visits that in areas with 
higher grazing intensity, the number of unpalatable plant species 
increased. However, we did not see a clear shift in species composition 
from shrubs to grasses. Shrubs were the dominant vegetation type for all 
grazing levels. Field-based studies could gain more insights into the 
response of vegetation composition and functional effects of grazing on 
resistance and recovery. A study by Ruppert et al. (2015), who quanti-
fied drought resistance and recovery using 174 long-term datasets from 
more than 30 dryland regions, shows that the effects of grazing on 
drought resistance and recovery are modulated by the dominant life 
history of the herbaceous layer: in perennial systems, grazing negatively 
affected resistance, in annual systems it positively affected recovery. 
Altogether, interpreting effects of grazing on vegetation resistance and 
recovery across different systems and studies remains challenging. 

4.3. Methodological limitations 

The number of breakpoints fitted by BFAST during a given time 
period is a relative measure of resistance and absolute values cannot be 
compared between different study systems. Its interpretation depends 
on the overall frequency of breakpoints within the study area, which is 
affected by the ecosystem type, the climate regime, the duration of the 
study period, the spatial scale, data availability, BFAST model parame-
ters, as well as land use and local disturbances; e.g. a total number of one 
breakpoint may indicate high resistance in our case, but may be 

indicating low resistance in another study system. It further depends on 
the overall aim of the study, i.e. resistance to what factor is studied. 

Some considerations should be taken into account when transferring 
our approach to other areas. In our study, we interpret the relative 
occurrence of breakpoints within our study area as an inverted proxy for 
long-term vegetation resistance to climate variability. This interpreta-
tion presupposes that climatic forces are the main driver of breakpoints, 
and that the climate can be assumed to be similar in the study area. 
Further, it requires comparability regarding land cover type as well as 
land use regime (within the area). Finally, detailed knowledge about 
past disturbances and land use regime of the area is crucial to exclude 
effects of other not climate related large-scale disturbances. Our study 
area is relatively small, driven by the same climate regime and with a 
comparable land cover type and land use (a grazed dryland with mosaics 
of vegetation patches). The small size of our study area allowed us to 
combine remote sensing data with detailed information on local grazing 
regime. Studying resilience at a global scale would make it possible to 
obtain more general results (e.g. see Bernardino et al. (2020) about 
global-scale characterization of turning points using BFAST), but a 
global scale would not allow to study the local specific processes 
affecting resilience. 

From the interviews with local farmers we gathered detailed infor-
mation both about the present and the past grazing regime, which 
allowed us to derive a spatially explicit grazing intensity index. We 
learnt that no major land use change or large-scale disturbance has 
occurred within our area during our study period except grazing. Hence, 
we considered it valid to assume that main driving force of the NDVI 
dynamics acting on the area as a whole were climatic forces. Still, we are 
aware of limitations of this approach: local land use changes or small- 
scale disturbances in local topography might have triggered additional 
breakpoints in our area that were not related to climate variability and 
may also have affected the vegetation’s ability to recover after a 
drought. However, such small-scale disturbances could not have been 
captured adequately with our 30-m Landsat scale. Besides, no reliable 
spatially explicit data on the past occurrence of such small-scale dis-
turbances exist. We therefore did not include effects of small-scale dis-
turbances in our study and treated such effects as outliers, for we 
believed they would not significantly affect the overall distribution of 
breakpoints within our study area. For example, between 2003 and 2009 
we observed a local land use change in the northeast of our study area 
(based on Quickbird imagery), appearing like the opening of a soil 
dumping site. Yet, this local land use change affected only 2% of more 
than 3000 pixels that were included in our analysis and can therefore be 
treated as an outlier. Using a more detailed spatial scale would probably 
increase the effects of small-scale disturbances on the spatial occurrence 
of breakpoints. 

Other factors might also have affected the overall number of 
breakpoints. Watts and Laffan (2014) found that the optimal value for 
the “h” parameter, which sets the minimum number of observations 
between two breakpoints in the BFAST model, depends on vegetation 
type. In areas with little vegetation cover, the number of breakpoints 
might be overestimated. Our results, however, revealed an over-
representation of pixels with none or one breakpoint in areas with low 
NDVI, and therefore appear to be robust even with this limitation. The 
same holds true for potentially noise-induced breakpoints, which might 
have occurred in areas with low NDVI that have a low signal to noise 
ratio. Data availability is another relevant factor affecting the likelihood 
to detect breakpoints with BFAST. Temporal satellite data availability 
was not constant (Fig. 5F). Low data availability in 1990 might be a 
reason why we observed few breakpoints during the dry period 1990/ 
91, compared to the dry period 2005–08. However, since temporal data 
availability relates to our complete study area, it does not affect the 
spatial distribution of breakpoints. In contrast, spatial data availability 
in our study area was not uniform, since clouds were masked on a pixel 
by pixel level. Hence, cloud-masking on pixel level, could have affected 
our results. 
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By using the linear NDVI recovery trend fitted by the BFAST model 
after a breakpoint as an indicator for the recovery rate, we assumed a 
linear recovery behaviour. We are aware that this assumption is a 
simplification, yet we believe it to be a good approximation, as long as 
the time period of the segment for which the recovery trend is fitted is 
comparable among pixels. In our case this requirement is fulfilled, since 
the NDVI recovery trend is fitted to the last segment of the BFAST time 
series and almost none of the pixels experienced a second breakpoint 
before the end of the time series (Fig. 5D). 

We measured grazing intensity indirectly through interviews with 
local farmers, which were input for calculations based on the distance to 
the farm, number of animals in farm and topography. Actual data about 
the grazing intensity (e.g. through GPS tracking) were not available for 
our time period. In general, it is very difficult to obtain the actual time, 
location and length of grazing, which can differ even for pastures with 
the same grazing season (e.g. summer or winter) (Wang et al., 2018). 
Therefore, the number of animals and the distance to the farm is 
commonly used as a proxy for grazing intensity (Manthey and Peper, 
2010; Wang et al., 2018). To draw more general conclusions on grazing 
effects on resistance and recovery, future studies applying a consistent 
methodology on different ecosystems and comparing different spatial 
scales are needed. 

5. Conclusion and outlook 

This study demonstrates the potential of a Landsat NDVI time series 
to infer two aspects of ecological resilience (namely resistance to climate 
variability and recovery from drought) of a grazed dryland ecosystem 
using a change detection method (BFAST). The overall aim of this paper 
was to spatially quantify resistance and recovery on an ecological 
meaningful scale and to assess how these two aspects of resilience were 
modulated by grazing intensity and environmental properties. Our re-
sults show that favourable environmental conditions (high NDVI and 
northern orientation) were related to high resilience, i.e. high resistance 
to climate variability and fast recovery after a drought. Unfavourable 
conditions as well as high grazing intensities were related to an unre-
sponsive, potentially degraded ecosystem state. Grazing reduced re-
covery rate after drought. Overall, we conclude that resilience to 
climatic variation such as droughts was modulated by grazing and 
environmental conditions. 

Our study presents a new methodology to estimate two aspects of 
resilience in a natural system on the basis of stochastic natural climatic 
variation (as has been suggested e.g. by van Nes and Scheffer, 2007), as 
opposed to using experimental perturbations, which are difficult to 
apply in coherent natural systems. Quantifying and combining both 
resistance and recovery in context with grazing data is a novel approach. 
By applying an adapted version of the BFAST algorithm that can deal 
with missing data, we were able to make use of all available Landsat 
data, enabling us to cover 28 years of vegetation dynamics on an 
ecological meaningful spatial scale. While several previous studies have 
made use of a BFAST model to make inferences on vegetation recovery 
after a disturbance (e.g. DeVries et al., 2015a; Katagis et al., 2014; 
Zewdie et al., 2017), it is a novel approach to make use of the spatial 
distribution of the number breakpoints to explicitly gain insights on 
vegetation resistance. We believe our data-driven approach has a strong 
potential for resilience monitoring, since it can be applied on broad 
spatial as well as temporal scales and is applicable to areas with a low 
field data availability. It allows to jointly extract indicators for resistance 
and recovery, which are two important components of resilience. 
However, more research on other study areas is needed to test the 
robustness of our approach. 

Extensive research based on mathematical models has focused on 
resilience in the context of predicting abrupt system transitions (e.g. Kéfi 
et al., 2014; Scheffer et al., 2015). However, these studies mainly focus 
on theoretical relationships without fully incorporating the local 
ecological mechanisms - a solid understanding of which is required for 

any actions to prevent such transitions (Maestre et al., 2016). In this 
study we illustrated how two aspects of resilience derived from satellite 
time series can be related to terrain, NDVI and local knowledge on 
grazing. Knowledge of how terrain and NDVI affect the vegetation’s 
resilience to climatic variation such as droughts can highlight areas 
which are particularly susceptible to climate-triggered land degradation 
processes. An understanding of how different grazing intensities 
modulate vegetation resilience can enable land users to adapt their 
grazing management accordingly. However, the results presented here 
are limited to our study area in southern Cyprus. To draw more general 
conclusions, further testing of the methodological framework in com-
parable Mediterranean rangelands is needed. Also, including other sat-
ellite derived vegetation indices such as the Enhanced Vegetation Index 
(EVI) or the Soil Adjusted Vegetation Index (SAVI), could show if the 
results on breakpoint occurrence and NDVI recovery trend are sensitive 
to the chosen vegetation index particularly in sparsely vegetated areas. 
It would also be interesting to combine our approach with data on plant 
productivity and soil fertility (see e.g. Berdugo et al., 2020). Finally, 
field-based observations of resistance to climate variability and recovery 
from drought under different grazing pressures would be a valuable 
addition to our framework to draw comprehensive conclusions on 
ecosystem resilience. 
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