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Deficiencies in discriminating and identifying speech sounds have
been widely attested in individuals with dyslexia as well as in
young children at family risk (FR) of dyslexia. A speech perception
deficit has been hypothesized to be causally related to reading and
spelling difficulties. So far, however, early speech perception of FR
infants has not been assessed at different ages within a single
experimental design. Furthermore, a combination of group- and
individual-based analyses has not been made. In this cross-
sectional study, vowel discrimination of 6-, 8-, and 10-month-old
Dutch FR infants and their nonrisk (no-FR) peers was assessed.
Infants (N = 196) were tested on a native English /a:/-/e:/ and
non-native English /e/-/a&/ contrast using a hybrid visual habitua-
tion paradigm. Frequentist analyses were used to interpret group
differences. Bayesian hierarchical modeling was used to classify
individuals as speech sound discriminators. FR and no-FR infants
discriminated the native contrast at all ages. However, individual
classification of the no-FR infants suggests improved discrimina-
tion with age, but not for the FR infants. No-FR infants discrimi-
nated the non-native contrast at 6 and 10 months, but not at
8 months. FR infants did not show evidence of discriminating the
contrast at any of the ages, with 0% being classified as discrimina-
tors. The group- and individual-based data are complementary and
together point toward speech perception differences between the
groups. The findings also indicate that conducting individual anal-
yses on hybrid visual habituation outcomes is possible. These out-
comes form a fruitful avenue for gaining more understanding of
development, group differences, and prospective relationships.
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Introduction

Developmental dyslexia is a language-based learning disability characterized by severe word read-
ing and/or spelling problems (Lyon, Shaywitz, & Shaywitz, 2003; Peterson & Pennington, 2015). These
literacy difficulties can have a profound impact on educational/academic achievement, self-esteem,
and social development (Livingston, Siegel, & Ribary, 2018). Therefore, it is of great interest to under-
stand the precursors or risk factors that lead to the subsequent deficit. Dyslexia is considered to be a
multifactorial disorder, which implies that multiple risk and protective factors are involved. The dis-
order is considered to be highly heritable; children with a dyslexic parent have a 29% to 66% risk of
developing dyslexia (Snowling & Melby-Lervag, 2016). Assessing the abilities of children with a family
risk (FR) of dyslexia, therefore, is a valuable approach for finding early markers of dyslexia (e.g.,
Caglar-Ryeng, Eklund, & Nergdrd-Nilssen, 2019; Snowling & Melby-Lervag, 2016; van Viersen et al.,
2018).

A phonological deficit has been proposed to be one of the main contributing risk factors in devel-
oping dyslexia (Ramus et al., 2003; Vellutino, Fletcher, Snowling, & Scanlon, 2004). It is hypothesized
that people with dyslexia have poorly specified phonological representations, which in turn have a
disruptive effect on the construction of phoneme-grapheme connections (e.g., Blomert, 2011;
Mittag, Thesleff, Laasonen, & Kujala, 2013). Although the phonological deficit cannot account for all
literacy problems in people with dyslexia (Pennington et al., 2012), there is extensive evidence for
phonological problems in children and adults diagnosed with dyslexia (Ramus et al., 2003; van
Bergen, de Jong, Plakas, Maassen, & van der Leij, 2012). It is also seen in FR children prior to the acqui-
sition of literacy skills (see Snowling & Melby-Lervag, 2016, for a meta-analysis and review), which is
suggestive of a causal relation.

One potential cause of the phonological deficit is poor speech perception; if speech sounds cannot
be perceived and categorized adequately, this will hamper the formation of phonological representa-
tions as well as grapheme-phoneme associations (e.g., Goswami, 2000). A large number of studies
found that adults and children with dyslexia perform more poorly on tasks measuring speech percep-
tion skills than their peers (e.g., Schulte-Koérne, Deimel, Bartling, & Remschmidt, 2001; Werker & Tees,
1987; but see Nittrouer, Shune, & Lowenstein, 2011; Ramus et al., 2003; Rosen & Manganari, 2001).
This is also found for children and infants with an FR (e.g., Boets, Ghesquiére, Van Wieringen, &
Wouters, 2007; Guttorm et al., 2005; Richardson, Leppdnen, Leiwo, & Lyytinen, 2003; van Alphen
et al., 2004). Moreover, some studies have found that children with lower (pre)reading skills showed
poorer speech perception performance as infants (e.g., Guttorm, Leppanen, Himadldinen, Eklund, &
Lyytinen, 2010; Molfese, 2000; van Zuijen, Plakas, Maassen, Maurits, & van der Leij, 2013). Hence,
speech perception skills seem to be related to learning to read and spell effectively and efficiently.

Adults and children with dyslexia have been found to perform more poorly than their peers on
speech sound categorization tasks (Hakvoort et al., 2016; Maassen, Groenen, Crul, Assman-
Hulsmans, & Gabreéls, 2001; Mody, Student-Kennedy, & Brady, 1997), which has led to the proposal
of a categorical speech perception deficit (e.g., Serniclaes, van Heghe, Mousty, Carré, & Sprenger-
Charolles, 2004). One explanation for the categorization deficit could be that “children with dyslexia
maintain the sensitivity to phonemic distinctions which all newborns have irrelevant of their native
language” (Noordenbos, Segers, Serniclaes, Mitterer, & Verhoeven, 2012, p. 1470). Although the
reported results are not fully consistent (Blomert & Mitterer, 2004; Brandt & Rosen, 1980; Hazan,
Messaoud-Galusi, Rosen, Nouwens, & Shakespeare, 2009; Messaoud-Galusi, Hazan, & Rosen, 2011),
a recent meta-analysis did show support for a categorical perception deficit in dyslexia
(Noordenbos & Serniclaes, 2015). Poor categorical perception has also been found in kindergartners
with an FR of dyslexia (Boets et al., 2007; Gerrits & de Bree, 2009; Noordenbos et al., 2012).
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Phonological categorization builds on a robust speech sound discrimination ability. The available
evidence suggests that speech sound discrimination in FR infants is weaker in comparison with
low-risk (no-FR) peers (van Leeuwen et al.,, 2006; see Richardson et al., 2003, and Volkmer &
Schulte-Kérne, 2018, for recent reviews on electroencephalography [EEG] studies). van Leeuwen
et al. (2006) conducted an EEG study with 2-month-old Dutch infants using an oddball paradigm in
which /b/ and /d/ were presented in Dutch /bak/ (box)-/dak/ (roof) words. The tokens used were taken
from a /b/-/d/ continuum. The FR infants showed a significantly less pronounced mismatch negativity
response to the deviant stimulus, indicative of a delay in categorization. Such poorer phoneme dis-
crimination in FR infants has been found for consonants as well as vowels (e.g., Guttorm, Leppdnen,
Richardson, & Lyytinen, 2001; Leppdnen, Pihko, Eklund, & Lyytinen, 1999; Molfese, 2000; Pihko
et al.,, 1999; Thiede et al., 2019; van Leeuwen et al., 2006). In sum, the literature shows that FR infants
have more difficulty with discrimination between phonemes. This finding can be related to subse-
quent poor categorization and aligns with the notion of a speech perception deficit in dyslexia.

The studies that report discrimination difficulties in FR infants have so far been limited in the sense
that all the speech sound contrasts under investigation were native contrasts and were mostly
assessed at one age. Because it is well established that speech perception changes during the first year
of life due to language exposure, it is warranted to investigate how (native) speech perception devel-
ops in FR infants. In typically developing infants, speech perception changes from universal to lan-
guage specific (e.g., Werker & Tees, 1984). This means that the ability to discriminate native speech
sound categories remains good or improves (for sounds that are initially difficult to discriminate),
whereas the ability to detect speech sound distinctions that are not phonemic in the native language
decreases (e.g., Tsuji & Cristia, 2014; Werker & Tees, 1984). This developmental transition is generally
referred to as perceptual attunement (Maurer & Werker, 2014) and emerges around 10 to 12 months of
age for consonantal contrasts and at 6 to 8 months for vowel contrasts (Kuhl, Williams, Lacerda,
Stevens, & Lindblom, 1992; Polka & Werker, 1994). Perceptual attunement is the first step in the for-
mation of (native) phoneme categories.

Although investigation of the developmental trajectory of native and non-native speech perception
of FR infants is important for evaluating the process of perceptual attunement in FR, we know of no
studies that have looked into this. There are, in contrast, some studies with no-FR infants. In one such
study (de Klerk, de Bree, Kerkhoff & Wijnen, 2019), it was found that no-FR infants were able to dis-
criminate between the salient native vowel contrast /a:/ and /e:/ at 6, 8, and 10 months of age and that
this discrimination improved with age. In contrast, only the 6-and 10-month-olds were able to dis-
criminate between non-native English /¢/ and /2/; the 8-month-olds were not. These findings are
indicative of perceptual attunement from 6 to 8 months. The finding that the 10-month-olds could
discriminate the contrast was explained by an interaction between task demands and maturation
(de Klerk et al., 2019).

The current study

The current study compared speech sound discrimination of 6-, 8-, and 10-month-old FR infants
with that of their no-FR peers. We used the hybrid visual habituation paradigm (de Klerk et al.,
2019; Houston, Horn, Qi, Ting, & Gao, 2007) comprising test trials with similar phonemes (non-
alternating, e.g., /a:/-/a:/) and different phonemes (alternating, e.g., /a:/-/e:/). We addressed two ques-
tions. The first is whether perceptual attunement occurs in FR infants. In other words, is there a change
from a universal listener to a language-specific listener also in FR infants? If perceptual attunement
takes place, native contrasts were expected to be discriminated at all ages, whereas there would be
a decrease in the ability to discriminate non-native contrasts as infants mature (e.g., de Klerk et al.,
2019; Kuhl, et al., 2008; Tsuji & Cristia, 2014). Hence, FR infants should be able to discriminate a sali-
ent (acoustically and articulatory highly distinctive) native contrast such as Dutch /a:/-/e:/. Selection
of a salient native contrast was preferred over a less salient native vowel contrast, such as Dutch /i - |
i:/, as such less salient native contrasts take longer to acquire (e.g., Liu & Kager, 2015) and might thus
not be discriminated at all by the infants in our sample. Studies on speech sound discrimination skills
of FR infants have often used nonsalient native contrasts and found perception difficulties on these
subtle contrasts (e.g., van Leeuwen et al., 2006). Therefore, it is possible that initial discrimination
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is weak(er) and the gradual improvement of discrimination proceeds more slowly than in no-FR
infants. In other words, there could be a delay in perceptual attunement for FR infants. Hence, inves-
tigation of a native salient contrast is warranted.

With respect to the discrimination of non-native contrasts, the question was whether FR infants’
data would provide evidence of discrimination at 6 months of age and a decrease in sensitivity at later
ages to the English /e/-/e/ contrast that we used in this study. This contrast is difficult to distinguish
for Dutch adults (Broersma & Cutler, 2011); both vowels are perceived as Dutch vowel /¢/. On the basis
of previous findings of poor speech sound discrimination of FR infants (e.g., Leppdnen et al., 2002;
Richardson et al., 2003; van Leeuwen et al., 2006), it is conceivable that the subtle non-native contrast
would not be discriminated throughout development (e.g., Richardson, et al., 2003; van Leeuwen et al.,
2006). Another possibility was that infants would not lose the sensitivity to the irrelevant non-native
contrast (Noordenbos et al., 2012).

Our second main question was whether it is possible to identify individual infants as being able to
discriminate the speech sound contrast or not. Put differently, can infants be classified as “discrimina-
tors” at the individual level on the basis of outcomes on behavioral speech perception tasks? This is an
important question in the field of speech perception (Cristia, Seidl, Junge, Soderstrom, & Hagoort,
2014; Houston et al., 2007): Group-based findings are valuable for understanding a general pattern
of discrimination, but identification of individual difficulties and future outcomes requires reliable
analyses on individual-based data. Furthermore, studies have investigated the relation between early
speech perception and later reading skills retrospectively (Guttorm et al., 2010; Molfese, 2000; van
Zuijen et al., 2013). If discriminators at infancy can be identified successfully, this could pave the
way for prospective studies into early speech perception and later language and reading skills.

To address this question, we took our previous study (de Klerk, Veen, Wijnen & de Bree, 2020) as a
starting point. We evaluated different methods of individual analyses and found that Bayesian hierar-
chical modeling was the most successful one. This approach takes into account the hierarchical nature
of the data; infants within the same age group are assumed to belong to the same population, meaning
that infants are exchangeable within age groups but not between age groups. The advantage of Baye-
sian hierarchical modeling in comparison with frequentist approaches is that it yields estimates for all
the individual and group parameters in one model without needing to correct for multiple testing
(Gelman, Hill, & Yajima, 2012). Furthermore, the consequence of hierarchically modeling the individ-
ual and group effects in one analysis is that part of the observed variance can be explained at the group
level instead of trying to explain all the variance at the individual level (Gelman, 2006). In our previous
study (de Klerk, Veen et al., 2019), we showed that by adding the hierarchical structure, we reduced
the noise, which led to less variable representations of the measurements. This can be seen as an
improvement of the reliability of the measurements (Gelman et al., 2012). Individual outcomes can
provide more insight into developmental trajectories and thus are of great value for studies that relate
early abilities to later language skills.

Method
Participants

Participants were recruited via a letter sent to all the parents of newborns of Utrecht City, the
Netherlands. Addresses were supplied by the municipality of (Utrecht City, the Netherlands). Before
coming to the lab, parents were asked to fill out a questionnaire consisting of questions about birth
weight, gestational age, health issues, and (medical) family background. Infants were included if (a)
they were raised only in Dutch, (b) their gestational age at birth was 37 to 43 weeks, (c) their birth
weight was 2500 to 5000 g, (d) there were no complications during the pregnancy or delivery, (e) they
did not have a history of known hearing loss or reduced vision, and (f) they did not have reported
neurological problems.

To ascertain whether the FR infants could truly be categorized as such, three tests were adminis-
tered to parents who had indicated a history of reading problems. The first was a timed word reading
test, the Een-Minuut-Test (EMT; Brus & Voeten, 1972). In this test, parents needed to read out loud a
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list of known words as quickly and accurately as possible within 1 min. The second test, de Klepel, was
a timed pseudoword reading test. Parents were asked to read out loud a list of pseudowords within
2 min (van den Bos, Lutje Spelberg, Scheepsma, & de Vries, 1994). The third test, a verbal competence
test (Analogies), was a subtest of the Dutch version of the Wechsler Adult Intelligence Scale (WAIS;
Uterwijk, 2000). Infants were included in the FR group if parents had met one of the following criteria:
(a) the percentile scores on one reading test was <10, (b) the percentile score was <20 on both reading
tests, or (c) the discrepancy between one reading test and the verbal competence test was 60 per-
centile points or more (Kuijpers et al., 2003). If the criteria were not met, the infant was not included
in the study (n = 7).

A flowchart of the data inclusion process can be found in Fig. 1. In total, 117 FR infants were tested,
potentially on both the native and non-native vowel discrimination experiment, rendering a potential
of 234 datasets or records (2 * 117 records). However, 71 records (30%) were not included for the fol-
lowing reasons: (a) behavior invalidating the measurements (e.g., crying, extreme restlessness;
n = 22); (b) the second discrimination experiment was never started (the decision to proceed to the
next experiment depended on the behavior and well-being of the infant after the first experiment;
n = 23); (c) the parent was not classified as dyslexic (n = 14 records; see above); (d) failure to meet
the habituation criterion (n = 11; see “Procedure” section below); or (e) technical error (n = 1).
Fig. 1 contains a capture of the inclusion criteria in a flowchart. In total, 163 records were included.
These 163 records came from 98 infants. Of these, 65 infants finished both the native and non-
native conditions. Hence, these 65 infants yielded 130 records (native n = 65 and non-native
n = 65). Some infants (n = 33) finished only one contrast (native, n = 14 or non-native, n = 19). See
Table 1 (FR infants) and Appendices A and B.

4 N
The datarecords are the potential datarecords, as all
N =234 records N =117 have the potential of finishing both
experiments.
l (N J
4 2
n =7 participants ( = 14 records) were removed from
n =220 records analysis because their parents were not classified as
Qiyslex1c. )
i ) .

n =19 records were excluded during or after the 1%
session because of crying (n = 10), not meeting the
habituaiton criterion (n = 8) and (n = 1 because of a

\ fechnical error. )

n =201 records

n =38 records were excluded during or after the 2nd
session because the 2" session was never started (n =
23), crying (n = 12), failure to meet the habituaiton (n

=3).

l - ) J

4 N
In total n =163 records were used for analysis. Thirty-three records came from infants
who successfully completed one experiment, 65 infants completed both experiments

successfully.

n =163 records

-

Fig. 1. Flow chart for data inclusion.
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The no-FR infants were selected from the data set presented in de Klerk et al., 2019. The no-FR
infants (n = 98) were matched to the FR infants on the following characteristics: (a) age, (b) the num-
ber of experiments they had finished during the session (1 or 2), (c) the stimulus they were habituated
on, and (d) which contrast was presented first (native or non-native). In the no-FR selection as well, 65
infants completed both experiments and 33 infants finished the task in one condition. See Table 2,
Appendix A (native contrast), and Appendix B (non-native contrast) for more information regarding
the number of infants per age group who finished both contrasts.

All parents were native monolingual speakers of Dutch and lived in Utrecht City, the Netherlands.
Data on parental level of education and the family situation (i.e., the number of siblings and birth
order [first born, second born, etc.]) are summarized in Table 3. The educational level was coded rang-
ing from 1 (primary school) to 6 (university level). The average educational level of FR infants’ fathers
was significantly lower than that of no-FR fathers, but for both groups the educational level was high
(see Table 3). The majority of FR fathers (88%) and no-FR fathers (95%) had completed a university
degree (bachelor’s or master’s level).

Informed consent was obtained from the parents before testing; consent and participation could be
retracted at any time. The research was conducted in accordance with American Psychological Asso-
ciation ethical standards as well as The Netherlands Code of Conduct for Scientific Practice issued in
2004 (revised in 2018 by the Association of Universities in The Netherlands).

Procedure and stimuli

General procedure

Participants were tested in a three-walled canvas test booth placed in a sound-attenuated room.
Each infant was seated on the parent’s lap approximately 1.35 m from a 17-inch computer screen (Phi-
lips LCD 150P4). The loudspeaker (Tannoy i8) through which the auditory stimuli were played was
hidden behind the canvas of the booth and placed underneath the TV screen that showed the visual
stimuli. Parents wore headphones (Echelon Telex), through which music was played in order to pre-
vent them from hearing the stimuli and (potentially) influencing their children’s behavior. The exper-
iment was monitored and recorded through a video camera that was placed underneath the TV screen.
Looking time was tracked by pressing a button box for looking and looking away. Looking time was
taken to reflect listening time (Aslin, 2007). The button box was connected to an Asus P4PE computer.
An experiment control application, Zep (Veenker, 2008), was used for presentations of the auditory
and visual stimuli and for the data registration. Trials were initiated with a button press and were
ended when either the infant looked away for 2 s or the maximum trial length was reached.

Prior to testing, parents provided written consent for participation and the experimental procedure
was explained to caregivers without telling them which of the conditions (native or non-native) was
presented first; see de Klerk et al., 2019 for further instructions to the caregiver. The aim was to test
infants on both contrasts (native and non-native) within one session, and the order was counterbal-
anced between infants.

Table 1
Numbers of FR participants and mean ages per age group for the native and non-native contrasts.
Age Age of FR FR total Of which Only Only Total included  Total included
group FR infants  infants Both Native Non-Native native non-native
infants tested  included Contrasts  Contrast Contrast contrast contrast
(months) (days) (n) (n female) (n female) (n female) (n female) (n female) (n female)
6 194 (8.7) 38 33(14) 26 (11) 2(1) 5(2) 28 (12) 31(13)
8 258 (7.8) 38 32 (15) 19 (6) 5(3) 8(6) 24 (9) 27 (12)
10 316 (8.2) 41 33(19) 20 (10) 7(7) 6(2) 27 (17) 26 (12)
Total 117 98 (48) 65 (27) 14 (11) 19 (10) 79 (38) 84 (37)

Note. The numbers in columns 3-7 present the number of infants that were included. The last two columns (8 and 9) represent
the datasets (or records) of these infants that were included.
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Table 2
Numbers of no-FR participants and mean ages per age group for the native and non-native contrasts.
Age Age of no-  Tested on native Tested on non- Tested on Total included Total included
group FR infants  contrast only native contrast both native contrast  non-native
only contrasts contrast
(months) (days) (n female) (n female) (n female) (n female) (n female)
6 203 (8.4) 2 (0) 5(2) 26 (10) 28 (10) 31(12)
259 (6.5) 5(3) 8(6) 19 (11) 24 (14) 27 (17)
10 320(12.9) 7(4) 6(2) 20 (10) 27 (14) 26 (12)
Total 14 (7) 19 (10) 65 (31) 79 (38) 84 (41)

Note. These infants are a subsample of the sample presented in de Klerk et al., 2019. no-FR, no family risk of dyslexia.

Table 3

Background information of participants.
Measure no-FR FR

M (SD) M (SD) Mann-Whitney test (two-sided)

Education level of father 5.58 (0.50) 5.13 (0.90) U = 3040.00, z = —3.44, p = .001
Education level of mother 5.66 (0.50) 5.48 (0.70) U=3647.00,z=-1.77,p = .077
Number of siblings 0.33 (0.50) 0.28 (0.50) U = 4000.50, z = —0.66, p = .509
Birth rank 1.31 (0.50) 1.27 (0.50) U = 4028.00, z = —0.57, p = .570

Note. Educational level was measured on a scale from 1 (primary school) to 6 (university/Ph.D.). no-FR, no family risk of
dyslexia; FR, at family risk of dyslexia.

Similar to the study of Houston et al. (2007), the experimental setup consisted of a habituation
phase in which infants were habituated to one of the vowels of the pair (e.g., /a:/ in /fa:p/), a test phase
in which looking times to non-alternating (habituation) vowel pairs (e.g., /[fa:p/-/fa:p/) were compared
with those to alternating vowel pairs, that is, a pair consisting of a trained vowel and a contrasting
untrained vowel (e.g., /fa:p/-/fe:p/). The experiment began and ended with a pre- and posttest to
measure participants’ attentiveness. Each of these phases included both auditory and visual stimuli.
During habituation, we used tokens from four different female speakers. Speaker variability has been
argued to enhance generalization of abstract features in the process of developing phonetic categories
(e.g., Lively, Logan, & Pisoni, 1993; Rost & McMurray, 2009).

Stimuli

Visual and auditory stimuli pre- and posttest. During the pre- and posttest, infants were presented with
both auditory stimuli (beep sounds, 330 Hz, duration 250 ms, interstimulus interval [ISI] of 1000 ms)
and visual stimuli. Auditory stimuli were played at ~65 dB. The visual stimuli were three cartoon pic-
tures displayed for 2 s on a light blue screen. The three pictures were drawn randomly out of a set of
25 pictures. These pictures could appear in nine different spots within an invisible 3 x 3 grid (see top
left picture in Fig. 2.) After 2 s, a series of three new pictures appeared at different locations. Pictures
were presented in a pseudorandomized order.

Visual and auditory stimuli habituation and test. During the habituation and test phases, pictures of six
smiling female faces were used (see an example in Fig. 2, top right picture). In each block of four trials,
four pictures with different female faces were used, one picture per trial. Pictures were presented in a
pseudorandomized order. Between habituation trials, a visual attention getter was displayed: a movie
of a cute laughing baby (see Fig. 2, bottom left picture). In between test trials, a movie of a toddler
going down a slide was used as an attention getter (see Fig. 2, bottom right picture).

Auditory stimuli were the Dutch vowels /a:/ and /e:/ for the native contrast and the English /¢/ and
/& for the non-native contrast. Vowels were embedded in consonant-vowel-consonant (CVC)
syllables: /fa:p/, /fe:p/, [s®n/, and [sen/. Recordings of the Dutch pseudowords /fa:p/ and /fe:p/ were
made of four female Dutch speakers aged 25 to 35 years. They all spoke Standard Dutch and came
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2

Still of the visual stimuli during Picture of smiling female presented
pre-and posttest during habituation and/or test phase

it ?h S
Still of the attention getter between

habituation trials test trials

Fig. 2. Visual stimuli presented during the pre- and posttest, habituation, and test phases. Top left: An example of the visual
stimuli during pre- and posttest. Top right: An example of a female face used during habitation and test trials. Bottom left: A
still of the attention getter between habituation trials. Bottom right: A still of the attention getter between test trials. (This
figure also appeared in de Klerk et al., 2019.)

from the Randstad area, a mostly urban area in central-western Netherlands. They were asked to read
out loud a list of 52 words containing the target pseudowords as well as monosyllabic Dutch real
words with the same vowels (e.g., gaap-yawn, feest-party). Recordings of the English pseudowords
were recorded of four female native English speakers aged 25 to 35 years. They came from different
regions of the United Kingdom: southeast London, Belfast, Preston (Lancashire), and Manchester.
The pseudowords [sen/ and [s&n/ were read out loud from a list of 52 words containing the target
words and real words (e.g., have and pet).

Each speaker produced four tokens of each target pseudoword (e.g., /fa:p/ and /fe:p/). From all four
speakers, one token of each target pseudoword per contrast was selected. In addition, from one
speaker, a second token per target word was selected because this was necessary for the test phase
(see “Procedure” section). This resulted in five tokens of four different speakers for both contrasts.
Four tokens were used during habituation, and the fifth token (Token 2 from Speaker 1; see also
Fig. 3) was used during the test phase (see “Procedure” section). All auditory stimuli were played at
~65 dB(A). Tokens selected were those that were most child-friendly in prosody and speech affect
(see de Klerk et al., 2019 for more details on acoustic properties). All auditory stimuli were recorded
in a sound-attenuated booth of the phonetics lab at Utrecht University using a Sennheiser microphone
(ME-64) and a digital audio tape recorder (Tascam DA-40).
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1 2 3 4 5 6 7 8 [...] 12

Mean Looking Time Trials 1-3 ~ Mean Looking Time Trials 4-6
-—~
Decrease with 35%? Yes: habituated!

I
No? > Mean Listening Time Trials 5-7

Decrease with 35%?

No?> L |

Mean Listening trials 6-8 [...] 10-12

Fig. 3. Visual depiction of the assessment of the (65%) habituation criterion. (This figure also appeared in de Klerk et al., 2019.)

Procedure

Pre- and posttest. The pre- and posttest had a fixed duration of ~24 s. The purpose of the pre- and
posttest was to measure general attentiveness. Infants were excluded when total looking time of
the posttest decreased by at least 50% compared with the total looking time of the pretest (n = 1;
see “Participants” section above).

Habituation phase. The habituation phase consisted of a maximum of 12 trials, with a maximum num-
ber of 30 tokens (ISI of 1 s) per trial, resulting in a total duration of approximately 48 s per trial. Par-
ticipants were habituated on a repetition of one of the stimulus types (e.g., either /fa:p/ or [fe:p/ in the
native condition and either /sen/ or [sen/ in the non-native condition) with tokens from four female
speakers. Within one trial, one token of one speaker was used. In each block of four trials, participants
heard all four voices in randomized order within the blocks. Infants were considered to be habituated
when they passed the habituation criterion set at 65%: the mean of Trials 1 to 3 was compared with
the mean of Trials 4 to 6. If looking time had not decreased by 35%, the mean of the first three trials
was compared with the mean looking time of Trials 5 to 7, then Trials 6 to 8, and so on up to Trials 10
to 12 (see Fig. 3).

Test phase. The test phase had a fixed number of 12 trials, with a maximum number of 30 tokens per
trial (ISI of 1 s), resulting in a maximum total duration of approximately 48 s per trial. Test trials
consisted either of alternating pseudoword pairs (e.g., native /[fe:p/-/fa:p/) or non-alternating pairs
(e.g., [fa:p/-/fa:p/) (see Fig. 4). The alternating and non-alternating trials were presented in a semifixed
order; the first trial could be either alternating or non-alternating, which was counterbalanced. The
second trial was non-alternating if the first trial was alternating and was alternating if the first trial
was non-alternating. The three subsequent alternating trials occurred at positions 5, 8, and 12. The
other trials were non-alternating (see Fig. 4). During the test phase, a new token of a familiar speaker
was introduced. This was done to ensure that the non-alternating trials (e.g., /fa:p/-/fa:p/, faap-faap)
had both a new token (faap-2 from Speaker 1) and a familiar token (faap-1 from Speaker 1); just like in
the alternating trials, a new token (feep-1 from Speaker 1) and a familiar token (faap-1 from Speaker 1)
were used (see Fig. 4). The exact same procedure was applied for the non-native contrast.

Offline coding

A random subset (44% of the entire set) of the video recordings was recoded frame by frame (frame
duration was 30 ms) using PsyCode software (http://psy.ck.sissa.it/PsyCode/PsyCode.html) by two
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Pretest Habituation Phase Test Phase Posttest
| I | |
Beep sounds || Trial 1 /fa:p/ (T1.S1) Trial 1 /fa:p/~/fa:;p/ (T2.S1-T1.S1) || Beep sounds
330 Hz Trial 2 /fa:p/ (T1.83) Trial 2 /fe:p/-/fazp/ (T1.S1-T1.S1) || 330 Hz
250 ms Trial 3 /fa:p/ (T1.82) Trial 3 /fa:p/-/fa:;p/  (T2.S1-T1.S1) 250 ms
IST 1000 ms || Trial 4 /fa:p/ (T1.S4) Trial 4 /fa:p/-/fa:;p/ (T2.S1-TL1.S1) ISI 1000 ms
Trial 5 /fa:p/ (T1.S3) Trial 5 /fe:p/-/fa:p/ (T1.S1-T1.S1)
Trial 6 /fa:p/ (T1.82) Trial 6 /fa:p/-/fa:;p/ (T2.S1-T1.S1)
Trial 7 /fa:p/ (T1.S4) Trial 7 /fa:p/-/fa:p/  (T2.S1-T1.S1)
Trial 8 /fa:p/ (T1.S1) Trial 8 /fe:p/-/fa:p/ (T1.S1-T1.81)
Trial 9 /fa:p/ (T1.S1) Trial 9 /fa:p/~/fa:p/ (T2.S1-T1.S1)
Trial 10 /fa:p/ (T1.S2) Trial 10 /fa:p/-/fa:p/ (T2.S1-T1.S1)
Trial 11 /fa:p/ (T1.54) Trial 11 /fa:p/-/fa:;p/ (T2.81-T1.S1)
Trial 12 /fa:p/ (T1.S3) Trial 12 /fe:p/-/fa:p/ (T1.S1 - T1.S1)

Fig. 4. Schematic overview of the experimental procedure with reference to the auditory stimuli only. In this example, the
contrast is native and the first test trial is non-alternating; consequently, the second test trial is alternating. The remaining three
alternating trials have a fixed number, namely the 5th, 8th, and 12th trials. Alternating trials are shown in bold. ISI,
interstimulus interval; T, token; S, speaker. (This figure also appeared in de Klerk et al., 2019.)

trained coders who were naive regarding the design and purpose of the experiment. The results of the
raw and recoded data correlated strongly, r(105) = .99, p < .001. We used the online coding data for
analyses.

Data analysis

Frequentist analyses

To assess whether total looking time and number of trials needed to habituate change as a function
of age and/or group (FR or no-FR infants), univariate analyses of variance (ANOVAs) and Kruskal-Wal-
lis nonparametric tests were conducted. Random effects modeling (SPSS Version 23) was used to
answer the questions of (a) whether there was an effect of trial type (alternating [e.g., /fa:p/-/fe:p/]
or non-alternating [e.g., [fa:p/-/fa:p/] trials), (b) whether there were differences between the age
groups, and (c) whether there were differences between the groups (no-FR and FR). The overall fit
of the model was tested with a chi-square likelihood ratio test. Seven trials were not included for data
analysis; one infant missed the last two trials because the experiment was terminated, and five trials
were excluded because (three different) infants were suspected of gazing and not looking at the
screen. The missing data were not considered problematic because (a) very few trials were missing
and (b) parameters can be estimated accurately with missing data using mixed modeling (Field,
2013). For all the frequentist analyses reported in this study, the alpha level was .05.

Bayesian analysis

In our Bayesian hierarchical regression model, we modeled the individual infant data in three age
groups (6, 8, and 10 months) per group (FR and no-FR infants) and contrast (native and non-native), as
we did in our previous study (de Klerk, Veen et al., 2019). In that study, we presented all details, nota-
bly priors, estimation and convergence, and posterior predictive checking, and we conducted a sensi-
tivity analysis (see https://osf.io/xyh3g/). We used a regression model with an AR1 error structure,
with logo transformed looking times as outcomes and condition (alternating or non-alternating trials)
as predictor. For all groups, we obtained both group and individual estimates for the intercept (looking
time alternating trials) and condition (difference in looking time between alternating and non-
alternating trials).
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Results
Group analyses: Random effect modeling

Data screening

Habituation phase. The mean of the total looking times to habituation trials as well as the number of
trials required for habituation were assessed across ages. The looking time distributions were posi-
tively skewed. Log transformation (log;o) resulted in a distribution that approached a normal distribu-
tion (skewness = .026, SE = .039, kurtosis = .488, SE = .078). The mean number of trials needed to
habituate did not approach a normal distribution after log transformation. Therefore, nonparametric
tests were conducted on this measure.

Test phase. The raw looking times to alternating and non-alternating trials were not normally dis-
tributed; for this reason, a log;o transformation was performed. After this transformation, the skew-
ness (.096, SE = .039) and kurtosis (.256, SE = .078) values were acceptable.

The effect of contrast on discrimination

Habituation phase. Mean looking times required for habituation are reported in Fig. 5. Analyses yielded
a significant main effect of age, F(2,313)=4.51, p =.012. Post hoc analyses showed that the 10-month-
olds had overall shorter looking times than the 6- and 8-month-olds. No other main effects and inter-
actions between contrast and age or group were found. The total looking times to habituation trials
did not differ between contrasts or between FR and no-FR infants. The mean number of trials needed
to habituate are presented in Table 4. < T4 > A Kruskal-Wallis test revealed no differences on these
mean numbers of trials between no-FR and FR infants in the native contrast, H(1) = .23, p = .637, or
in the non-native contrast, H(1) = .24, p = .626. Because there were no significant differences between
the no-FR and FR infants regarding habituation for both contrasts, we do not discuss habituation sep-
arately per contrast.

Test phase. We first investigated the effect of contrast (native or non-native) to find out whether tra-
jectories differed between contrasts. Significant interactions of contrast with trial type and/or age
would lead us to analyze the results per contrast separately. Looking times per trial type (alternating
or non-alternating trials) are presented in Fig. 6. A random effect modeling analysis included partic-
ipant as random factor and trial number as a repeated effect (covariance structure AR1). The fixed fac-
tors were trial type (alternating or non-alternating trials), contrast (native or non-native), and age (6,

200

[y
[~
]

mno-FR
FR

L)
[

ek ke
[
<

(=3
(=

(=)
(=)

Mean Looking Time (ms)
£ [~
= =3

[
[

6 months 8 months 10 months 6 months 8 months 10 months

Native Non-Native

Fig. 5. Mean looking times to habituation trials per contrast and group. Error bars represent standard deviations. no-FR, at no
family risk; FR, at family risk.
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Table 4
Mean numbers of trials needed to habituate per contrast and group.
Age group Contrast Group
(months) no-FR FR
Native M (SD) M (SD)
6 6.6 (1.3) 6.5(1.2)
8 6.7 (1.5) 7.3 (1.8)
10 6.6 (1.1) 6.8 (1.9)
Total 6.6 (1.3) 6.9 (1.6)
Non-native
6 6.7 (1.5) 7.2 (1.8)
8 7.7 (2.0) 7.1(1.7)
10 7.1(1.7) 7.5 (2.0)
Total 7.1(1.8) 7.3 (1.8)

Note. no-FR, no family risk of dyslexia; FR, at family risk of dyslexia.

8, or 10 months). The model that best fitted the data included the fixed factors trial type (alternating or
non-alternating trials), F(1, 2729) = 88.26, p < .001, contrast (native or non-native), F(1, 338) = 1.16,
p = .282, age, F(1, 338) = 3.94, p = .020, Trial Type * Contrast, F(1, 2729) = 8.24, p = .004, and Trial
Type * Contrast * Age, F(6, 906) = 2.78, p = .011. The two-way and three-way interactions show that
the effect of trial type on looking time varied across contrasts and ages. Therefore, separate analyses
for each contrast are presented in the next sections. The main effect of trial type indicates that the
infants listened longer to alternating trials than to non-alternating trials. Looking times decreased
with age, as indicated by the main effect of age. No main effect of contrast was found, indicating that
the overall looking times were not significantly different for the two contrasts.

The native contrast

Test phase. Looking times are reported in Table 5. A random effect modeling analysis included partic-
ipant as random factor and trial number as a repeated effect (covariance structure AR1). The fixed fac-
tors were trial type (alternating or non-alternating trials), age (6, 8, or 10 months), group (no-FR or FR
infants), and habituation stimulus (/fa:p/ or /fe:p/). A two-way interaction (Trial Type * Group) or a
three-way interaction (Trial Type * Age * Group) would show that groups (no-FR and FR) responded

u Alternating

Non-Alternating

Native Non-Native

Fig. 6. Mean looking times to alternating and non-alternating trials for the native and non-native contrasts. Error bars represent
standard deviations.
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Table 5
Looking times to alternating and non-alternating trials of the native contrast per group.
Group  Age Alternating  Non- Statistics Participants  Infants with longer
trials alternating looking times to
trials alternating trials®
(months) M (SD) M (SD) F p Cohen’sd  (N) n %
no-FR 6 99 (52) 80 (3.1) 904 .003 0.49 28 17 60
8 92 (60) 64 (3.00 1332 <001 0.66 24 15 62
10 76 (37) 54 (24) 2133 <001 0.76 27 20 74
All 89 (51) 6.6 (3.00 4207 <001 0.60 79 52 66
FR 6 9.7 (6.0) 75 (2.8) 466 .031 0.53 28 19 68
8 82 (49) 64 (31) 554 .019 0.48 24 18 75
10 89 (45) 73 (44) 1413 <001 036 27 17 63
All 90 (51) 71 (3.5) 2347 <001 046 79 54 68

Note. Looking times are given in seconds. no-FR, no family risk of dyslexia; FR, at family risk of dyslexia.
2 Number of infants who had on average longer looking times to alternating trials than to non-alternating trials.

differently to the alternating and non-alternating trial types and would indicate differences in dis-
crimination performance.

The model that best fitted the data included the fixed factors trial type (alternating or non-
alternating trials) and age (6, 8, or 10 months). This model yielded significant effects of (a) trial type
on looking time, F(1, 1346) = 71.63, p <.001, indicating that infants listened longer to alternating trials
than to non-alternating trials, and (b) age, F(2, 158) = 5.58, p = .005, indicating that overall looking
times decreased as age increased. As can be seen in Table 5, within the no-FR and FR groups, all age
groups discriminated the non-native vowel contrast. However, the effect sizes in Table 5 suggest that
there were differences between the groups. The effect size (Cohen’s d) per age group for the no-FR
infants increased from a moderate value (.49) to a large value (.76). This was not the case for the
FR infants, whose effect size dropped from a moderate effect size of .53 at 6 months to a moderate
to small effect size of .36 at 10 months. Large variations in looking times resulted in smaller effect
sizes, implying a less robust effect of trial type.

In sum, both groups of infants were able to generalize over speaker variations during habituation
and responded to those acoustic features that differentiate between Dutch /a:/ and /e:/ regardless of
whether the habituation stimulus was /fa:p/ or /fe:p/. However, whereas for the no-FR infants there
was an increase in the effect size of the mean difference between alternating and non-alternating tri-
als across age, this was not seen for the FR infants due to the 10-month-olds who showed more vari-
ance between infants.

The non-native contrast

Test phase. Table 6 displays the results of the test phase. A random effect modeling analysis included
participant as random factor and trial number as a repeated effect (covariance structure AR1). The
fixed factors were trial type (alternating or non-alternating trials), age (6, 8, or 10 months), group
(no-FR or FR infants), and habituation stimulus (/fa:p/ or /fe:p/).

The model that best fitted the data included the fixed factors trial type (alternating or non-
alternating trials), age (6, 8, or 10 months), group (no-FR or FR infants), and habituation stimulus (/
sen/ or [sen/). Infants looked longer to alternating trials than to non-alternating trials, F(1,
1321) = 12.63, p < .001. The significant Trial Type * Age * Group interaction, F(7, 545) = 3.69,
p = .001, was explored by Bonferroni-adjusted pairwise comparisons. No-FR infants aged 8 months
did not show a significant difference between alternating and non-alternating trials, whereas the
other two age groups did (see Table 6). FR infants showed no evidence of discrimination in any of
the age groups. The Trial Type * Habituation Stimulus * Group interaction was also significant, F(3,
435) = 5.59, p = .001. Post hoc analyses showed that the no-FR infants discriminated the contrast
regardless of habituation stimulus. FR infants did not discriminate the contrast, also regardless of
habituation stimulus. The fixed factor habituation stimulus yielded no main effect, F(1, 158) = 1.33,
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Table 6
Looking times to alternating and non-alternating trials of both groups for the non-native contrast.
Group  Age Alternating  Non- Statistics Participants  Infants with longer
trials alternating looking times to
trials alternating trials®
(months) M (SD) M (SD) F p Cohen’sd  (N) n %
no-FR 6 86 (49) 64 (3.6) 1137 .001 0.39 31 25 80
8 70 (27) 71 (3.1) 028 .599 -0.03 27 14 51
10 84 (42) 6.0 (21) 2082 <001 044 26 22 85
All 81 (41) 64 (3.0 0.45 84 61 73
FR 6 85 (6.1) 76 (23) 140 237 0.23 31 17 55
8 71 (35) 73 (27) 063 427 -0.07 27 11 41
10 84 (52) 77 (5.1) 3.01 .081 0.14 26 18 69
All 80 (51) 76 (3.6) 226 133 0.10 84 46 55

Note. Looking times are given in seconds. no-FR, no family risk of dyslexia; FR, at family risk of dyslexia.
2 Number of infants who had on average longer looking times to alternating trials than to non-alternating trials.

p = .250, and no significant interaction between trial type and habituation stimulus was found, F(1,
1251) = 0.09, p = .767, or among trial type, habituation stimulus, and age, F(5, 356) = 0.67, p = .647.
There was no effect of age, F(2, 157) = 0.07, p = .935, meaning that no evidence was found for a differ-
ence in overall looking times among age groups. The main effect of group was not significant, F(2,
157) = 0.36, p = .551.

Unlike the results of the native contrast, performances of the no-FR and FR groups clearly differ.
The 6- and 10-month-old no-FR infants showed evidence of discrimination of the non-native vowel,
whereas the 8-month-olds did not. The FR infants did not show evidence of non-native discrimination
at any of the ages.

Individual analyses: Bayesian hierarchical modeling analyses

Findings of the Bayesian hierarchical regression model are presented in Table 7. The parameter of
interest was trial type (alternating or non-alternating trials) because this allowed us to establish
whether the looking times differed between the alternating and non-alternating conditions for the
individual infants. The aim was to classify infants as discriminators or nondiscriminators. Using a

Table 7
Numbers and percentages of infants whose 95% Cls did not include the value zero.

Bayesian Hierarchical modeling

Number (and %) of infants whose
95% Cls did not include zero

Contrast Age group Total number of participants Group
(months) no-FR FR

Native 6 55 3/28 (11%) 1/27° (4%)
8 48 4[24 (17%) 16/24 (67%)
10 54 15/27 (56%) 6/27 (22%)
Subtotal 158 20/79 (25%) 2379 (29%)

Non-native 6 61 19/30% (63%) 0/31 (0%)
8 53 0/27 (0%) 0/26% (0%)
10 51 21/25 (84%) 0/26 (0%)
Subtotal 168 41/84 (49%) 0/84 (0%)
Total 326 61/163 (37%) 0/163 (0%)

Note. Data of 4 participants were not included in the Bayesian analysis due to missing data. The superscript letter “a” in the no-
FR (no family risk of dyslexia) and FR (at family risk of dyslexia) columns indicates age groups for which data were missing. CI,
credibility interval.
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frequentist approach, this would mean that an individual is classified as being able to discriminate a
contrast if the mean difference between alternating and non-alternating trials differs significantly
from zero. Here we followed a similar criterion. We checked which infants had the value zero in their
95% credibility interval (CI) for the trial type parameter; inclusion of value zero means that there
is no evidence for a difference in looking times between the two trial types (alternating and
non-alternating). See Table 7 for the percentages of infants for whom the 95% CI did not cross zero,
and see Appendices C to F for the group and individual estimates and the variance per group per
contrast.

Native vowel contrast

Of the no-FR infants, 11% of the 6-month-olds, 17% of the 8-month-olds, and 56% of the 10-month-
olds did not have zero in their 95% Cls (see Table 7). Hence, these values are taken to reflect the per-
centages of children who discriminated between the native vowels. Fig. C1 in Appendix C shows the
estimated medians and CIs. The data indicate that the individual 95% ClIs for the 8-month-olds show
larger uncertainty than the individual 95% Cls for the other age groups. Fig. C2 in Appendix C shows
that the variance estimates are larger for the 8-month-olds than for the other age groups; the 8-
month-olds differ more from one another than the 6- and 10-month-olds. Larger variance at the group
level influences the individual estimates because these become more uncertain. Hence, fewer infants
can be classified as discriminators. Figs. C1 and C2 show that the estimated effect of condition in the
10-month-olds is comparable to that in the 8-month-olds. The higher percentage of infants who do
not have zero in their Cls is due to the smaller variance in the 10-month-olds as a group. They resem-
ble one another more than do the 8-month-olds; therefore, we are more confident about their esti-
mated condition effects at the individual level. Hence, this might indicate that discrimination of the
native /a:/-/e:/ contrast becomes more robust with maturation.

The percentages of the FR infants who do not have zero in their Cls, and thus are considered to dis-
criminate the native contrast, are 4% for the 6-month-olds, 67% for the 8-month-olds, and 22% for the
10-month-olds (see Table 7). Figs. D1 and D2 in Appendix D show that the group estimates of the con-
dition effect are similar for the 8- and 10-month-olds. The 10-month-old FR infants show more vari-
ance in the group estimates of the condition effect (Fig. D2). Hence, they show larger uncertainty in
their individual 95% Cls, similarly to the no-FR 8-month-olds. The finding that, compared with the
8-month-old FR infants, so few 10-month-old FR infants can be classified as discriminators is due
to large uncertainty in the individual estimates of the 95% CI. As in the 10-month-olds, very few
6-month-olds have CIs that do not include the value zero. The group variances of the 6- and
8-month-olds (right panel of Fig. D2) are comparable. So, variance at the group level cannot explain
the difference in the percentages of infants (6-month-olds vs. 8-month-olds) who do not include
the value zero in their CIs. However, the estimate of the condition effect and the CI of this effect
are closer to zero (left panel of Fig. D2) for the 6-month-olds. In this hierarchical model, the estimated
effect of condition at the group level functions as a prior for the individual condition effect estimates,
and individual estimates are pooled toward these group estimates. The literature has shown that
incorporating group structures into the analyses leads to fewer mistakes for the individual parameters
that are estimated in terms of the magnitude and sign (direction) of the effects. This issue is addressed
more elaborately in the literature on Type S and Type M errors, mostly by Gelman and Tuerlinckx
(2000). Thus, keeping the group level variance equal, a smaller group-level estimate for the condition
effect will pool the individuals toward smaller individual effects, as can be seen in the 6-month-olds.
At the group level, we found evidence for discrimination and homogeneity of the group. Because the
group estimate and CI are closer to zero, the individual estimates are as well.

To summarize, the no-FR infants can discriminate the native contrast. The data suggest an enhance-
ment effect; the percentage of infants who discriminate the contrast at 6 months of age is low, but this
increases with age. The FR infants show a different developmental pattern. The 6-month-olds show
evidence of discrimination at the group level, but very few individuals can be classified as discrimina-
tors. The 8- and 10-month-olds are able to discriminate the native contrast at the group level. At the
individual level, however, too much uncertainty remains to classify many of the 10-month-olds as
discriminators.
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Non-native vowel contrast

The percentages of no-FR infants who do not have zero in their 95% Cls are 63% for the 6-month-
olds, 0% for the 8-month-olds, and 84% for the 10-month-olds. In Figs. E1 and E2 in Appendix E, it can
be seen that the low percentage of the 8-month-olds cannot be attributed to larger uncertainty of the
Cls or to the larger variation of the group estimates. The individual estimates of the median condition
effect are close to zero, and the 95% Cls convincingly cross zero.

The FR infants show different results; for all age groups, none of the FR infants discriminated
between the non-native vowels given that they all have zero in their 95% Cls. These results cannot
be explained by larger variability or uncertainty; the individual estimates of the means are all at or
close to zero (see Figs. F1 and F2 in Appendix F). However, although the percentage of the 10-
month-old infants who do not have zero in their CIs is 0%, the group estimate for the condition effect
is not close to zero, which indicates some effect of condition at the group level. In addition, not all the
individual mean estimates are close to zero (see right panel of Fig. F1). Hence, some Cls barely cross
the zero, as was seen in the 6-month-old FR infants in the native condition. The 6- and 8-month-old FR
infants did not discriminate the non-native contrast at the group level or at the individual level. At
10 months of age, we found discrimination at the group level, but the uncertainty at the individual
level means that we cannot classify any individual as a discriminator.

Together, the cross-sectional data of the no-FR infants suggest a U-shaped pattern of discrimination
of the non-native contrast (discrimination at 6 months, not at 8 months, but again at 10 months), sim-
ilar to our previous findings (de Klerk et al., 2019; de Klerk, Veen et al., 2019). The 6- and 8-month-old
FR infants did not show evidence of discrimination at the individual level or at the group level. How-
ever, as was seen with the 6-month-olds in the native condition, the 10-month-olds did show some
evidence of discrimination at the group level but not at the individual level.

Discussion

The aim of this study was twofold. The first was to evaluate whether a similar pattern of perceptual
attunement would be attested for children with and without a family risk of dyslexia. The second was
to assess whether this pattern was reflected in group findings as well as individual-based analysis. To
look into these questions, discrimination of native and non-native phonemes in 6-, 8-, and 10-month-
old infants was studied. Perceptual attunement would be attested if (a) the native contrast (/a:/-/e:/)
was discriminated at all ages or when discrimination improved with age and (b) discrimination per-
formance of the non-native contrast (English /e/-/®/) declined with age. In light of the proposed
speech perception deficit in children with (an FR of) dyslexia (e.g., Molfese, 2000; Richardson et al.,
2003; Werker & Tees, 1987), it was expected that the FR infants would show evidence of discriminat-
ing the salient native contrast but that this discrimination would show a slower improvement than in
the no-FR infants. With respect to the subtle non-native contrast, it could be the case that the FR group
would not discriminate this contrast at any time point (e.g., Richardson, et al., 2003; van Leeuwen
et al., 2006) or that there would be continued discrimination as opposed to a decrease in the no-FR
group (Noordenbos et al., 2012).

There was no evidence for a difference between the no-FR and FR infants on the native speech con-
trast. The (frequentist) group findings of the native contrast showed that both the no-FR and FR infants
discriminated salient Dutch /a:/ from /e:/. However, the effect sizes show subtle differences between
the two groups; whereas there was an increase in effect sizes over age for no-FR infants between alter-
nating and non-alternating trials at the group level, this was not found for the FR infants. Hence, the
variability reduces with age in no-FR infants. This could be indicative of an increasingly robust dis-
crimination performance with age/maturation, aligning with theories of enhancement of native
speech perception (Kuhl et al., 2008; Tsuji & Cristia, 2014). The FR group does not show this increase,
which may imply that there is a subtle delay. A longitudinal study extending to older age groups could
be used to investigate whether an enhancement effect does surface for the FR group at a later age.

The Bayesian individual outcomes showed that the percentage of no-FR infants who discriminate
the native contrast at 6 months of age is low and increases with age. The observation that the 8-
month-olds, compared with the 10-month-olds, showed a relatively low percentage of discriminators
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is explained by the larger variance in the group estimates. The pattern of the FR infants at the individ-
ual level is different. The 6-month-olds showed (very) weak evidence of (native) discrimination, and a
relatively low percentage of 10-month-olds could be classified as discriminators compared with the 8-
month-olds. The explanation is the same here as it is for the 8-month-old no-FR infants, namely that
the variance for the 10-month-old FR infants is larger than that for the 8-month-olds. Larger variance
at the group level influences the individual estimates as these become more uncertain. Hence, fewer
infants can be classified as discriminators. The 10-month-old FR infants as a group behave less coher-
ently given that they differ more from one another, matching the findings from the frequentist anal-
ysis. This could be indicative of a subtle delay in speech perception development.

The outcomes of the non-native contrast showed a different picture, with pronounced differences
between the no-FR and FR groups. Both the frequentist group analysis and the Bayesian individual
analysis suggest a pattern of U-shaped development for the no-FR group but not for the FR group.
The 6- and 10-month-old no-FR infants showed evidence of discrimination, whereas the 8-month-
olds did not. These findings seem to confirm the findings of perceptual attunement between 6 and
8 months of age (Kuhl et al., 1992; Polka & Werker, 1994). In a previous study (de Klerk et al.,
2019), we proposed that the improved performance of infants at 10 months is due to their being better
equipped than 6- and 8-month-olds to make use of the speaker variation presented during the habit-
uation phase.

For the FR infants, the frequentist group analysis showed no evidence of discrimination in any of
the age groups. This was mirrored in Bayesian hierarchical modeling, where none of the FR infants
could be classified as discriminators at any age. These findings are difficult to relate to the classical
view on perceptual attunement. However, the literature on perceptual attunement has shown that
salience influences the ability to discriminate, with more subtle and less salient contrasts needing
to be acquired through language exposure (e.g., Liu & Kager, 2015; Narayan, Werker, & Beddor,
2010). Hence, the finding that even the 6-month-old FR infants did not show evidence of discrimina-
tion could be due to a lack of initial sensitivity to subtle contrasts and, because infants are not exposed
to this non-native contrast, their discrimination performance does not improve. The current findings
indicate that it might be important to investigate the developmental trajectory of discrimination per-
formance of subtle native contrasts. Based on the data presented in this study, a delay in discrimina-
tion performance is expected.

FR infants showed evidence of discriminating the native contrast but not the non-native contrast.
Hence, the data of the current study support the notion that FR infants have a (subtle) speech percep-
tion deficit. This is in line with studies that investigated speech perception at an early age (e.g.,
Richardson et al., 2003) and also with studies that investigated the relation between early speech
sound processing and later reading outcomes retrospectively (e.g., Molfese, 2000; van Zuijen, et al.,
2013). Outcomes of the current study do not support the hypothesis that infants remain sensitive
to irrelevant non-native contrasts (Noordenbos et al., 2012). Furthermore, the data of the current
study suggest a subtle delay in the development of speech sound categories. There is evidence that
distributional learning plays a critical role in the acquisition of native speech sound categories
(Kuhl et al., 1992; Maye, Weiss, & Aslin, 2008). Notably, Maye et al. (2008) showed that the frequency
distribution of non-native speech sound tokens (unimodal or bimodal) that differ along an acoustic
parameter determines whether 8-month-old infants assign them to one or two classes. We hypothe-
size that FR infants are less proficient in exploiting such distributional information (see Kerkhoff, de
Bree, de Klerk & Wijnen, 2013; Wijnen, 2013). This is a hypothesis we are currently investigating.

There are three findings in the current study that require clarification. The first is the finding that
the 8-month-old no-FR infants have a lower percentage of discriminators of the native contrast com-
pared with the 6- and 10-month-olds. This finding, suggestive of a U-shaped development of native
vowel discrimination, is due to the larger variance at the group level at 8 months. In line with
Werker, Hall, and Fais (2004), we propose that the heterogeneous performance at this age reflects a
developmental (reorganizational) shift in vowel perception and that it does not reflect a loss of dis-
crimination. The shift refers to a change in processes and strategies applied during speech perception.
Younger infants react to all perceivable phonetic differences and thus discriminate all speech sounds.
During the reorganizational phase, they begin to learn to categorize speech sounds in phonemic units
(Kuhl, 2004). Because not all infants begin their shift at exactly the same time point, this could explain
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the heterogeneity of group performance at 8 months of age. Although the reorganization in speech
perception has so far been observed in tasks assessing discrimination of non-native speech sounds
that are assimilated to native speech sounds (Maurer & Werker, 2014), we submit that our
individual-based analysis also captured this pattern for a salient native contrast. Hence, we argue that
the U-shaped pattern reveals the underlying process of speech perception, which is in line with other
studies that interpret U-shaped findings (e.g., Bjorklund, Miller, Coyle, & Slawinsky, 1997; Kachel,
Hardecker, & Bohn, 2021; Pauls, Macha, & Petermann, 2013; Siegler, 2004).

The second finding that requires further consideration is related to this first issue of a “dip” in per-
formance of the 8-month-olds in the native speech contrast. It concerns the finding that no enhance-
ment effect was found for the 10-month-old FR infants in the native contrast. Instead, the analyses at
the individual level showed a declining percentage of infants that can be classified as discriminators.
We would expect more robust discrimination of the native contrast by the 10-month-old FR infants on
the basis of the finding that 8-month-old FR infants are able to discriminate this contrast. The 10-
month-olds have had more experience with their native language and the salient native contrast
and therefore would show better discrimination. However, if FR infants indeed have a subtle delay
in the development of speech sound categories, as our data suggest, the lower percentage of FR infants
who discriminate the native contrast at 10 months of age could be an indicator of them being at the
reorganizational phase, similar to the 8-month-old no-FR infants. Further research in the underlying
processes of this reorganization shift would be welcome.

The third finding that needs clarification is that the no-FR 10-month-olds could discriminate the
non-native contrast given that this was not anticipated on the basis of perceptual attunement. This
cannot be due to exposure because infants are not exposed to this non-native contrast in real life.
We propose that the 10-month-old no-FR infants could discriminate this contrast because they were
better able to make use of the speaker variation presented during the habituation phase. Speaker vari-
ation stimulates phonetic learning because it demands abstraction of invariant features (Lively et al.,
1993), but this effect is likely to become stronger as age increases (see also de Klerk et al., 2019; Rost &
McMurray, 2009). The fact that this effect was not seen in the FR infants might indicate that this pho-
netic distributional information caused by speaker variation is not helpful to the same extent for FR
infants at this age as it is for their no-FR peers.

We have shown that individual analysis can be used to infer whether infants in two different
groups are discriminators of native and non-native speech sound contrasts. Moreover, we found large
differences between the two groups of infants, indicating that the method presented here could be
used to study language(-related) development prospectively. Although previous studies have con-
nected infant speech perception data to later language outcomes (e.g., Newman, Ratner, Jusczyk,
Jusczyk, & Dow, 2006; Tsao, Liu, & Kuhl, 2004), using Bayesian hierarchical modeling might render
even more sensitive results because it is able to produce both group and individual estimates and
could be extended in a straightforward manner to address prospective research questions, relating
early speech perception to later language outcomes. For example, the results of the individual esti-
mates can be used in a prospective longitudinal design in which language outcomes, such as vocabu-
lary size, mean length of utterance, sentence complexity, and reading outcomes, are predicted by the
(amount of) discrimination performance at this early age. Thus, future studies can provide valuable
input on the question of whether discrimination skills at an early age are associated with reading
problems or are instead a risk factor (endophenotype) for developing dyslexia (Moll, Loff, &
Snowling, 2013).

Although the method presented here for identifying discriminators seems to be a fruitful avenue
for gaining more understanding of development, group differences, and prospective relationships,
some limitations need to be mentioned. In the current approach, individual and group estimates
are influencing one another. It is desirable to obtain a sufficiently large sample size to estimate
group-level parameters with confidence. Another limitation is that we did not assess discrimination
performance longitudinally and relied on cross-sectional data. Testing speech sound discrimination
longitudinally would allow us to establish whether the U-shaped patterns are also attested in such
a sample and would provide more insight into whether individual classification is as valuable as we
take it to be.
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To conclude, we hope to have shown that individual analysis in speech discrimination experiments
with infants is a promising avenue for further research. There are still some challenges using the Baye-
sian hierarchical approach, but it provides us with a tool that allows better understanding how speech
perception develops at an individual level (preferably longitudinally) as well as looking prospectively
at the relationship with other facets of language and literacy development.
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Appendix A. Numbers of participants divided by habituation stimulus and contrast order in the
native condition

Age group (months)  Group  Participants (N)  Habituation stimulus /fa:p/  Native first®

6 No-FR 28 13/28 16/28
8 24 9/24 15/24
10 27 20/27 15/27
Total 79 42/79 46/79
6 FR 28 13/28 16/28
8 24 6/24 14/24
10 27 13/27 8/27

Total 79 32/79 38/79

Note. no-FR, no family risk of dyslexia; FR, at family risk of dyslexia.
2 Number of participants who received the native contrast first during the test session.

Appendix B. Numbers of participants divided by habituation stimulus and the contrast order in
the non-native condition

Age group (months) Group Participants (N) Habituation stimulus /[sen/ Non-native first®

6 no-FR 31 18/31 18/31
8 27 18/27 16/27
10 26 14/26 17)26
Total 84 50/84 51/84
6 FR 31 17/31 17/31
8 27 19/27 15/27
10 26 11/26 24/26
Total 84 47/84 56/84

Note. no-FR, no family risk of dyslexia; FR, at family risk of dyslexia.
2 Number of participants who received the non-native contrast first during the test session.
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Appendix C. Individual and group estimates for the no-FR infants and native contrast

See Figs. C1 and C2.
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Fig. C1. Results of the hierarchical model for each individual per age group. The rectangles represent the means; the red bars
represent the 95% credibility intervals (Cls). no-FR, no family risk of dyslexia.

Group level condition effect na_nfr

6 months é 6 months

o

8 months _,—A,—,—,_ 8 months‘—

10 months A 10 months ‘
. 0.1 0.00

02 0.1 00 005 010 015 020 0.25

Group level SD condition effect na_nfr

Fig. C2. Group estimates for condition effects and variation per age group. The left panel shows the group estimates for
condition effects. The right panel shows the standard deviation (SD) of the condition effect per age group. The densities
presented in red, represent the 95% credibility intervals. no-FR, no family risk of dyslexia.
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Appendix D. Individual and group estimates for the FR infants and native contrast

See Figs. D1 and D2.
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Fig. D1. Results of the hierarchical model for each individual per age group. The rectangles represent the means; the red bars
represent the 95% credibility intervals (CIs). FR, at family risk of dyslexia.
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Fig. D2. Group estimates for condition effects and variation per age group. The left panel shows the group estimates for
condition effects. The right panel shows the standard deviation (SD) of the condition effect per age group. The densities,
presented in red, represent the 95% credibility intervals. FR, at family risk of dyslexia.
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Appendix E. Individual and group estimates for the no-FR infants and non-native contrast

See Figs. E1 and E2.
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Fig. E1. Results of the hierarchical model for each individual per age group. The rectangles represent the mean; the red bars
represent the 95% credibility intervals (Cls). no-FR, no family risk of dyslexia.
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Fig. E2. Group estimates for condition effects and variation per age group. The left panel shows the group estimates for
condition effects. The right panel shows the standard deviation (SD) of the condition effect per age group. The densities,
presented in red, represent the 95% credibility intervals. no-FR, no family risk of dyslexia.
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Appendix F. Individual and group estimates for the FR infants and non-native contrast

See Figs. F1 and F2.
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Fig. F1. Results of the hierarchical model for each individual per age group. The rectangles represent the means; the red bars
represent the 95% credibility intervals (CIs). FR, at family risk of dyslexia.
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Fig. F2. Group estimates for condition effects and variation per age group. The left panel shows the group estimates for

condition effects. The right panel shows the standard deviation (SD) of the condition effect per age group. The densities,
presented in red, represent the 95% credibility intervals. FR, at family risk of dyslexia.
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