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Enhancement of magnon-magnon entanglement inside a cavity
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Magnon-photon coupling inside a cavity has been experimentally realized and has attracted significant
attention for its potential docking with quantum information science. Whether this coupling implies the steady
entanglement of photons and magnons is crucial for its usage in quantum information but is still an open question.
Here we study the entanglement properties among magnons and photons in an antiferromagnet-light system
and find that the entanglement between a magnon and a photon is nearly zero, while the magnon-magnon
entanglement is very strong and can be even further enhanced through the coupling with the cavity photons.
The maximum enhancement occurs when the antiferromagnet is resonant with the light. The essential physics
can be well understood within the picture of cavity-induced cooling of the magnon-magnon state near its joint
vacuum with stronger entanglement. Our findings can be used to cool magnetic magnons toward their ground
state and may also be significant to extend the cavity spintronics to quantum manipulation. Furthermore, the
hybrid antiferromagnet-light system provides a natural platform to manipulate the deep strong correlations of
continuous modes with a generic stable condition and easy tunability.

DOI: 10.1103/PhysRevB.101.014419

I. INTRODUCTION

Antiferromagnetic (AFM) spintronics has gained interest
because of its better stability and fast dynamics over its
ferromagnetic counterpart [1,2]. Of particular interest are
antiferromagnetic spin waves (magnons) that show much
richer physics than ferromagnets, such as the spin pumping
at the interface of an AFM/normal-metal bilayer [3], magnon
spin current enhancement through an AFM layer [4–7], long-
distance magnon transport [8–10], and magnon-driven mag-
netic structure motion [11–13]. It was recently theoretically
proposed [14] and experimentally demonstrated [15–17] that
antiferromagnetic magnons can be strongly coupled to the
light by placing an AFM element into a cavity. The ob-
served coupling spectrum takes on energy level repulsion
near resonance, while the coupling strength (the energy gap
at zero detuning) is proportional to the square root of the
number of spins [14,15]. The magnon-photon hybrid state
(magnon-polariton) not only provides a promising platform to
study the fundamental physics of the macroscopic quantum
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state [18] but also shows promising applications in quan-
tum information science and engineering, such as quantum
transducers, sensors, and memories [19–22]. Furthermore, the
integration of the magnon-polariton with quantum qubits may
enable the precise control and readout of magnetic excitations
[23,24].

Most studies on magnon-polariton hybrid systems have
focused on the determination of the coupling spectrum of
the magnon-polariton, which can be well described by the
classical harmonic oscillator model [25]. A little work has
been done on the quantum correlations among magnons and
photons, especially their entanglement properties. This issue
becomes important when the magnon-polariton reaches the
quantum regime at low temperature and may further manifest
its role if it is intended to be used as a solid-state entanglement
source for quantum tasks such as quantum channel discrimi-
nation [26].

Interesting theoretical and experimental studies have also
been carried out for strongly coupled magnon and photon
modes in ferromagnets and ferrimagnets, where reversible
long-lived magnon-photon entangled states may be gener-
ated [27–32]. The theoretical calculations performed are es-
sentially equivalent to those of the Tavis-Cummings model
[33–37] in that the ferromagnetic spin wave (magnon) in-
teracts strongly with a single-mode cavity in the absence of
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dissipation. In this reversible system the magnon is coupled
to the cavity mode through the beam-splitter-type interaction
[27,28,38–40]. In this case, the generated magnon-photon en-
tangled state results from the coherent exchange of excitation
between the magnon and cavity-photon states and, due to the
strong coupling, may exhibit long-lived Rabi oscillations.

Other studies on magnon-photon entanglement have been
carried out for dissipative (irreversible) three-mode magnon-
photon-phonon systems in which the nonlinear interaction
between these modes produces steady-state entanglement be-
tween irreversibly decaying modes [41]. It has also been
shown that two magnons can be entangled through their
simultaneous interaction with cavity photons [21,42]. More
interestingly, the magnon and photon could form a stationary
Bell state through a dissipative beam-splitter-type interaction
[43]. Recently, a proof-of-principle experiment established
the use of the hybrid magnon-photon system as a single-
magnon detector [40].

In this paper, we study the steady-state entanglement
properties among magnons and photons in an AFM-light
system. Here, the coupling configuration between the modes
is markedly different from those present, for example, in ferro-
magnets. In the AFM, the two types of magnons are mutually
coupled to each other through a parametric-type interaction
and are coupled through a beam-splitter-type interaction and
parametric-type interaction to the photon mode. In addition,
the modes decay with nonzero decay rates resulting from the
coupling of the modes to an external noise environment. We
find that these couplings lead to steady-state magnon-photon
entanglement which is very weak near the anticrossing point
of the spectrum. However, the magnon-magnon entanglement
is found to be very strong at this anticrossing point and can
even be significantly stronger than those in the absence of
light. We explain these entanglement properties as result-
ing from the deep strong coupling between the magnons.
We use the cavity-cooling picture to explain the essential
physics of the process which is behind the enhancement of
the entanglement, that the cavity photons effectively cool the
magnons toward their vacuum state. This physical principle
can be further interpreted as the entanglement evolution of a
system with distinguished correlation properties of its ground
state and excited state and thus naturally gives a unified
understanding of the anomalous entanglement change in the
literature [44,45]. Our results explore further the entangled
nature of antiferromagnetic magnons and thus allow us to
understand better the properties of antiferromagnets as well
as magnon-magnon correlations. In addition, these results
provide a simple picture of how to cool magnetic magnons to-
ward their ground state with the assistance of cavity photons.
Besides the importance to quantify the entanglement between
magnons and photons, the determination of magnon-magnon
entanglement also becomes essential for the fundamental
interest in the macroscopic quantum effect and may have a
potential application as a solid source for quantum science and
technologies. Furthermore, our finding may be significant if
one tends to use the hybrid magnon-photon state in various
quantum tasks, such as quantum communication, computa-
tion, and information science, where the entanglement among
magnons is an important resource.

FIG. 1. Scheme of a two-sublattice ferrimagnet and its coupling
with an electromagnetic wave. The magnetic moments on the two
sublattices (red and blue arrows) pointing along ±z directions rep-
resent the classical ground state of the system. The bottom panel
indicates the existence of magnon-magnon coupling.

II. GENERAL FORMALISM

We begin with a description of a general theory of
the magnet-light interaction in a two-sublattice magnet, as
illustrated in Fig. 1. We concentrate on the AFM case followed
by a brief discussion on ferrimagnetic (FiM) and ferromag-
netic (FM) cases. The Hamiltonian of a magnet coupled to
a microwave field inside a cavity through its magnetic field
component can be written as H = HFiM + Hph + Hint, where
HFiM, Hph, and Hint are, respectively, the Hamiltonians for the
FiM, photon, and their interaction and read

HFiM = J
∑
l,δ

Sl · Sl+δ −
∑

l

(H + Han ) · Sl ,

Hph = 1

2

∫ (
ε0E2

f + 1

μ0
B2

f

)
dxdydz,

Hint = −
∑

l

Sl · H f , (1)

where J > 0 is the exchange constant; Sl is the spin on site
l; δ is the displacement of the two nearest spins; H and Han

are the external static and anisotropy fields, respectively; E f

and B f are electric field and magnetic inductance components
of the electromagnetic (EM) wave; H f is the corresponding
magnetic field; and ε0 and μ0 are, respectively, vacuum per-
mittivity and susceptibility. Note that H f is time dependent
and it drives the dynamics of the whole system.

Using the Holstein-Primakoff transformation [46]

S+,a
i =

√
2Saai, S+,b

i =
√

2Sbb†
i ,

S−,a
i =

√
2Saa†

i , S−,b
i =

√
2Sbbi,

Sz,a
i = Sa − a†

i ai, Sz,b
i = b†

i bi − Sb,

(2)

where S±,μ
i = Sx,μ

i ± iSy,μ
i are the spin raising and lowering

operators and ai, bi, and (a†
i , b†

i ) are the magnon annihilation
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(creation) operators on the ith site, the HFiM Hamiltonian can
be written as

HFiM =
∑

q

[ωaa†
qaq + ωbb†

qbq + gab(a†
qb†

q + aqbq)], (3)

where ωa = Hex,b + Han,a + H, ωb = Hex,a + Han,b − H ,
Hex,μ = 2zJS2

μ (μ = a, b), Sμ is the magnitude of spin vector,
z is the coordination number, and gab = √

Hex,aHex,b cos(qδ)
is the coupling constant of magnon modes excited on the
two sublattices. In Eq. (3), a†

q and b†
q (aq and bq) are the

creation (annihilation) operators of the magnons on the two
sublattices with wave vector q, which satisfy the standard
commutation relations for bosons. In the interaction part of
the Hamiltonian (3), we keep terms to second order in the
coupling strength; the higher-order terms involving four or
more magnon operators have been neglected because their
excitation probabilities are typically very small when the
temperature of the system is far below the Néel temperature,
as considered here.

It should be noted that the Hamiltonian (3) is obtained
without using the rotating-wave approximation because the
coupling constant between the magnons gab is of the order
of the frequencies ωa and ωa. This strong coupling, leading
to the parametric-type coupling between the two magnons
(a†b† + ab), results from the antiferromagnetic nature of the
system, where the spin reduction in sublattice a (b) is always
accompanied by spin increasing in sublattice b (a). This makes
the antiferromagnet system different from a large class of
multimode systems considered in the weak-coupling regime,
where the beam-splitter-type terms play a dominate role in the
rotating-wave approximation. The parametric-type terms are
usually omitted as these terms are accompanied by the fast-
oscillating terms, which average to zero over a long evolution
time.

Further, a circularly polarized EM wave can be quantized
as Hph = ∑

q ωcc†
qcq, where c†

q (cq) is the creation (anni-
hilation) operator of the quantized EM mode with wave
vector q and ωc is its frequency [47]. Next, by substituting
the quantized form of the oscillating magnetic field, H f =
i
√

μ0ωq/4V
∑

q q × [u(q)cqeiq·r − u∗(q)c†
qe−iq·r], into Hint,

the resulting interaction term between the magnons and
the photon field becomes Hint = ∑

q[gac(a†
qc†

q + aqcq) +
gbc(b†

qcq + bqc†
q )], where gμc = √

μ0ωcSμN/2V , with μ =
a, b being the interaction constant between the magnon μ and
the photon mode c [14], and N and V are the number of spins
on each sublattice and the volume of the cavity. Hence, the
total Hamiltonian can be written as

H =
∑

q

[ωaa†
qaq + ωbb†

qbq + gab(a†
qb†

q + aqbq)]

+
∑

q

[ωcc†
qcq + gac(a†

qc†
q + aqcq) + gbc(b†

qcq + bqc†
q )].

(4)
Note that the two types of magnons are coupled with photons
in different ways. This is because the angular momentum con-
servation principle implies that circularly polarized light can
interact with only one type of magnon through the particle-
conserving process (beam-splitter-type interaction) while the
other type of magnon can be excited only without conserving

the particle number. If we use elliptical or linearly polarized
light, the Hamiltonian will be different, but the essential
physics presented below are similar.

To proceed further note that the slope of the photon
dispersion is much steeper than that of the magnon; hence,
the photon can couple with the magnon only around q = 0,
i.e., the magnetic resonance mode. Therefore, for simplicity,
we treat q = 0 such that the sum in Hamiltonian (1) can
be removed and gab = √

Hex,aHex,b. From now on, we also
eliminate the subscript q for expression simplicity; then the
resultant Hamiltonian reads

H = ωaa†a + ωbb†b + gab(a†b† + ab)

+ ωcc†c + gac(a†c† + ac) + gbc(b†c + bc†),
(5)

in which gab = √
Hex,aHex,b is the coupling constant between

magnon modes excited on the two sublattices and a†, b†, and
c† (a, b, and c) refer to the creation (annihilation) operators
for magnons corresponding to the uniform precession mode
and photons, respectively.

The Hamiltonian (5) leads to the quantum Langevin
equations,

da

dt
= −(γa + iωa)a − igabb† − igacc† +

√
2γaain,

db

dt
= −(γb + iωb)b − igaba† − igbcc +

√
2γbbin,

dc

dt
= −(γc + iωc)c − igaca† − igbcb +

√
2γccin, (6)

where, in accordance with the standard fluctuation-dissipation
theorem [47], we have included dissipation terms; γa, γb,
and γc are the damping rates of the modes, and ain, bin,
and cin are input quantum noises for each mode. We will
assume the Gaussian nature of the input noises [48], which
have zero mean average and a δ correlation in the form of
〈ain(t )a†

in(t ′)〉 = 〈bin(t )b†
in(t ′)〉 = 〈cin(t )c†

in(t ′)〉 = δ(t − t ′).
To quantify the entanglement of two arbitrary modes in

the system, we introduce the quadrature components of the
field operators of each mode as Xμ = (μ + μ†)/

√
2 and Yμ =

(μ − μ†)/
√

2i (μ = a, b, c). Then, introducing a vector u =
(Xa,Ya, Xb,Yb, Xc,Yc)T for the quadrature components, we
can put the Langevin equation (6) into matrix form,

du/dt = M̄u + �uin, (7)

where M̄ is the drift matrix,

M̄ =

⎛
⎜⎜⎜⎜⎜⎝

−γa ωa 0 −gab 0 −gac

−ωa −γa −gab 0 −gac 0
0 −gab −γb ωb 0 gbc

−gab 0 −ωb −γb −gbc 0
0 −gac 0 gbc −γc ωc

−gac 0 −gbc 0 −ωc −γc

⎞
⎟⎟⎟⎟⎟⎠, (8)

uin = (Xin,a,Yin,a, Xin,b,Yin,b, Xin,c,Yin,c)T , and � =
diag(

√
2γa,

√
2γa,

√
2γb,

√
2γb,

√
2γc,

√
2γc).

The linearity of the Langevin equation together with the
Gaussian nature of the noise implies that the modes will
decay to a stationary Gaussian state, which can be fully
characterized by a stationary covariance matrix V defined
as Vi j = 〈uiu j + u jui〉/2. The matrix V is obtained by solv-
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ing the Lyapunov equation [49], M̄V + VM̄T = −D, where
D = diag(γa, γa, γb, γb, γc, γc). The stability of the stationary
state will be checked using the Routh-Hurwitz criterion [50].
According to the criterion, the system is stable if all the
eigenvalues of M̄ have negative real parts, which, as we shall
see, is almost automatically satisfied for an AFM.

In terms of the covariance matrix, the degree of entangle-
ment between two modes of interest can be quantified by the
logarithmic negativity defined as EN = max [0,− ln[2η−]],

where η− =
√∑

(V′) − [
∑

V′2 − 4 det V′]
1/2

/
√

2, with∑
V′ and det V′ being the two symplectic invariants of

the reduced covariance matrix V′ of two modes [51,52]
(see Appendix A for the calculation of the two symplectic
invariants).

III. ANTIFERROMAGNETIC MAGNON-MAGNON
ENTANGLEMENT

In an AFM, the sublattice permutation symmetry implies
Sa = Sb ≡ S, γa = γb ≡ γm, gab = Hex ≡ 2zJS2, gac = gbc ≡
gmp. In this case, we can analytically solve the eigenequation
det(λI − M̄) = 0 and obtain λ1,2,3,4 = −γm − i(Hsp ± H ) for
gmp = 0, where each eigenvalue is doubly degenerate and
Hsp = √

Han(Han + 2Hex) is a spin-flop field of the system.
Since the dissipation rate γm > 0, the system can always
reach a stable steady state, regardless of the initial states. This
stability condition imposes fewer constraints on the parame-
ters than those in the traditional three-mode optomechanical
systems, where strict constraints on the coupling strengths
and the dissipation rates are required [53]. This conclusion
is also valid in the case of gmp �= 0 (see Appendix B for the
discussion of the stability regime of the magnet-light system).

Figure 2(a) shows that the magnon-photon entanglement is
zero (dot-dashed line at EN = 0), while the magnon-magnon
entanglement is significantly enhanced compared with the
value in the absence of light (dashed line around ln 2; see
Appendix A for a detailed calculation of this value). As the
photon frequency is tuned from ωc/Hsp = 0.80 (black) to
0.85 (red) to 0.90 (blue), the maximum enhancement locates
at H/Hsp = 0.20, 0.15, and 0.10, respectively. To analyze
the essential physics, we first diagonalize the antiferromag-
netic Hamiltonian HFiM in Eq. (1) by introducing two Bo-
goliubov modes α = cosh θa − sinh θb†, β = − sinh θa† +
cosh θb, where tanh 2θ = −2gab/(ωa + ωb). In terms of the
Bogoliubov modes, the Hamiltonian (5) becomes

H = ωαα†α + ωββ†β + ωcc†c

+ gαc(α†c† + αc) + gβc(βc† + β†c), (9)

where gαc = gac cosh θ + gbc sinh θ, gβc = gac sinh θ +
gbc cosh θ , and ωα,β = ±H + Hsp represent the optical and
acoustic magnon bands, respectively.

Let us first analyze the position of maximum enhancement
of magnon-magnon entanglement in the presence of photons.
The two eigenmodes of magnons ωα,β together with the
photon mode for ωc/Hsp = 0.85 are plotted in Fig. 2(b) as
dashed lines. Now we immediately see that the maximum
enhancement of entanglement, as seen in Fig. 2(a), appears
when the strong coupling occurs by adjusting the external
field H/Hsp = 0.15 so that the photon frequency becomes

FIG. 2. (a) The enhanced entanglement EN between two
magnons a and b in the presence of light mode c as a function of ex-
ternal field H/Hsp for photon frequency ωc/Hsp = 0.80 (black line),
0.85 (red line), 0.90 (blue line). The horizontal dashed line at EN =
0.6851 is the magnon-magnon entanglement without light, while
the dot-dashed line at EN = 0 indicates no entanglement between
a − c and b − c. (b) The dispersion relations for an antiferromagnet
with ωc/Hsp = 0.85 and gac = gbc = 0.01Hex. Obviously, the optical
magnon band ωα is left unchanged, while the acoustic band ωβ is
hybridized with the photon mode ωc to form modes ω2,3. (c) The
population of modes c and α, β. The red dashed line represents the
occupation of α/β mode without light. (d)–(f) The same as (a)–(c),
but with gac = 0.01Hex and gbc = 0. Other parameters are gab = Hex,
Han = 0.0163Hex, γm = 0.001Hex, and γc = 0.003Hex. For simplic-
ity in the following all the parameters are expressed in units of Hex.

resonant with the frequency of the acoustic magnon β, i.e.,
ωβ = ωc. Due to the coupling of magnons with photons, a gap
should open near the crossing point H/Hsp = 0.15, as shown
by solid blue and red lines in Fig. 2(b); that is, the eigenmodes
ω1,2,3 of the coupled system become superpositions of the
magnon modes and photon mode. Here, acoustic magnon
frequency ωβ and photon frequency ωc superpose to form
the eigenfrequencies ω2 and ω3, while the optical magnon
mode ωα is left unchanged as a dark mode [14], indicated
by ω1 = ωα [merged black dashed line and gray solid line in
Fig. 2(b)]. The depth of the anticrossing gap at H/Hsp = 0.15
indicates the effective coupling strength between magnons
and photons.

We now proceed to explain the enhancement of the
magnon-magnon entanglement in the presence of the light
mode. In terms of the two-mode squeezing operator S(θ ) =
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exp[θ (ab − a†b†)] [54], the magnon eigenmodes can be re-
formulated as α = S(θ )aS†(θ ), β = S(θ )bS†(θ ), and thus,
the joint ground state of the α and β modes is a two-mode
squeezed state |θ〉 = S(θ )|0a, 0b〉 with entanglement 2|θ | (see
Appendix C for the calculation of the entanglement of a
two-mode squeezed state), where |0a, 0b〉 is the joint vac-
uum of magnon modes a and b. According to Eq. (9), the
photon mode couples with the acoustic magnon mode β by
a beam-splitter-type interaction and thus serves as a cooling
bath to cool the mode β toward its ground state [55]. Note
that the ground-state entanglement EN = 2|θ | ≈ arctanh(1 +
Han/Hex)−1 ≈ 2.41 is larger than the entanglement in the
absence of the light (ln 2). This cooling mechanism conse-
quently enhances the entanglement of two magnons. As the
other Bogoliubov mode α is a dark mode that is nonresonant
with the photons, its role in the cooling process can thus
be neglected. To demonstrate this point, we plot the average
population of α, β, and c in Fig. 2(c) as black, red, and
blue lines, respectively. Clearly, the occupancy of mode β

is reduced towards its ground state under cavity cooling and
takes on the minimum, while the population of the photon
mode c takes on a maximum near the anticrossing point,
where the strong coupling between β and c occurs and the
cooling effect is most efficient. The population of the dark
mode α is almost unchanged when we tune the field, as it
is decoupled from the cavity mode c. This means that the
achieved state is not an ideal two-mode squeezed vacuum state
as α is not cooled, but Fig. 2(a) shows that the entanglement
is significantly enhanced EN ≈ 1.05.

To further testify the presence of cavity cooling, we arti-
ficially tune gbc = 0 and find that the magnon-magnon en-
hancement becomes even stronger, as shown in Fig. 2(d). This
is because the coupling strength |gβc| between modes β and
c becomes larger when gbc = 0 compared with the case of
gbc �= 0 [56] [evidenced by the larger frequency split of the
two anticrossing modes at the resonance shown in Fig. 2(e)]
and thus induces more efficient cooling of magnons [indicated
by the lower population of mode β in Fig. 2(f)] as well
as stronger enhancement of magnon-magnon entanglement
[Fig. 2(d)]. Similar enhancement is observed when gac = 0.

We point out that the enhancement of the magnon-magnon
entanglement appears only in the deep strong-coupling regime
(gab ∼ ωa,b), and it is absent in the weak-coupling regime
and even in the strong-coupling where gab ∼ 0.01 − 0.1ωa,b.
It is clearly seen from Fig. 3(a) that in the strong-coupling
regime, gab/Hex = 0.01, the entanglement between a and c
starts to appear when gmp increases from its gmp = 0 value,
whereas the entanglement between a and b slightly decreases.
This is expected since part of the entanglement between a
and b is transferred to mode c through the beam-splitter-type
coupling between modes b and c. On the other hand, in the
case of the deep strong-coupling regime illustrated in Fig. 3(b)
for gab/Hex = 1.0, significant enhancement of the magnon-
magnon entanglement appears, and it remains large when gmp

is increased [57], whereas the entanglement between a and
c is completely suppressed. When the coupling strength gmp

is further increased such that it approaches the value of gab,
the competition starts, and the entanglement between a and c
appears as well, as indicated in Fig. 3(b). A complete phase di-

FIG. 3. The entanglement as a function of magnon-photon cou-
pling strength gmp when the system is (a) in the strong-coupling
regime gab/Hex = 0.01 and (b) in the deep strong-coupling regime
gab/Hex = 1. The red dashed lines represent the magnon-magnon
entanglement in the absence of the photon mode. γm = 0.001Hex,
γc = 0.003Hex. (c) The steady magnon-magnon entanglement dis-
tribution in the gab − gmp phase plane. The right side marks the
deep strong-coupling regime, where considerable enhancement is
observed. Other parameters are H/Hsp = 0.15, ωc/Hsp = 0.85, γm =
0.001Hex, γc = 0.003Hex.

agram of these two cases is shown in Fig. 3(c). The absence of
the enhancement of the magnon-magnon entanglement in the
weak- and strong-coupling regimes can be well understood in
the cavity-cooling scheme. In the strong-coupling regime, the
entanglement between a and b without the light mode is given
by EN ≈ ln[1 + gab/(Hex + Han )] ≈ gab/(Hex + Han ), which
is almost equal to the entanglement of the joint vacuum
|2θ | ≈ | tanh 2θ | = gab/(Hex + Han ) since |2θ | � 1. Hence,
the cooling of the magnon mode to its vacuum does not induce
considerable enhancement of the magnon-magnon entangle-
ment, while the competition of creating entanglement between
a and c reduces the original entanglement between a and b.

To identify the magnon-magnon entanglement as well
as the magnon-polariton near the anticrossing, the coupling
strength of the magnon and photon is essentially stronger than
the dissipation rate of the system (gmp > γm, γc); otherwise,
the noise will smear out the anticrossing [14]. Then it is
meaningful to study the influence of the dissipation rate on
the entanglement enhancement. Figure 4(a) shows the
magnon entanglement as a function of γm. For gmp/Hex =
0.01, the entanglement keeps decreasing with γm and saturates
at the value without photons (red dashed line). For γm < gmp,
the enhancement is always there. At a given γm, the enhance-
ment increases with the coupling strength of magnon-photon
gmp. When we tune the dissipation rate of the cavity, there
exists an optimized γc where the entanglement enhancement
reaches a maximum, as shown in Fig. 4(b). The peak position
falls into the regime γc < gmp, such that the anticrossing
spectrum can be identified and it is feasible to observe the
magnon-polariton and the enhancement of magnon-magnon
entanglement simultaneously.
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FIG. 4. (a) The entanglement of a and b as a function of the dis-
sipation rate of magnons at the resonant condition. gab = Hex, Han =
0.0163Hex, γc/Hex = 0.003. (b) The entanglement of a and b as a
function of the dissipation rate of photons. H/Hsp = 0.15, ωc/Hsp =
0.85, γm/Hex = 0.001.

IV. DISCUSSION AND CONCLUSIONS

Ferrimagnetic/ferromagnetic case. For a two-sublattice
ferrimagnet (Sa �= Sb, gac �= gbc), the enhancement of
magnon-magnon entanglement is found to be similar to that
in the antiferromagnetic case, once the deep strong-coupling
condition is satisfied, i.e., gab ∼ ωa, ωb. A ferromagnet
corresponds to the limiting case of Sa → 0 in which
gab ∝ SaSb → 0, so that the physics becomes different.
Specifically, for a single sublattice ferromagnet coupled with
the light mode, Eq. (5) is reduced to

H = ωbb†b + ωcc†c + gbc(b†c + bc†), (10)

which in the case of mode b representing a set of spins corre-
sponds to that of the Tawis-Cummings model. The spectrum
of the Hamiltonian (10) takes the form ω1,2 = 1

2 [(ωb + ωc) ±√
(ωb − ωc)2 + g2

bc ], which has an anticrossing near the point
ωb = ωc.

Recently, Soykal and Flatté [27] demonstrated that the
Hamiltonian (10), which describes the interaction between
magnon and photons in a ferromagnet, has eigenstates cor-
responding to entangled states of spin orientation and photon
number. These states oscillate periodically with the Rabi fre-
quency determined by gbc and can live for a long time due to a
small decoherence present in the system. Since the dissipation
of the modes is ignored, no steady state can be achieved.
Therefore, we would like to point out that the mechanism
of the creation of entangled states in the ferromagnet, as
described by the Hamiltonian (10), is different from what we
have used to study the steady-state entanglement in a dissipa-
tive antiferromagnet. The reason is that we have considered
the dynamics of the system under the influence of a Gaussian
noise, which is completely different from that determined by
the Hamiltonian (10). Two modes influenced by the Gaussian
noise can decay to a steady entangled state only if these
modes are coupled to each other through the parametric-type
interaction [51,58,59]. Thus, the presence of the parametric-
type interaction between the modes is essential for getting the
steady-state entanglement in a dissipative system.

Experimental verification. First, we emphasize that the
essential physics of entanglement enhancement is quite robust
for many realistic antiferromagnets such as diphenylpicrylhy-
drazyl (DPPH), MnF2, NaNiO2, and NiO (see Appendix D

for the detailed simulation results). This makes our theory
more relevant to experimentalists. Second, to measure the en-
tanglement, one may place a low-damping AFM into a high-
quality cavity/coplanar waveguide and measure the quadra-
ture components of the covariance matrix of the system.
The beam-splitter coupling of photons and acoustic magnons
in Eq. (9) enables the readout of magnon information by
inputting another weak microwave into the magnet and then
homodyning the output of the probe field. Alternatively, one
may use femtosecond optical pulses to pump the correlations
of magnons and then measure the noise level of the system by
a second probe pulse [60].

Potential applications of the hybrid system. First, since
the magnons are the macroscopic excitation of a magnet, the
entanglement of magnons provides a promising platform to
study macroscopic quantum phenomena such as the entangle-
ment properties of massive objects and the transition between
quantum and classical phenomena. Note that the entangle-
ment presented here is much larger and is stabler than those
achieved through the nonlinear effect [21,41]; hence, our
proposal gives a lot room to realize, detect, and use the
entanglement. On the more practical side, (1) the entangled
magnon-pair can be used to test Bell’s inequality and thus
the nonlocal feature of quantum mechanics. This adds another
freedom to control the entanglement in the hybrid system. (2)
The entangled state is also useful as a resource for minimum
channel discrimination to distinguish the supremacy of chan-
nels with entangled states over those with separable states. (3)
Similar to the importance of generation of high-quality entan-
gled photons, electrons, and quasiparticles in quantum com-
munication, quantum computation, and quantum information
[61–63], magnons may also find a role in these quantum tasks
for the advantage of automatically stability, deep strong entan-
glement, and easy tunability of magnon dispersions [64]. The
manipulation of magnon entanglement by tuning anisotropy
or magnetic fields was theoretically demonstrated [65]. The
concept of stimulated Raman adiabatic passage for efficient
and selective transfer of the population between quantum
states was recently realized in magnonic systems [64].

Second, the magnon-polariton in the antiferrimagnet-light
system can be classified into a wide context of cavity spin-
tronics, aiming to manipulate quantum information with the
hybrid magnon-photon state. The coupling of magnons and
photons can be promisingly used as quantum transducers,
quantum sensors, quantum memories, and so on [19–22]. If
one aims to achieve coherent information transfer between
magnons and photons, their beam-splitter-type interaction is
sufficient. To illustrate this point, we propose a potential appli-
cation of magnon-photon coupling as a platform to realize the
state transfer between cavity photons and magnons by simply
scanning the external fields.

The Hamiltonian we considered is a modified version of
Eq. (9),

H = ωββ†β + ωcc†c + gβc(βc† + β†c),

where we disregard the high-frequency terms for its off res-
onance. In general, the β mode can also be the superposed
magnon mode in antiferromagnets or the Kittel mode in a
normal ferromagnet. The sweeping of the field will modulate
ωβ and thus lead to the state evolution of the system. Without
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FIG. 5. Particle number occupation as a function of time. The left
and right insets show the initial and final particle distributions in Fock
space, respectively. The initial state is a tensor product of coherent
photons and zero-occupied magnons. gβc = 0.02ωc, ρ = 0.01ωc.

loss of generality, we consider a linear time dependence of ωβ ,
i.e., dωβ/dt = ρ, and simulate the dynamics of the system by
solving the Schrödinger equation, as shown in Fig. 5. Clearly,
the initial photon state at t = t0 is completely transferred
to the magnon states at t = t f as we sweep the field, while
the particle number distribution is perfectly preserved. This
process resembles the Landau-Zener transition [66,67], which
was originally proposed for state evolution in a system with
energy level repulsion. Since this application is not the focus
of the current work, we leave a more thorough study of this
transfer process to the future.

Conclusions. In summary, we have studied the entangle-
ment properties of magnons and photons inside a cavity
and find that the steady entanglement between magnons and
photons is very weak. Instead, the magnons excited on the
two sublattices of an AFM are strongly entangled, and this
entanglement can be enhanced to its maximum when the
magnons are coupled to the photon in the resonant condition.
The maximum enhancement increases monotonically with the
coupling strength between magnons and photons, while it
optimizes at a particular dissipation rate of the cavity. We as-
certain that such enhancement comes from the cavity cooling
effect and is a unique feature of the antiferromagnet with the
deep strong coupling between two magnons, and it disappears
for a normal system with strong coupling. On the other hand,
the enhanced entanglement of the magnons through cavity
photons is always accompanied by better cooling of their
populations. Then one can make use of the cavity photons as
a resource to cool the magnons to their lower-energy states.
Last, the two magnon modes and one photon mode form a
closed loop in our hybrid system. By modifying the phase
of the photon field (i.e., c → ceiφ), the entanglement of the
magnon modes can also be manipulated.

Note added. Recently, we become aware of a relevant work
that reported magnon-magnon entanglement in antiferromag-
nets [68].
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APPENDIX A: CLASSIFICATION OF THE THREE
COUPLING REGIMES

Here, we analytically show how the relative magnitude of
the coupling strength gab and intrinsic frequency ωa(b) can
lead to a distinguishable phase of entanglement properties of a
and b.

Let us start from the standard 2 × 2 block form of the two-
mode covariance matrix,

V =
(

A C
CT B

)
=

⎛
⎜⎝

�a 0 �c �d

0 �a �d −�c

�c �d �b 0
�d −�c 0 �b

⎞
⎟⎠. (A1)

Then the two symplectic invariants can be evaluated as∑
(V) = det A + det B − 2 det C, and det(V) is the determi-

nant of V[49,51].
For the antiferromagnetic case we studied here, the param-

eters are

ωa = Hex + Han + H, ωb = Hex + Han − H,

γa = γb = γm, gac = gbc = 0.
(A2)

Then the elements of the covariance matrix can be evalu-
ated as

�a = �b = 1

2

(
1 + g2

ab

(Hex + Han )2 − g2
ab + γ 2

m

)
,

�c = −1

2

gab(Hex + Han )

(Hex + Han )2 − g2
ab + γ 2

m

,

�d = −1

2

gabγm

(Hex + Han )2 − g2
ab + γ 2

m

. (A3)

Then we have∑
(V) = det A + det B − 2 det C

= 1

2

[
(Hex + Han )2 + γ 2

m

][
(Hex + Han )2 + g2

ab + γ 2
m

]
(Hex + Han )2 − g2

ab + γ 2
m

,

Det(V) = 1

16

(
(Hex + Han )2 + γ 2

m

(Hex + Han )2 − g2
ab + γ 2

m

)2

, (A4)
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TABLE I. Entanglement properties of modes a and b in the three
distinguishable coupling regimes.

Regime
Strong Ultrastrong Deep strong

Definition gab ∼ 0.01Hex gab ∼ 0.1Hex gab ∼ Hex

EN ∼0.01 ∼0.1 ln 2
Enhanced? No No Yes

and the smallest symplectic eigenvalue

η− =
√∑

(V) −
[∑

(V)2 − 4 det V
]1/2

/
√

2

= 1

2

1

1 + gab/
√

(Hex + Han )2 + γ 2
m

. (A5)

Then the entanglement is quantified as

EN = − ln(2η−) = ln

(
1 + gab√

(Hex + Han )2 + γ 2
m

)
. (A6)

Now we can classify two limiting phases: (1) In the deep
strong-coupling regime, i.e., gab ∼ Hex � Han, γm, we have
EN ≈ ln 2 = 0.6931. (2) In the strong-coupling regime, i.e.,
gab � Hex, the leading-order contribution to the entanglement
is EN ≈ gab/(Hex + Han) → 0. The phase diagram is summa-
rized in Table I.

APPENDIX B: STABILITY REGIME

To obtain the stability regime of the magnon-photon sys-
tem, we numerically solve the eigenequation det(λI − M) =
0 and show the results in Fig. 6(a). The system is always
stable for gmp < 0.3, which is well satisfied using realistic
parameters of cavity and magnets [14]. As a comparison,
we disregard the self-energy terms (ωa = ωb = ωc = 0), as
adopted in many studies on quantum optics, and find that
the system cannot reach a steady state in exactly the same
phase space, as shown in Fig. 6(b). This comparison shows
that our magnon-light system has an almost generic stability
condition.

FIG. 6. (a) The stability regime of the magnon-photon system
with gab = Hex, Han = 0.0163Hex, H/Hsp = 0.15, ωc/Hsp = 0.85,
γm/Hex = 0.001. (b) The stability regime when the self-energy terms
are disregarded, i.e., ωa = ωb = ωc = 0.

APPENDIX C: ENTANGLEMENT FOR A TWO-MODE
SQUEEZED STATE

For a two-mode squeezed state defined as

|r〉 = exp
[
r
(
a†

i a†
j − aia j

)]|0〉i

⊗
|0〉 j, r ∈ reals, (C1)

the covariance matrix is

V =
(

A C
CT B

)

= 1

2

⎛
⎜⎝

cosh 2r 0 sinh 2r 0
0 cosh 2r 0 − sinh 2r

sinh 2r 0 cosh 2r 0
0 − sinh 2r 0 cosh 2r

⎞
⎟⎠. (C2)

Then we can derive∑
(V ) = det A + det B − 2 det C = 1

2
cosh 4r, (C3)

Det(V ) = 1

16
, (C4)

and the smallest symplectic eigenvalue

η− = 2−1/2

{∑
(V) −

[∑
(V)2 − 4 det V

]1/2
}1/2

(C5)

= 1

2
[cosh 4r − (cosh2 4r − 1)]1/2 (C6)

= 1

2
e−2|r|. (C7)

Then the entanglement can be quantified as EN =
− ln(2η−) = 2|r|.

APPENDIX D: SIMULATION RESULTS FOR MORE
ANTIFERROMAGNETS

In this Appendix, we examine our results by using exper-
imental values of the parameters of the DPPH material as
well as of commonly used antiferromagnets such as MnF2,
NaNiO2, and NiO. The values of the parameters are listed
in Table II. Here, the exchange field and the anisotropy field
depend on the magnetic parameters such as Hex = 2zJS2 and
Han = 2KS2, with K being the anisotropy coefficient. Values
of both Hex and Han of these materials were experimen-
tally determined through the magnetic resonance technique
[15,69–71]. According to the values of these parameters,
Han < 0.1Hex, while the external field is of the order of
0.2Hsp < 0.1Hex and is also much smaller than the exchange
field Hex. Therefore, the frequencies ωa,b = Hex + Han ± H ≈

TABLE II. List of parameter values used in the simulation. The
exchange field of DPPH is estimated from its Néel temperature. The
damping rate of MnF2 is estimated from the linewidth measured in
the experiments [69].

Material Hex(T ) Han/Hex gmp/Hex γm/Hex γc/Hex

DPPH [15] 1.73 0.018 8 × 10−4 1.05 × 10−5 6.12 × 10−4

MnF2 [69] 51.5 0.0163 0.001 9.7 × 10−6 6 × 10−4

NaNiO2 [70] 4.8 0.073 0.012 0.001 0.005
NiO [71] 524 0.0028 3 × 10−4 5 × 10−4 10−4
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Hex = gab, i.e., the magnon-magnon coupling strength, fall
into the deep strong-coupling regime, so that our generic
model presented in the main text applies to these materials.
Moreover, the coupling strength of DPPH is determined by
the size of the anticrossing gap observed in experiments
[15], while the calculations of the values of the coupling
strength with photons of the other AFMs are based on the
formula gmp = √

μ0ωcSN/2V , as derived above Eq. (4), by
considering that 1% of the volume of the cavity is occupied by
the magnet [72]. The damping rates of the AFMs are estimated
from the linewidth of the magnets [71], while the values of
the damping rates of the cavity modes are consistent with the
experimental values of Ref. [15].

Using these values of the parameters, we find that the
enhancement of the magnon-magnon entanglement is still
valid, as shown in Fig. 7. The enhancement is consider-
ably large for DPPH (86%), MnF2 (57%), and NaNiO2

(45%). The limited enhancement in NiO may be due
to the strong exchange field that effectively reduces the
magnon-photon coupling and thus suppresses the cooling
channel.

FIG. 7. (a) The entanglement of a and b as a function of external
field for (a) DPPH, (b) MnF2, (c) NaNiO2, and (d) NiO. The dashed
lines represent the positions of the resonance frequency.
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