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A B S T R A C T   

Environmental modelling frameworks allow domain experts, rather than software developers, to implement and 
run numerical simulation models in earth and environmental sciences. Because of the need to use more detailed 
process representations or larger datasets as input to models, it may become infeasible to perform modelling 
studies, due to the increased amount of time it takes for models to calculate results. The objective of this study is 
to evaluate the asynchronous many-task approach in the implementation of a prototype scalable modelling 
framework. We evaluate the scalability of local, focal, and zonal map algebra operations, and an example model 
in which these operations are combined. Our results show that the capacity of the operations and the example 
model to use additional hardware, like nodes in a computer cluster, is good. With our freely available prototype 
framework, models can be executed faster and modelling studies processing considerably more data can be 
performed.   

1. Introduction 

Environmental modellers simulate the physical and biological envi
ronment using computer models. These models can be developed using a 
multitude of software, ranging from relatively low-level general purpose 
programming languages with no built-in support for environmental 
modelling, like C, C++, D, Fortran, Java and Rust, to high-level 
modelling frameworks1containing pre-built model building blocks, 
like Google Earth Engine for earth science data and analysis (Gorelick 
et al. (2017)), MATLAB (Holzbecher (2012)), the NetLogo agent-based 
modelling framework (Wilensky (1999)), and the PCRaster field-based 
modelling framework (Karssenberg et al. (2010)). An advantage of 
using modelling frameworks is that they, in different degrees, hide some 
of the low-level complexities of implementing models. This speeds up 
model development and allows domain experts without a background in 
software development to develop models (Fig. 1 and Karssenberg 
(2002)). 

Some of the model development interfaces are inspired by map 
algebra (Tomlin (1990)), which is also the approach that will be fol
lowed here. Existing examples using map algebra include the Python 
programming language packages provided by PCRaster, ArcGIS, and 

QGIS. In map algebra, fields of spatially varying environmental attri
butes are represented by rasters, which can be combined and translated 
into new rasters using a procedural programming style. A set of such 
translations, simulating environmental processes during a single time 
step, can be used by a modelling framework to do forward iteration 
through time, error propagation, and data assimilation (Karssenberg 
et al. (2010)). The framework provides the elementary data structures 
and modelling algorithms used by modellers in their models. Ideally, 
models built with such a framework offer good performance, whatever 
the combination of modelling operations used. In our study we look at 
designing and building such a framework for developing environmental 
models. 

Over time, models often outgrow their capacity to calculate results in 
a timely manner. This may be because of an increase in dataset sizes 
used by models, an increase in temporal or spatial resolution or extents, 
or an increase in model complexity. In order to solve this discrepancy 
between the size and performance requirements of large models, and 
their capacity to provide results, models must increase their ability to 
use the current generation of hardware. In general, newer generations of 
hardware are more powerful, but also more complex, than earlier gen
erations. Typically, current computers contain more cores, more kinds of 
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cores, and a deeper memory hierarchy. Additionally, the availability of 
computer clusters to modellers, containing multiple compute nodes 
connected by low-latency network connections, has increased. The 
challenge we focus on is that of building a modelling framework that 
makes better use of the available hardware. 

There are multiple approaches for developing a modelling frame
work implementing a collection of parallel and distributed map algebra 
operations. An intuitive and popular approach to creating parallel ver
sions of such operations is to use the synchronous fork-join paradigm, 
supported by OpenMP (Dagum and Menon (1998)) for example, in 
which individual algorithms implementing these operations are paral
lelized and called in sequence. Examples of frameworks using this 
approach are the Parallel Raster Processing Library (pRPL, Guan and 
Clarke (2010)), the Parallel Raster-based Geocomputation Operators 
(PaRGO Qin et al. (2014)), and the Parallel Cartographic Modelling 
Language (PCML, Shook et al. (2016)). A drawback of this approach is 
that it introduces implicit synchronization points. At least at the end of 
each operation, the flow of control will wait for all tasks to finish before 
returning to the caller, resulting in workers (like CPUs and GPUs) being 
inactive for some time. This negative effect of synchronization points 
increases with the number of workers and the degree of load imbalance 
between the workers. Note that load imbalance between workers is 
common in environmental modelling operations, resulting from an un
even spatial distribution of no-data values, or because of high spatial 
dependencies between cell values, as is the case in some operations that 
operate on a flow direction network. 

An alternative approach for implementing a collection of parallel 
and distributed map algebra operations is to use asynchronous many- 
tasks (AMT). One of the advantages of this approach is that it avoids 
unnecessary synchronization points. With AMT, work to be done is 
encoded in a set of relatively small tasks with data dependencies among 
them. Tasks are spawned asynchronously, allowing the main flow of 
control to continue into multiple modelling operations, resulting in 
more tasks being spawned. Tasks get scheduled on workers after their 
inputs have become available. This approach results in a larger collec
tion of tasks than is possible when parallelizing algorithms individually, 
as in the case of the synchronous fork-join approach. The advantage of 
having a larger collection of runnable tasks is that it decreases the 
chance of workers being inactive. Examples of runtime systems that 
support AMT on distributed memory systems are Chapel (Chamberlain 
et al. (2007)), X10 (Charles et al. (2005)), HPX (Kaiser et al. (2020a)) 
and Charm++ (Kale and Krishnan (1993)), of which the first two are 

specific languages and the latter two are software libraries. For a tax
onomy of task-based parallel programming technologies see Thoman 
et al. (2018). We will use the AMT runtime system implemented by the 
HPX software library for implementing our environmental modelling 
framework. 

The objective of this research is to evaluate the use of AMT for the 
development of a modelling framework containing implementations of 
map algebra operations, that can be used on all kinds of commodity 
hardware in use by the modelling community (ranging from laptops, 
desktops, to computer clusters). The main question we want to answer is 
whether the use of such a framework results in scalable models. For this 
we perform different kinds of scaling experiments over different kinds of 
workers. Scalability of models is determined by both the software 
implementing the compute part and the I/O part. In this study we focus 
on the compute part. Additionally, we review the resulting framework in 
terms of its usability by model developers, and we review the use of AMT 
in the implementation. 

This paper is organized as follows: in Section 2 we describe the 
approach of developing environmental models using map algebra in 
more detail; in Section 3 we provide more information about AMT and 
the HPX implementation thereof; in Section 4 we describe how we used 
AMT to implement a map algebra development interface on top of 
modelling algorithms; in Section 5 we present results of scaling exper
iments we performed with individual algorithms and an example model 
simulating wildfire, in which some of the implemented modelling al
gorithms are combined. We end this paper with a discussion of the re
sults in Section 6. 

The AMT runtime system implemented in HPX enables us to write an 
initial set of high-level modelling algorithms that can be called from a 
map algebra-like model development interface in a modelling frame
work. Implementing algorithms in terms of asynchronous tasks that 
translate asynchronously produced input data into output data, results 
in a flexible system in which modelling algorithms can be combined in 
any order, according to the model, and still offer good scalability. The 
framework developer is responsible for defining tasks and the de
pendencies between them, and is relieved of the responsibility of 
scheduling tasks and explicitly sending messages in between processes. 
The framework implementation is freely available for inspection and use 
(Section 7). 

2. Model development using map algebra 

Originally, the map algebra language was designed for creating 
cartographic models, where the models were collections of maps 
(Tomlin (1990)). The language consisted of a specific set of relatively 
simple generic operations that translate raster data. A combination of 
such operations could be used to, for example, determine suitable lo
cations for land development. The advantages of using map algebra are 
that a finite set of generic operations can be used to handle multiple use 
cases, and that it provides a level of abstraction that makes it suitable for 
users without a background in software development. 

The principles behind cartographic modelling using map algebra 
have been extended towards forward numerical simulation of environ
mental processes as well (van Deursen et al. (2019); Karssenberg et al. 
(2010)). A map algebra-like language is then used to define the initial 
state of the modelled environmental system and to define the state 
transitions over time. In this context, the model refers to the code, not to 
the collection of maps. The model shown in Listing 1 is an example of an 
environmental model, implemented using a map algebra-like language, 
simulating wildfire. We used it in our experiments (Section 4). Outputs 
from the model are shown in (Fig. 2). 

Map algebra operations are often classified according to the kind of 

Fig. 1. Two stacks of model and support code. A model developer writing a 
model from scratch has to write more code (left) than a developer using a 
modelling framework (right). The green boxes represent the amount of code the 
model developer has to write. The blue box represents the framework code. 
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neighbourhood from which input raster cells are selected that contribute 
to the calculation of output raster cells. In this study we consider three 
kinds of operations (Burrough et al. (2015); Karssenberg et al. (2010); 
Tomlin (1990)): local operations (Fig. 3a), focal operations (Fig. 3b), 
and zonal operations (Fig. 3c). Operations not considered in this work 
include global operations, which can be seen as a subset of zonal oper
ations, and network operations, operating on a flow direction network. 

3. Asynchronous many-tasks and HPX 

The AMT programming model supports defining relatively small 
tasks of work that need to be executed, and the dependencies between 
them. The tasks and their dependencies form a directed acyclic graph 
that is used by the AMT runtime system to determine the order in which 
the tasks must be executed, and to determine which tasks can be 
scheduled to execute concurrently. Given enough hardware resources, 

Fig. 2. Output maps of the example model simulating wildfire for three time steps. Black cells represent cells that are burning (fire front). Green cells represent the 
area with the highest susceptibility for being burned. The other colours represent the age of burned cells in number of time steps, with red cells being burned most 
recently. The area shown is 500 × 500 cells. 

Listing 1. Pseudocode of model simulating wildfire.  
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the runtime system will execute concurrent tasks in parallel. 
The requirement for the runtime system to always be able to 

schedule tasks for execution, is that there are enough tasks defined and 
few dependencies between them. In order to achieve this, tasks are 
created asynchronously, and do not depend on more tasks than neces
sary. An asynchronously created task is spawned off from its operating 
system (OS) thread, which continues doing other work, for example 
spawning off more tasks. 

HPX is an implementation of the AMT programming model and 
runtime. It is an open source software library written in portable 
C++11/14/17/20 code and does not depend on a compiler from a 
specific vendor or on compiler extensions. It has been used to implement 
parallel software successfully in multiple studies (Heller et al. (2013), 
Heller et al. (2017), Heller et al. (2019), and Khatami et al. (2016)). 

Using HPX the developer of an environmental modelling framework 
can define tasks and their dependencies in the usual imperative style of 
programming in C++. Using the HPX API, the graph of tasks is built 
implicitly and does not need to be explicitly managed by the developer. 
The framework developer’s main responsibility is to correctly represent 
the total amount of work to be executed by a collection of tasks and their 
data dependencies. The size of each task is measured in terms of its la
tency, which depends on the amount of data processed by the task, the 
number of computations performed, and on latencies involved in 
accessing the data. The ideal task size is large enough for the overheads 
of parallelization to be amortized over the sum of the latencies of all 
tasks, and small enough to provide the schedulers with enough con
current tasks to schedule on workers (Grubel et al. (2015)). Since the 
latency of tasks is partly dependent on aspects that are only known at 

runtime, like data values and hardware characteristics, it is important 
that the task size can be influenced by the user. One way to do this is to 
support a parameter representing the amount of data processed by in
dividual tasks. 

To illustrate the differences between the AMT approach and other 
approaches to writing a modelling framework, we assume a model ex
ists, similar to the map algebra model simulating wildfire shown in 
Listing 1, that calls three modelling operations from the framework. For 
simplicity, we will ignore the overheads of parallelization. A serial 
framework executes these operations one after the other on a single 
worker (Fig. 4a). The latency of this program is the sum of the latencies 
of all the work that needs to be done. Since only one worker is used by 
this program, adding more workers will not decrease its latency. When 
the three operations are independent from each other, they can be 
executed in parallel (Fig. 4b). The program’s latency is determined by 
the operation taking the most time to finish. Since each operation is 
executed by one worker, adding more workers will not decrease this 
program’s latency. In the implementation OS threads can be used, for 
example, to spawn threads doing work on multiple CPU cores. When the 
three operations contain concurrent tasks that can be executed in par
allel (Fig. 5), another approach can be taken. In this case, the operations 
are still executed one after the other, but they are partly executed in 
parallel (Fig. 4c). This program’s latency is determined by the sum of the 
latencies of the serial regions and the parallel regions. Adding more 
workers will not decrease the latency of the serial regions but, given 
enough concurrent tasks, may decrease the latency of the parallel re
gions. In this example it will not, though, since none of the parallel re
gions has more than three concurrent tasks. In the implementation, 

Fig. 3. a: Each output cell is a function of input cells at the corresponding location in one or more input rasters. Example: ph = − log(hydronium) b: Each output cell is 
a function of input cells within a neighbourhood of input cells at and around the corresponding location in an input raster. In principle, these neighborhoods can have 
any size and shape, but they are often square or round and small. Example: smooth ph = focal mean(ph, kernel) c: Each output cell is a function of input cells sharing 
the same class according to a second input raster. Here, the blue cells at the same locations as the purple cells contribute to the output cell shown. Example: max ph =

zonal max(ph, soil). 

Fig. 4. a: Serial execution of three operations by one worker. Each colour represents an operation. Latency is the duration of executing all the work. b: Parallel 
execution of three operations by three workers. c: Serial execution of three operations, but parallel execution by three workers of the concurrent tasks within each 
operation (Fig. 5). d: Parallel execution by three workers of concurrent tasks of all operations. 

K. de Jong et al.                                                                                                                                                                                                                                 



Environmental Modelling and Software 139 (2021) 104998

5

OpenMP (Dagum and Menon (1998)) can be used for example, to create 
parallel regions in which multiple OS threads are used to execute tasks 
on multiple CPU cores. 

When using the AMT approach, concurrent tasks from all three op
erations are executed in parallel, taking the dependencies between the 
tasks into account (Fig. 4d). The latency of the program is determined by 
the maximum of the sums of the latencies of the tasks per worker. Given 
enough concurrent tasks, adding more workers will decrease the pro
gram’s latency. Because tasks from multiple operations are considered 
there are more options to avoid load imbalance between workers. 

In environmental models, most rasters processed by the modelling 
operations depend on each other: the output rasters from operations are 
used as input in other operations. It is therefore unlikely to find many 
modelling operations whose tasks are completely independent from 
each other, as is shown in the idealized example in Fig. 4d. But, since 
tasks are created asynchronously in AMT, tasks from different modelling 
operations can be scheduled for execution, as long as the input data of 
each of these individual tasks is ready. Depending on the modelling 
operation, input data of individual tasks can be relatively small subsets 
of the full input rasters of the operations. For example, in a model 
containing multiple local operations, tasks from every operation may be 
executing at the same time, even though output rasters from some of 
these operations is input of others. The AMT runtime considers indi
vidual tasks, not operations. 

In HPX a data structure called future exists which represents the 
output of a task. This output may be ready to be used, or it may become 
ready later on. Dependencies between tasks are defined by attaching 
tasks to futures output from other tasks. Once a task is finished, its 
output future is marked ready and dependent tasks are notified. The 
HPX runtime manages task schedulers (one per OS thread) that manage 
multiple queues of tasks, some of which are ready to be executed, while 
others are still waiting for input dependencies to be satisfied. 

When spawning HPX tasks, the framework developer has to specify 
the target each task must execute on. Common targets are OS processes 

and object instances within processes, called components in HPX. Pro
cesses and components can be local to the computer on which a task is 
spawned, or remote. This is transparent to the software developer. When 
using the HPX API, the developer programs a single abstract machine 
consisting of one or more processes running on one or more computers. 
Because of this, HPX can be used transparently for parallel computing on 
both a single shared memory computer and on multiple distributed 
memory computers. This is an advantage over existing popular ap
proaches that use multiple APIs, like using MPI (MPI-Forum (2015)) for 
the distribution and OpenMP for the parallelization of work. 

4. Method 

4.1. Implementation 

An implementation of map algebra requires a data structure for 
representing rasters, and operations translating input rasters to output 
rasters. We designed a partitioned multidimensional array data structure 
with two capabilities that are important for our purposes. First, the size 
of the partitions is configurable, which is important because it influences 
the size of tasks translating array partitions. Second, the partitions can 
be distributed over multiple operating system processes, which is 
important because tasks translating array partitions are sent to the data. 
The distribution of partitions therefore determines the distribution of 
most of the computational load. 

Array partitions are implemented in terms of HPX component clients. 
These are light-weight objects providing a convenient API for interact
ing with, possibly remote, component server instances, containing the 
actual array partition elements. HPX component client objects are 
semantically equivalent to futures. They refer to data that may or may 
not be ready to use yet, but as any HPX future, they allow a task to be 
attached to them, which will be scheduled for execution once the data 
has arrived and the future becomes ready. In Fig. 6 an example of a 
partitioned array is shown, whose partitions are distributed over three 
nodes in a cluster. The partitioned array allows the whole raster to be 

Fig. 5. Each operation has concurrent tasks that can be executed in parallel. 
Each colour represents an operation and each numbered box represents a task. 
The length of each task represents its latency which, for simplicity, is assumed 
to be constant. 

Fig. 6. A partitioned array instance is stored in a single process and contains an 
array of partition client instances. Each of these refers to a component server 
instance actually containing the array elements, and which is possibly located 
in a different process. Each partition’s elements are ready to be used, are 
currently being calculated, or will be calculated in the future. 
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stored in the memory available to a single process or distributed over 
multiple processes, possibly on multiple nodes. The client code using 
partitioned array instances, like modelling algorithms, does not need to 
make a distinction between these two cases. 

Given the partitioned array data structure, we developed algorithms 
implementing a set of local, focal, and zonal operations. The goal of the 
algorithms is to generate and distribute tasks that will perform the 
necessary calculations in such a way that the computational load is 
evenly balanced over the available processes. They are fully asynchro
nous. None of the algorithmic steps block the flow of control. Each al
gorithm may finish executing even before any of the input array 
partitions are available. 

Input partitions may be the result of another asynchronous task, like 
an I/O operation reading partition data from a data set, or another local, 
focal, or zonal operation. This means that the array elements in such a 
partition may not be available yet. The idea is to attach the task for 
translating input elements to output elements to the future representing 
the input array partition. HPX will schedule such a continuation auto
matically for execution, once the input partition data becomes available. 

Our algorithms always contain parts that execute in the process 
where the input partitioned arrays are located, and parts that execute in 
the processes where the input array partitions, referenced by the input 
partitioned arrays, are located. These latter parts are used by the former 
part to perform most of the computations. The main steps of the algo
rithms implementing local, focal, and zonal operations are shown in 
Algorithm 1, Algorithm 2, and Algorithm 3, in Appendix A. Although 
some of the steps may suggest that the flow of control blocks, this is not 
the case. For example, when an input partition of a task is not ready yet, 
or partition data has not arrived yet, the flow of control will continue, 
generating more tasks. As soon as partitions do become ready, or data 
arrives, the state of associated tasks is changed (by the HPX runtime) 
from staged (waiting for dependencies to be satisfied) to pending (ready 
to run). From then on these tasks can be scheduled for execution. 

The latencies involved in requesting data from an array partition 
depend on the location of the partition server relative to the partition 
client. If they are located in separate processes, latencies are (much) 
higher, because memory has to be copied from the server’s process to the 
client’s one, possibly involving network traffic. Instead, if they are 
located in the same process, no memory is copied, only the address of the 
data is. Because input array partitions are never changed themselves, the 
partition data can be assumed to always be in a valid state, and no 
synchronization primitives, like mutexes and locks, are needed to 
enforce that. 

The result of our approach is that calling multiple local, focal, and 
zonal operations after each other creates many tasks for the HPX 

runtime to schedule for execution, once their input data requirements 
are met. As long as there are more tasks that are ready to be executed 
than there are workers to execute them, the hardware will be fully 
occupied. The creation of a model’s tasks will generally finish before the 
tasks themselves, at which point the execution of a model will block 
until the last task has finished executing. 

4.2. Scalability and performance 

To characterize the scalability of our modelling framework, we 
developed an example model, simulating wildfire (Listing 1). This model 
is based on concepts from existing fire models (e.g. Clarke et al. (1994); 
Li et al. (2017); Freire and DaCamara (2019); Trucchia et al. (2020)) and 
its scalability and performance can thus be representative for this type of 
environmental models. The model is implemented by combining local, 
focal, and zonal modelling operations from our framework. Two pro
cesses relevant in fire models are represented by the model. The first is 
surface fire, where an area catches fire because it contains burnable 
material and a neighbouring area is already burning. The second process 
represented is spotting fire, where an area catches fire because an area 
further away is burning. The example model serves as a typical use-case 
for an environmental modelling framework containing map algebra 
operations. 

Results of the scaling experiments of the example model provide 
information about the usefulness of AMT in the implementation of a 
modelling framework. We also assessed the scalability of individual 
local, focal, and zonal operations. Results from these experiments are 
useful to detect scalability issues with a specific (kind of) modelling 
operation. 

We performed scaling experiments on a partition of a computer 
cluster. The hardware and software platform of each of the nodes in this 
partition is listed in Table 1. In each of the cluster nodes, CPU cores are 
grouped into NUMA (non-uniform memory access) nodes. Main memory 
is distributed over these NUMA nodes, and CPUs can reference values 
stored in memory of their own NUMA node faster than values stored in 
the memory of neighbouring NUMA nodes. This is relevant when 
designing scaling experiments. When scaling over CPU cores it matters 
in which NUMA node these cores are located. Randomly picking CPU 
cores results in non-reproducible scalability measures. 

We performed separate scaling experiments over three kinds of 
workers: 1) over the 6 CPU cores within a single NUMA node, 2) over the 
8 NUMA nodes within a single cluster node, and 3) over 12 cluster nodes 
within a cluster partition. For smaller problems scalability over CPU 
cores is relevant, and for increasingly larger problems the scalability 
over NUMA nodes and cluster nodes is. When scaling over the 6 CPU 
cores, a single process was assigned to a single NUMA node and CPU 
cores were assigned in order from within this NUMA node. When scaling 
over the 8 NUMA nodes within a cluster node, as many processes were 
used as NUMA nodes used by each specific run, each of them assigned to 
the CPU cores within a separate NUMA node. When scaling over cluster 
nodes, on each node 8 processes were used: one per NUMA node. Using a 
process per NUMA node is a convenient way to make sure memory al
locations and references are resolved by the nearby main memory, in the 
same NUMA node as the process. 

We calculated both the relative strong and weak scaling efficiencies. 
The relative strong scaling efficiency provides information about how 
well the modelling framework is able to use additional workers, while 
the total problem size (the number of cells in the rasters processed by the 
model) is kept constant. It is calculated by dividing the software’s la
tency TS,1 on a single worker by the latency TS,P on P workers, multiplied 
by P (Equation (1)). In the case of linear scaling P × TS,P equals TS,1. In 
that case, doubling the number of workers halves the latency. 

Table 1 
Hardware and software platform of nodes used in experiments. All nodes are 
interconnected with InfiniBand.  

CPUs 2 AMD EPYC 7451 (2 packages) 

NUMA nodes 8 (4/package) 
Cores 48 (6/NUMA node) 
Clock frequency 2.3 GHz 
L1d/L1i 32/64 KiB/core 
L2 513 KiB/core 
L3 8192 KiB/3 cores 
RAM 256 GiB (32 GiB/NUMA node) 
OS CentOS 7 
GNU GCC version 10.2.0 
HPX version 1.5.0 (Kaiser et al. (2020b))  
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strong ​ scaling ​ efficiency=
TS,1

P × TS,P
× 100% (1) 

The relative weak scaling efficiency provides information about how 
well the modelling framework is able to use additional workers, while 
the problem size per worker is kept constant. It is calculated by dividing 
the software’s latency TW,1 on a single worker by the latency TW,P on P 
workers (Equation (2)). In the case of linear scaling TW,P equals TW,1. In 
that case, doubling the number of workers (and the number of cells in 
the rasters processed) does not influence the latency. 

weak ​ scaling ​ efficiency=
TW,1

TW,P
× 100% (2) 

Before performing the scaling experiments of the operations and the 
case-study model, we first determined their optimal task size, deter
mined by the array partition size. We measured the optimal task size 
given the maximum array size and number of workers as used in the 
strong scaling experiments. In order to determine the variability in the 
latencies of model runs, these experiments were repeated three times. In 
this study we focussed on the scalability of the computations. Time spent 
on I/O was not taken into account when measuring latencies. 

In Table 2 the size of the arrays used in the scaling experiments are 
shown. The sizes where chosen such that in all experiments all CPU cores 
would have a relatively large amount of work to perform which would 
still fit in the memory of the NUMA node. For comparison, a raster of 
96,000 × 96,000 cells can cover an area as large as Australia with 30×
30m cells. Operation experiments were simulated for 500 time steps, 
calling the operation once for each time step, and the example model 
experiments were simulated for 250 time steps. These counts were 
chosen such that each model would take between half an hour and 3 h to 
finish. 

In Appendix B the pseudo code can be found of the “models” used in 
the scaling experiments for individual kinds of map algebra operations. 
The wildfire model we used is shown in Listing 1. 

Because scalability is the main focus in this work, we have not 
optimized our code for performance. We did measure throughputs, to 
get an impression of the performance of each experiment. Here, 
throughputs are a measure of how many raster cells are being calculated 
per second during each experiment, assuming each experiment results in 
a single raster at the end of each time step. Additionally, to get an 
impression of the absolute performance of our framework when using a 
single CPU core, we compared the latency of the example model with the 
same model implemented using the PCRaster modelling framework 
(Karssenberg et al. (2010)). 

4.3. Usability 

Besides the scalability aspects of the new modelling framework we 
evaluate how easy the framework can be developed, and how well the 
resulting software can be used by model developers. To characterize this 
we evaluated the resulting source code with respect to one of the aspects 
that are generally considered an important characteristic of maintain
able code, namely whether or not the code is modular and contains 
clearly separated layers of abstraction (ISO/IEC 25010:2011 (2011)). 
This is not meant to be a complete software quality analysis, but an 
evaluation of some of the implications of using the AMT programming 
model as implemented in the HPX library in the implementation of a 
modelling framework. To characterize the usability of the framework by 
model developers, we review what the implications are for the modeller 
to develop a model using our framework. Ideally, there should be no 
difference between using our framework and comparable alternatives. 

5. Results 

5.1. Scalability and performance 

The results of the partition shape experiments show that there is 
often a range of partition sizes that result in relatively small latencies 
(Fig. 7). To provide the HPX schedulers within each process with as 
many tasks as possible, we selected the smallest optimal partition size to 
use for the strong and weak scaling experiments (Table 3). The experi
ments also show that the variability in latencies is relatively small at 
optimal partition sizes (Fig. 7). We therefore did not perform the strong 
and weak scaling experiments multiple times. 

In general, the strong and weak scaling experiments show good 
scalability (Fig. 8 and Table 4). In most cases the efficiencies are around 
80% or higher. When scaling over cluster nodes the efficiencies are 
lower, especially in the case of the experiments with the focal operation 
and the example model. But even when using 12 cluster nodes it is still 
useful to use additional nodes to obtain model results faster, or to 
simulate larger problems. The strong scaling experiment of the zonal 
operation over NUMA nodes, shows supra-linear scaling. This implies 
that the performance of the zonal operation when using multiple NUMA 
nodes is better than can be expected given the performance when using a 
single NUMA node. One reason for this may be that the partition size 
used in each scaling experiment is determined using the problem size 
and maximum number of workers as used in the strong scaling experi
ments (Section 4). It is possible that this partition size is less optimal 
when running the model on a single NUMA node. This would then in
crease the latency of running the zonal operation model on a single 
NUMA node, and increase the associated scaling efficiencies. 

The measured throughputs (Table 5) show that the local operation 
experiment is able to provide results faster than the focal operation 
experiment, which is faster than the zonal operation experiment. Since 
the wildfire model contains more expressions per time step than the 
other experiments, the speed with which it is able to fill the final raster at 
the end of each time step is lower. Given the scaling efficiencies of the 
experiments, throughputs increase with the number of workers. 

We compared the latency of the wildfire model with the same model 
implemented using PCRaster.2 In an experiment using a single CPU core, 
with rasters of 500 × 500 cells and 5000 time steps, PCRaster took 5 min 
and the new framework 5:45 min. These experiments used a single CPU 
core, and performed I/O, to different file formats. 

The latencies shown in Table 6 show how long the experiments took. 
Although the amount of work per CPU core was kept more or less con
stant between experiments of different kinds of workers (see Table 2), the 
weak scaling latencies increase when going from CPU cores to NUMA 

Table 2 
Sizes of raster maps used in the scaling experiments. In case of strong scaling, the 
same array sizes are used for all numbers of workers. In case of weak scaling, the 
array sizes given in this table are multiplied by the number of workers used in 
the experiment.   

individual operations model 

Worker strong weak strong weak 
Core 10,000×

10,000  
4, 000×

4, 000  
5,000×

5,000  
2, 000×

2, 000  
NUMA 

node 
30,000×

30,000  
10, 000×

10, 000  
15,000×

15,000  
5, 000×

5, 000  
cluster 

node 
96,000×

96,000  
30, 000×

30, 000  
48,000×

48,000  
15,000×

15,000   

2 The PCRaster model is available in the source code repository associated 
with this paper (Section 7). 
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nodes to cluster nodes. This is likely due to the loss in efficiency when 
changing the kind of worker. The latencies of the networks between 
NUMA nodes and cluster nodes add to the total latencies of performing 
an experiment. 

5.2. Usability 

The source code implementing the modelling framework currently 
contains two main layers of abstraction. The first one implements the 
partitioned array and related functionality for creating new arrays, 
distributing partitions over processes, and transporting partition data 
between processes. This layer uses facilities provided by the HPX library, 

like components for implementing array partition data servers, and 
serialization archives for communicating data between processes. HPX 
provides a relatively high level of abstraction on top of lower level ab
stractions, for example for managing OS threads, scheduling tasks for 
execution, communication between processes, and communication be
tween cluster nodes. In the lowest abstraction level of the modelling 
framework code, we did not have to concern ourselves with this. 

In the second layer of abstraction in the framework, the algorithms 
are implemented, using the functionality from the first layer. No lower 
level abstractions are needed when implementing algorithms. For 
example, in the implementation of the algorithms it is not necessary to 
be aware of where partitions are located, or to manage the sending and 
receiving of partition data. Such steps are therefore missing from the 
descriptions of the algorithms shown in Appendix A. 

The result of being able to separate responsibilities in multiple layers 
of abstraction is that it has become possible to implement the modelling 
algorithms using a few lines of code, especially after refactoring the code 
common to similar operations. For example, all code common to the 
binary local operations is refactored into a single C++ function. All 
concrete binary local operations use this function in their implementa
tion, passing only the part that is unique for the actual operation. In the 
case of a parallel and distributed local operation calculating the sum of 
two arrays, this part consists of a single line of code calculating the result 
of summing two array elements. 

Fig. 7. Latency of experiments for different kinds of workers and partition sizes. Partition sizes shown are the number of cells in square partitions.  

Table 3 
Sizes of partitions used in the scaling experiments. These sizes correspond with 
the smallest sizes in Fig. 7, where the latencies are small.  

Worker local focal zonal Model 

Core 1, 000×

1, 000  
1, 000×

1, 000  
600× 600  650× 650  

NUMA 
node 

1, 300×

1, 300  
1, 000×

1, 000  
975× 975  750× 750  

cluster 
node 

1, 900×

1, 900  
1, 200×

1, 200  
1, 600×

1, 600  
1, 500×

1, 500   
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Fig. 8. Scaling efficiencies of experiments, over different kinds of workers. For reference, efficiencies for linear scaling (upper dashed line) and serial scaling (lower 
dashed line) are also shown. 
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6. Discussion 

6.1. Scalability and performance 

In this paper we presented the design and implementation of a pro
totype environmental modelling framework using asynchronous many- 
tasks, supported by the HPX library. The initial set of local, focal and 
zonal operations included in our framework show good weak and strong 
scaling characteristics over the three kinds of workers considered. We 
have used a maximum number of 576 CPU cores (12 cluster nodes with 
48 CPU cores each), and our results show that it is still beneficial to add 
more cluster nodes to be able to process more data or obtain model re
sults faster. The scalability of the example model is comparable with the 
scalability of the individual operations. Apart from selecting a good 
partition size, the example model did not require any tuning by the 
model developer. The HPX runtime is able to schedule tasks generated 
by multiple modelling operations at the same time. 

Even though the scalability we measured was good, there is still 
room for improvement. Also, when using our framework on larger 
cluster partitions, with more than the 12 nodes we considered in this 
study, scalability will likely continuously decrease. To improve the 
scalability and performance of the models created with our framework, 
in future work we will look into the effect of the parallel generation of 
tasks. Currently, the main tasks implementing the modelling operations 
are generated by a single process, using a single CPU core. Using more 
CPU cores for this, will likely increase the speed with which tasks are 
distributed over the processes. For the same reasons we will also 
research the automatic load balancing between processes. The HPX 

library contains facilities that make it feasible to include this in our 
framework (see Heller et al. (2019) for an example in which this is 
already done). Increasingly, with the inclusion of more kinds of 
modelling operations, some processes may have consistently less to do 
than others. Because tasks follow the data, moving partitions from one 
process to the other automatically shifts the computational load as well. 
Note that such future improvements to how the framework works 
internally will not influence how the models themselves are developed 
by the model developer, but only their scalability and performance. 

We have focussed here on the computational aspects of a scalable 
modelling framework, and disregarded that the runtime of models in
cludes I/O as well. In practice, the time spent on I/O can be dominating 
the runtime of a model, and more so as the part spent on computation 
scales better. Scalable I/O depends on the use of parallel I/O, supported 
for example by MPI-IO (MPI-Forum (2015)) and higher level APIs using 
it, like NetCDF (UNIDATA (2008–2018)), HDF5 (The HDF Group 
(1997–2019)), or the LUE physical data model (de Jong and Karssenberg 
(2019)). The latter API is part of the same software library as the 
framework described in this paper. Investigating how to incorporate 
scalable I/O in the framework is an important next step. 

Comparing our scalability and performance results with the results of 
related studies is difficult. This is because we focus on the scalability of 
the compute part of models, on the use of different kinds of workers, 
including cluster nodes, and because other studies use different opera
tions or models in their experiments. For example, PCML (Shook et al. 
(2016)) does not support distributed computing, scalability results are 
reported for a maximum of 16 CPU cores, and these include time spent 
on I/O. The comparison of our example model with the same model 
implemented with PCRaster showed that, although these two modelling 
frameworks have a very different implementation, the new framework 
containing modelling operations that are unoptimized for absolute 
performance approaches PCRaster’s performance. Given the scalability 
characteristics of the new framework, the new framework will be faster 
and be able to process much larger problems when additional workers 
are used. 

6.2. Usability 

Our framework allows modellers to write their models using simple 
imperative statements similar to existing map algebra implementations. 
No technical details related to parallel and distributed computing are 
leaked to the model development interface, as illustrated by the pseu
docode models in Appendix B. Currently, the modelling operations are 
available as C++ API functions. Models are regular executables that can 
be run from the command line, either distributed or non-distributed. 
When run distributed, multiple copies of a model must be started. This 
is handled by MPI-related tools or a batch scheduler, which are available 
on every standard computer cluster. When run non-distributed, there is 
no need for a dependency of the model on MPI, and models can be run on 
regular desktop or laptop computers. 

When executing models, the modeller must pass a partition size to 

Table 4 
Scaling efficiencies of strong and weak scaling experiments when using the maximum number of workers.   

strong scaling weak scaling 

Workers local focal zonal model local focal zonal model 
6 CPU cores 88% 81% 87% 79% 87% 80% 86% 80% 
8 NUMA nodes 79% 91% 113% 77% 86% 83% 92% 74% 
12 cluster nodes 65% 54% 70% 42% 77% 57% 80% 70%  

Table 5 
Throughputs in MLUPS (million lattice updates per second) of weak scaling 
experiments when using the maximum number of workers.  

Workers local focal zonal Model 

6 CPU cores 0.49 0.37 0.14 0.02 
8 NUMA nodes 3.37 2.54 1.04 0.14 
12 cluster nodes 27.28 18.51 9.18 1.00  

Table 6 
Latencies rounded to minutes of weak scaling experiment when using the 
maximum number of workers. Note that the number of time steps and the shape 
of the rasters used in the wildfire model experiment are smaller than the ones 
used in the other experiments (see Table 2).  

Workers local focal zonal model 

6 CPU cores 27 36 94 68 
8 NUMA nodes 33 44 107 97 
12 cluster nodes 55 81 163 186  
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the model which results in the best performance. Having to determine 
this partition size is something we would like to relieve the modeller of, 
possibly by an automatic procedure. The integration of the APEX per
formance environment for runtime adaptation (Huck et al. (2015)) 
would allow for the automatic selection of best partition sizes, for 
example. 

Most of the envisioned target users are not C++ developers, but are 
familiar with the Python language. As a proof of concept, we developed 
a Python package containing language bindings for two local operations 
(available in the source code repository, Section 7). Eventually a Python 
package will be made available containing all modelling operations. 
Note that the syntax for implementing environmental models is almost 
the same when developing models in C++ or Python. 

We have implemented and performed experiments with an example 
model simulating wildfire. This model was selected because it combines 
only local, focal, and zonal operations. We are confident that other 
models, in which the same operations are combined, will also result in 
good scaling efficiencies. A favourable property of using asynchronous 
many-tasks in the implementation of modelling operations, is that it 
becomes less important which operations are used and in which order 
they are called. Compared to approaches using the synchronous fork- 
join paradigm, there is an increased chance of the runtime being able 
to schedule tasks that are ready to run on workers. 

Being able to scale models over multiple nodes in a cluster has the 
advantage of being able to execute models faster, but also to execute 
larger models. As mentioned in Section 4, the sizes of the rasters we used 
were dependent on the kind of scaling experiment and the amount of 
memory available in a single NUMA node. In a real modelling study, the 
memory in all cluster nodes can be summed and used to calculate the 
maximum raster sizes that can be used. For example, the 12 cluster 
nodes used in our experiments have an aggregated amount of memory of 
3072 GiB. Assuming only rasters containing double precision floating 
point values and 10 state variables, similar to the wildfire model we 
used, this results in raster sizes of about 200,000 × 200,000 cells. Due to 
other software using memory, the HPX runtime using memory, and 
because tasks from multiple time steps can be executing at the same 
time, the real size will be somewhat lower. Assuming a cell size of 10 m, 
the example model can model wildfire for an area of 2000 × 2000 km. 
An area the size of a quarter of the Earth’s surface can be modelled when 
using a cell size of 100 m. Adding more nodes to the cluster partition 
would increase this maximum possible raster size to use for this model 
further. 

For the model developer using our framework, the usability of the 
framework is important. For the framework developer, factors related to 
the usability of the HPX library are important, in particular, the (in) 
convenience of writing modelling operations in terms of asynchronous 
many-tasks. Although there is a learning curve involved in using asyn
chronous many-tasks, writing modelling operations in terms of inter
dependent asynchronous many-tasks is comparable to writing regular 
serial code. The main difference is that the framework developer cannot 
assume that data is available by the time the model’s flow of control 
reaches the operation. In principle all data is referred to by futures. An 
operation’s tasks must be defined as something that will execute once 
the required input data is available. The big advantage, of course, is that 
resulting operations scale over multiple workers. And this is achieved 
without the need for using explicit message passing using MPI, and the 
use of synchronization primitives, as needed when using OS threads. It is 

the responsibility of the HPX runtime to schedule tasks on workers. This 
supports a good software development practice of defining stacks of 
abstraction layers with different responsibilities, rather than mixing 
framework code with code unrelated to modelling. 

6.3. Future work 

Given the promising results of this work, we will continue adding 
more functionality and improving the existing functionality in our 
future work. For example, besides the topics already mentioned in this 
section, we will work on the integration of more advanced operations 
used in environmental modelling to our framework, and assess how well 
they, and models using them, scale. We will add operations with a higher 
computational load, and a less predictable spatial distribution of 
computational load, and less predictable dependencies between tasks, 
than considered in this work. Examples of such operations are those that 
operate on a hydrologic flow direction network, and operations that 
operate on a friction-distance path surface. 

7. Software availability 

The scalable modelling framework is implemented as part of a soft
ware package called LUE,3 which is hosted on GitHub at https://github. 
com/computationalgeography/lue. The framework is implemented by 
Kor de Jong (corresponding author) in C++ and the source code is freely 
available under the MIT open source license. 

A document called README.md is included in the root of the source 
code repository detailing the instructions for building the software. LUE 
is portable software and has been successfully built on various platforms 
(operating systems: Linux, macOS; compilers: Clang, GCC; architecture: 
x86-64). 

A project containing the version of LUE used in this work, and con
taining additional information about the commands used for the 
described experiments can also be found on GitHub, at https://github. 
com/computationalgeography/paper_2020_scalable_algorithms. 

A release of LUE Python packages for various platforms is planned for 
2021. 
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Appendix A. Algorithms 

Algorithm 1. Local operation

Algorithm 2. Focal operation
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Algorithm 3. Zonal operation

Appendix B. Experiments 

In the scripts shown in this section, clone refers to an existing distributed partitioned array. An operation like uniform needs this information to be 
able to create an output array. The code of the actual experiments is very similar to the pseudocode shown here, but is implemented in C++. It can be 
found in the repository associated with this paper (Section 7). 

When the experiment models are executed by the modelling framework, concurrent tasks are generated that execute in parallel on multiple 
workers, potentially on multiple cluster nodes. Note that none of the model scripts contain technical details related to parallel and distributed 
computing.

Listing 2. Pseudocode of local operation experiment.   
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Listing 3. Pseudocode of focal operation experiment.  

Listing 4. Pseudocode of zonal operation experiment.  
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