
Environmental Modelling and Software 139 (2021) 104998

Available online 25 February 2021
1364-8152/© 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

An environmental modelling framework based on asynchronous
many-tasks: Scalability and usability

Kor de Jong a,b,*, Debabrata Panja b, Marc van Kreveld b, Derek Karssenberg a

a Department of Physical Geography, Faculty of Geosciences, Utrecht University, Princetonlaan 8A, 3584, CB, Utrecht, the Netherlands
b Department of Information and Computing Sciences, Faculty of Science, Utrecht University, Princetonplein 5, 3584, CC, Utrecht, the Netherlands

A R T I C L E I N F O

Keywords:
Environmental modelling framework
Map algebra
High-performance computing
Asynchronous many-tasks
HPX
LUE

A B S T R A C T

Environmental modelling frameworks allow domain experts, rather than software developers, to implement and
run numerical simulation models in earth and environmental sciences. Because of the need to use more detailed
process representations or larger datasets as input to models, it may become infeasible to perform modelling
studies, due to the increased amount of time it takes for models to calculate results. The objective of this study is
to evaluate the asynchronous many-task approach in the implementation of a prototype scalable modelling
framework. We evaluate the scalability of local, focal, and zonal map algebra operations, and an example model
in which these operations are combined. Our results show that the capacity of the operations and the example
model to use additional hardware, like nodes in a computer cluster, is good. With our freely available prototype
framework, models can be executed faster and modelling studies processing considerably more data can be
performed.

1. Introduction

Environmental modellers simulate the physical and biological envi-
ronment using computer models. These models can be developed using a
multitude of software, ranging from relatively low-level general purpose
programming languages with no built-in support for environmental
modelling, like C, C++, D, Fortran, Java and Rust, to high-level
modelling frameworks1containing pre-built model building blocks,
like Google Earth Engine for earth science data and analysis (Gorelick
et al. (2017)), MATLAB (Holzbecher (2012)), the NetLogo agent-based
modelling framework (Wilensky (1999)), and the PCRaster field-based
modelling framework (Karssenberg et al. (2010)). An advantage of
using modelling frameworks is that they, in different degrees, hide some
of the low-level complexities of implementing models. This speeds up
model development and allows domain experts without a background in
software development to develop models (Fig. 1 and Karssenberg
(2002)).

Some of the model development interfaces are inspired by map
algebra (Tomlin (1990)), which is also the approach that will be fol-
lowed here. Existing examples using map algebra include the Python
programming language packages provided by PCRaster, ArcGIS, and

QGIS. In map algebra, fields of spatially varying environmental attri-
butes are represented by rasters, which can be combined and translated
into new rasters using a procedural programming style. A set of such
translations, simulating environmental processes during a single time
step, can be used by a modelling framework to do forward iteration
through time, error propagation, and data assimilation (Karssenberg
et al. (2010)). The framework provides the elementary data structures
and modelling algorithms used by modellers in their models. Ideally,
models built with such a framework offer good performance, whatever
the combination of modelling operations used. In our study we look at
designing and building such a framework for developing environmental
models.

Over time, models often outgrow their capacity to calculate results in
a timely manner. This may be because of an increase in dataset sizes
used by models, an increase in temporal or spatial resolution or extents,
or an increase in model complexity. In order to solve this discrepancy
between the size and performance requirements of large models, and
their capacity to provide results, models must increase their ability to
use the current generation of hardware. In general, newer generations of
hardware are more powerful, but also more complex, than earlier gen-
erations. Typically, current computers contain more cores, more kinds of

* Corresponding author. Department of Physical Geography, Faculty of Geosciences, Utrecht University, Princetonlaan 8A, 3584, CB, Utrecht, the Netherlands.
E-mail addresses: k.dejong1@uu.nl (K. de Jong), d.panja@uu.nl (D. Panja), m.j.vankreveld@uu.nl (M. van Kreveld), d.karssenberg@uu.nl (D. Karssenberg).

1 We use the term framework loosely, to mean software containing at least data types and algorithms, used for the development of individual models. This includes
the case of a software library implementing these, but excludes integration frameworks used for coupling models.

Contents lists available at ScienceDirect

Environmental Modelling and Software

journal homepage: http://www.elsevier.com/locate/envsoft

https://doi.org/10.1016/j.envsoft.2021.104998
Accepted 13 February 2021

mailto:k.dejong1@uu.nl
mailto:d.panja@uu.nl
mailto:m.j.vankreveld@uu.nl
mailto:d.karssenberg@uu.nl
www.sciencedirect.com/science/journal/13648152
https://http://www.elsevier.com/locate/envsoft
https://doi.org/10.1016/j.envsoft.2021.104998
https://doi.org/10.1016/j.envsoft.2021.104998
https://doi.org/10.1016/j.envsoft.2021.104998
http://crossmark.crossref.org/dialog/?doi=10.1016/j.envsoft.2021.104998&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Environmental Modelling and Software 139 (2021) 104998

2

cores, and a deeper memory hierarchy. Additionally, the availability of
computer clusters to modellers, containing multiple compute nodes
connected by low-latency network connections, has increased. The
challenge we focus on is that of building a modelling framework that
makes better use of the available hardware.

There are multiple approaches for developing a modelling frame-
work implementing a collection of parallel and distributed map algebra
operations. An intuitive and popular approach to creating parallel ver-
sions of such operations is to use the synchronous fork-join paradigm,
supported by OpenMP (Dagum and Menon (1998)) for example, in
which individual algorithms implementing these operations are paral-
lelized and called in sequence. Examples of frameworks using this
approach are the Parallel Raster Processing Library (pRPL, Guan and
Clarke (2010)), the Parallel Raster-based Geocomputation Operators
(PaRGO Qin et al. (2014)), and the Parallel Cartographic Modelling
Language (PCML, Shook et al. (2016)). A drawback of this approach is
that it introduces implicit synchronization points. At least at the end of
each operation, the flow of control will wait for all tasks to finish before
returning to the caller, resulting in workers (like CPUs and GPUs) being
inactive for some time. This negative effect of synchronization points
increases with the number of workers and the degree of load imbalance
between the workers. Note that load imbalance between workers is
common in environmental modelling operations, resulting from an un-
even spatial distribution of no-data values, or because of high spatial
dependencies between cell values, as is the case in some operations that
operate on a flow direction network.

An alternative approach for implementing a collection of parallel
and distributed map algebra operations is to use asynchronous many-
tasks (AMT). One of the advantages of this approach is that it avoids
unnecessary synchronization points. With AMT, work to be done is
encoded in a set of relatively small tasks with data dependencies among
them. Tasks are spawned asynchronously, allowing the main flow of
control to continue into multiple modelling operations, resulting in
more tasks being spawned. Tasks get scheduled on workers after their
inputs have become available. This approach results in a larger collec-
tion of tasks than is possible when parallelizing algorithms individually,
as in the case of the synchronous fork-join approach. The advantage of
having a larger collection of runnable tasks is that it decreases the
chance of workers being inactive. Examples of runtime systems that
support AMT on distributed memory systems are Chapel (Chamberlain
et al. (2007)), X10 (Charles et al. (2005)), HPX (Kaiser et al. (2020a))
and Charm++ (Kale and Krishnan (1993)), of which the first two are

specific languages and the latter two are software libraries. For a tax-
onomy of task-based parallel programming technologies see Thoman
et al. (2018). We will use the AMT runtime system implemented by the
HPX software library for implementing our environmental modelling
framework.

The objective of this research is to evaluate the use of AMT for the
development of a modelling framework containing implementations of
map algebra operations, that can be used on all kinds of commodity
hardware in use by the modelling community (ranging from laptops,
desktops, to computer clusters). The main question we want to answer is
whether the use of such a framework results in scalable models. For this
we perform different kinds of scaling experiments over different kinds of
workers. Scalability of models is determined by both the software
implementing the compute part and the I/O part. In this study we focus
on the compute part. Additionally, we review the resulting framework in
terms of its usability by model developers, and we review the use of AMT
in the implementation.

This paper is organized as follows: in Section 2 we describe the
approach of developing environmental models using map algebra in
more detail; in Section 3 we provide more information about AMT and
the HPX implementation thereof; in Section 4 we describe how we used
AMT to implement a map algebra development interface on top of
modelling algorithms; in Section 5 we present results of scaling exper-
iments we performed with individual algorithms and an example model
simulating wildfire, in which some of the implemented modelling al-
gorithms are combined. We end this paper with a discussion of the re-
sults in Section 6.

The AMT runtime system implemented in HPX enables us to write an
initial set of high-level modelling algorithms that can be called from a
map algebra-like model development interface in a modelling frame-
work. Implementing algorithms in terms of asynchronous tasks that
translate asynchronously produced input data into output data, results
in a flexible system in which modelling algorithms can be combined in
any order, according to the model, and still offer good scalability. The
framework developer is responsible for defining tasks and the de-
pendencies between them, and is relieved of the responsibility of
scheduling tasks and explicitly sending messages in between processes.
The framework implementation is freely available for inspection and use
(Section 7).

2. Model development using map algebra

Originally, the map algebra language was designed for creating
cartographic models, where the models were collections of maps
(Tomlin (1990)). The language consisted of a specific set of relatively
simple generic operations that translate raster data. A combination of
such operations could be used to, for example, determine suitable lo-
cations for land development. The advantages of using map algebra are
that a finite set of generic operations can be used to handle multiple use
cases, and that it provides a level of abstraction that makes it suitable for
users without a background in software development.

The principles behind cartographic modelling using map algebra
have been extended towards forward numerical simulation of environ-
mental processes as well (van Deursen et al. (2019); Karssenberg et al.
(2010)). A map algebra-like language is then used to define the initial
state of the modelled environmental system and to define the state
transitions over time. In this context, the model refers to the code, not to
the collection of maps. The model shown in Listing 1 is an example of an
environmental model, implemented using a map algebra-like language,
simulating wildfire. We used it in our experiments (Section 4). Outputs
from the model are shown in (Fig. 2).

Map algebra operations are often classified according to the kind of

Fig. 1. Two stacks of model and support code. A model developer writing a
model from scratch has to write more code (left) than a developer using a
modelling framework (right). The green boxes represent the amount of code the
model developer has to write. The blue box represents the framework code.

K. de Jong et al.

Environmental Modelling and Software 139 (2021) 104998

3

neighbourhood from which input raster cells are selected that contribute
to the calculation of output raster cells. In this study we consider three
kinds of operations (Burrough et al. (2015); Karssenberg et al. (2010);
Tomlin (1990)): local operations (Fig. 3a), focal operations (Fig. 3b),
and zonal operations (Fig. 3c). Operations not considered in this work
include global operations, which can be seen as a subset of zonal oper-
ations, and network operations, operating on a flow direction network.

3. Asynchronous many-tasks and HPX

The AMT programming model supports defining relatively small
tasks of work that need to be executed, and the dependencies between
them. The tasks and their dependencies form a directed acyclic graph
that is used by the AMT runtime system to determine the order in which
the tasks must be executed, and to determine which tasks can be
scheduled to execute concurrently. Given enough hardware resources,

Fig. 2. Output maps of the example model simulating wildfire for three time steps. Black cells represent cells that are burning (fire front). Green cells represent the
area with the highest susceptibility for being burned. The other colours represent the age of burned cells in number of time steps, with red cells being burned most
recently. The area shown is 500 × 500 cells.

Listing 1. Pseudocode of model simulating wildfire.

K. de Jong et al.

Environmental Modelling and Software 139 (2021) 104998

4

the runtime system will execute concurrent tasks in parallel.
The requirement for the runtime system to always be able to

schedule tasks for execution, is that there are enough tasks defined and
few dependencies between them. In order to achieve this, tasks are
created asynchronously, and do not depend on more tasks than neces-
sary. An asynchronously created task is spawned off from its operating
system (OS) thread, which continues doing other work, for example
spawning off more tasks.

HPX is an implementation of the AMT programming model and
runtime. It is an open source software library written in portable
C++11/14/17/20 code and does not depend on a compiler from a
specific vendor or on compiler extensions. It has been used to implement
parallel software successfully in multiple studies (Heller et al. (2013),
Heller et al. (2017), Heller et al. (2019), and Khatami et al. (2016)).

Using HPX the developer of an environmental modelling framework
can define tasks and their dependencies in the usual imperative style of
programming in C++. Using the HPX API, the graph of tasks is built
implicitly and does not need to be explicitly managed by the developer.
The framework developer’s main responsibility is to correctly represent
the total amount of work to be executed by a collection of tasks and their
data dependencies. The size of each task is measured in terms of its la-
tency, which depends on the amount of data processed by the task, the
number of computations performed, and on latencies involved in
accessing the data. The ideal task size is large enough for the overheads
of parallelization to be amortized over the sum of the latencies of all
tasks, and small enough to provide the schedulers with enough con-
current tasks to schedule on workers (Grubel et al. (2015)). Since the
latency of tasks is partly dependent on aspects that are only known at

runtime, like data values and hardware characteristics, it is important
that the task size can be influenced by the user. One way to do this is to
support a parameter representing the amount of data processed by in-
dividual tasks.

To illustrate the differences between the AMT approach and other
approaches to writing a modelling framework, we assume a model ex-
ists, similar to the map algebra model simulating wildfire shown in
Listing 1, that calls three modelling operations from the framework. For
simplicity, we will ignore the overheads of parallelization. A serial
framework executes these operations one after the other on a single
worker (Fig. 4a). The latency of this program is the sum of the latencies
of all the work that needs to be done. Since only one worker is used by
this program, adding more workers will not decrease its latency. When
the three operations are independent from each other, they can be
executed in parallel (Fig. 4b). The program’s latency is determined by
the operation taking the most time to finish. Since each operation is
executed by one worker, adding more workers will not decrease this
program’s latency. In the implementation OS threads can be used, for
example, to spawn threads doing work on multiple CPU cores. When the
three operations contain concurrent tasks that can be executed in par-
allel (Fig. 5), another approach can be taken. In this case, the operations
are still executed one after the other, but they are partly executed in
parallel (Fig. 4c). This program’s latency is determined by the sum of the
latencies of the serial regions and the parallel regions. Adding more
workers will not decrease the latency of the serial regions but, given
enough concurrent tasks, may decrease the latency of the parallel re-
gions. In this example it will not, though, since none of the parallel re-
gions has more than three concurrent tasks. In the implementation,

Fig. 3. a: Each output cell is a function of input cells at the corresponding location in one or more input rasters. Example: ph = − log(hydronium) b: Each output cell is
a function of input cells within a neighbourhood of input cells at and around the corresponding location in an input raster. In principle, these neighborhoods can have
any size and shape, but they are often square or round and small. Example: smooth ph = focal mean(ph, kernel) c: Each output cell is a function of input cells sharing
the same class according to a second input raster. Here, the blue cells at the same locations as the purple cells contribute to the output cell shown. Example: max ph =

zonal max(ph, soil).

Fig. 4. a: Serial execution of three operations by one worker. Each colour represents an operation. Latency is the duration of executing all the work. b: Parallel
execution of three operations by three workers. c: Serial execution of three operations, but parallel execution by three workers of the concurrent tasks within each
operation (Fig. 5). d: Parallel execution by three workers of concurrent tasks of all operations.

K. de Jong et al.

Environmental Modelling and Software 139 (2021) 104998

5

OpenMP (Dagum and Menon (1998)) can be used for example, to create
parallel regions in which multiple OS threads are used to execute tasks
on multiple CPU cores.

When using the AMT approach, concurrent tasks from all three op-
erations are executed in parallel, taking the dependencies between the
tasks into account (Fig. 4d). The latency of the program is determined by
the maximum of the sums of the latencies of the tasks per worker. Given
enough concurrent tasks, adding more workers will decrease the pro-
gram’s latency. Because tasks from multiple operations are considered
there are more options to avoid load imbalance between workers.

In environmental models, most rasters processed by the modelling
operations depend on each other: the output rasters from operations are
used as input in other operations. It is therefore unlikely to find many
modelling operations whose tasks are completely independent from
each other, as is shown in the idealized example in Fig. 4d. But, since
tasks are created asynchronously in AMT, tasks from different modelling
operations can be scheduled for execution, as long as the input data of
each of these individual tasks is ready. Depending on the modelling
operation, input data of individual tasks can be relatively small subsets
of the full input rasters of the operations. For example, in a model
containing multiple local operations, tasks from every operation may be
executing at the same time, even though output rasters from some of
these operations is input of others. The AMT runtime considers indi-
vidual tasks, not operations.

In HPX a data structure called future exists which represents the
output of a task. This output may be ready to be used, or it may become
ready later on. Dependencies between tasks are defined by attaching
tasks to futures output from other tasks. Once a task is finished, its
output future is marked ready and dependent tasks are notified. The
HPX runtime manages task schedulers (one per OS thread) that manage
multiple queues of tasks, some of which are ready to be executed, while
others are still waiting for input dependencies to be satisfied.

When spawning HPX tasks, the framework developer has to specify
the target each task must execute on. Common targets are OS processes

and object instances within processes, called components in HPX. Pro-
cesses and components can be local to the computer on which a task is
spawned, or remote. This is transparent to the software developer. When
using the HPX API, the developer programs a single abstract machine
consisting of one or more processes running on one or more computers.
Because of this, HPX can be used transparently for parallel computing on
both a single shared memory computer and on multiple distributed
memory computers. This is an advantage over existing popular ap-
proaches that use multiple APIs, like using MPI (MPI-Forum (2015)) for
the distribution and OpenMP for the parallelization of work.

4. Method

4.1. Implementation

An implementation of map algebra requires a data structure for
representing rasters, and operations translating input rasters to output
rasters. We designed a partitioned multidimensional array data structure
with two capabilities that are important for our purposes. First, the size
of the partitions is configurable, which is important because it influences
the size of tasks translating array partitions. Second, the partitions can
be distributed over multiple operating system processes, which is
important because tasks translating array partitions are sent to the data.
The distribution of partitions therefore determines the distribution of
most of the computational load.

Array partitions are implemented in terms of HPX component clients.
These are light-weight objects providing a convenient API for interact-
ing with, possibly remote, component server instances, containing the
actual array partition elements. HPX component client objects are
semantically equivalent to futures. They refer to data that may or may
not be ready to use yet, but as any HPX future, they allow a task to be
attached to them, which will be scheduled for execution once the data
has arrived and the future becomes ready. In Fig. 6 an example of a
partitioned array is shown, whose partitions are distributed over three
nodes in a cluster. The partitioned array allows the whole raster to be

Fig. 5. Each operation has concurrent tasks that can be executed in parallel.
Each colour represents an operation and each numbered box represents a task.
The length of each task represents its latency which, for simplicity, is assumed
to be constant.

Fig. 6. A partitioned array instance is stored in a single process and contains an
array of partition client instances. Each of these refers to a component server
instance actually containing the array elements, and which is possibly located
in a different process. Each partition’s elements are ready to be used, are
currently being calculated, or will be calculated in the future.

K. de Jong et al.

Environmental Modelling and Software 139 (2021) 104998

6

stored in the memory available to a single process or distributed over
multiple processes, possibly on multiple nodes. The client code using
partitioned array instances, like modelling algorithms, does not need to
make a distinction between these two cases.

Given the partitioned array data structure, we developed algorithms
implementing a set of local, focal, and zonal operations. The goal of the
algorithms is to generate and distribute tasks that will perform the
necessary calculations in such a way that the computational load is
evenly balanced over the available processes. They are fully asynchro-
nous. None of the algorithmic steps block the flow of control. Each al-
gorithm may finish executing even before any of the input array
partitions are available.

Input partitions may be the result of another asynchronous task, like
an I/O operation reading partition data from a data set, or another local,
focal, or zonal operation. This means that the array elements in such a
partition may not be available yet. The idea is to attach the task for
translating input elements to output elements to the future representing
the input array partition. HPX will schedule such a continuation auto-
matically for execution, once the input partition data becomes available.

Our algorithms always contain parts that execute in the process
where the input partitioned arrays are located, and parts that execute in
the processes where the input array partitions, referenced by the input
partitioned arrays, are located. These latter parts are used by the former
part to perform most of the computations. The main steps of the algo-
rithms implementing local, focal, and zonal operations are shown in
Algorithm 1, Algorithm 2, and Algorithm 3, in Appendix A. Although
some of the steps may suggest that the flow of control blocks, this is not
the case. For example, when an input partition of a task is not ready yet,
or partition data has not arrived yet, the flow of control will continue,
generating more tasks. As soon as partitions do become ready, or data
arrives, the state of associated tasks is changed (by the HPX runtime)
from staged (waiting for dependencies to be satisfied) to pending (ready
to run). From then on these tasks can be scheduled for execution.

The latencies involved in requesting data from an array partition
depend on the location of the partition server relative to the partition
client. If they are located in separate processes, latencies are (much)
higher, because memory has to be copied from the server’s process to the
client’s one, possibly involving network traffic. Instead, if they are
located in the same process, no memory is copied, only the address of the
data is. Because input array partitions are never changed themselves, the
partition data can be assumed to always be in a valid state, and no
synchronization primitives, like mutexes and locks, are needed to
enforce that.

The result of our approach is that calling multiple local, focal, and
zonal operations after each other creates many tasks for the HPX

runtime to schedule for execution, once their input data requirements
are met. As long as there are more tasks that are ready to be executed
than there are workers to execute them, the hardware will be fully
occupied. The creation of a model’s tasks will generally finish before the
tasks themselves, at which point the execution of a model will block
until the last task has finished executing.

4.2. Scalability and performance

To characterize the scalability of our modelling framework, we
developed an example model, simulating wildfire (Listing 1). This model
is based on concepts from existing fire models (e.g. Clarke et al. (1994);
Li et al. (2017); Freire and DaCamara (2019); Trucchia et al. (2020)) and
its scalability and performance can thus be representative for this type of
environmental models. The model is implemented by combining local,
focal, and zonal modelling operations from our framework. Two pro-
cesses relevant in fire models are represented by the model. The first is
surface fire, where an area catches fire because it contains burnable
material and a neighbouring area is already burning. The second process
represented is spotting fire, where an area catches fire because an area
further away is burning. The example model serves as a typical use-case
for an environmental modelling framework containing map algebra
operations.

Results of the scaling experiments of the example model provide
information about the usefulness of AMT in the implementation of a
modelling framework. We also assessed the scalability of individual
local, focal, and zonal operations. Results from these experiments are
useful to detect scalability issues with a specific (kind of) modelling
operation.

We performed scaling experiments on a partition of a computer
cluster. The hardware and software platform of each of the nodes in this
partition is listed in Table 1. In each of the cluster nodes, CPU cores are
grouped into NUMA (non-uniform memory access) nodes. Main memory
is distributed over these NUMA nodes, and CPUs can reference values
stored in memory of their own NUMA node faster than values stored in
the memory of neighbouring NUMA nodes. This is relevant when
designing scaling experiments. When scaling over CPU cores it matters
in which NUMA node these cores are located. Randomly picking CPU
cores results in non-reproducible scalability measures.

We performed separate scaling experiments over three kinds of
workers: 1) over the 6 CPU cores within a single NUMA node, 2) over the
8 NUMA nodes within a single cluster node, and 3) over 12 cluster nodes
within a cluster partition. For smaller problems scalability over CPU
cores is relevant, and for increasingly larger problems the scalability
over NUMA nodes and cluster nodes is. When scaling over the 6 CPU
cores, a single process was assigned to a single NUMA node and CPU
cores were assigned in order from within this NUMA node. When scaling
over the 8 NUMA nodes within a cluster node, as many processes were
used as NUMA nodes used by each specific run, each of them assigned to
the CPU cores within a separate NUMA node. When scaling over cluster
nodes, on each node 8 processes were used: one per NUMA node. Using a
process per NUMA node is a convenient way to make sure memory al-
locations and references are resolved by the nearby main memory, in the
same NUMA node as the process.

We calculated both the relative strong and weak scaling efficiencies.
The relative strong scaling efficiency provides information about how
well the modelling framework is able to use additional workers, while
the total problem size (the number of cells in the rasters processed by the
model) is kept constant. It is calculated by dividing the software’s la-
tency TS,1 on a single worker by the latency TS,P on P workers, multiplied
by P (Equation (1)). In the case of linear scaling P × TS,P equals TS,1. In
that case, doubling the number of workers halves the latency.

Table 1
Hardware and software platform of nodes used in experiments. All nodes are
interconnected with InfiniBand.

CPUs 2 AMD EPYC 7451 (2 packages)

NUMA nodes 8 (4/package)
Cores 48 (6/NUMA node)
Clock frequency 2.3 GHz
L1d/L1i 32/64 KiB/core
L2 513 KiB/core
L3 8192 KiB/3 cores
RAM 256 GiB (32 GiB/NUMA node)
OS CentOS 7
GNU GCC version 10.2.0
HPX version 1.5.0 (Kaiser et al. (2020b))

K. de Jong et al.

Environmental Modelling and Software 139 (2021) 104998

7

strong scaling efficiency=
TS,1

P × TS,P
× 100% (1)

The relative weak scaling efficiency provides information about how
well the modelling framework is able to use additional workers, while
the problem size per worker is kept constant. It is calculated by dividing
the software’s latency TW,1 on a single worker by the latency TW,P on P
workers (Equation (2)). In the case of linear scaling TW,P equals TW,1. In
that case, doubling the number of workers (and the number of cells in
the rasters processed) does not influence the latency.

weak scaling efficiency=
TW,1

TW,P
× 100% (2)

Before performing the scaling experiments of the operations and the
case-study model, we first determined their optimal task size, deter-
mined by the array partition size. We measured the optimal task size
given the maximum array size and number of workers as used in the
strong scaling experiments. In order to determine the variability in the
latencies of model runs, these experiments were repeated three times. In
this study we focussed on the scalability of the computations. Time spent
on I/O was not taken into account when measuring latencies.

In Table 2 the size of the arrays used in the scaling experiments are
shown. The sizes where chosen such that in all experiments all CPU cores
would have a relatively large amount of work to perform which would
still fit in the memory of the NUMA node. For comparison, a raster of
96,000 × 96,000 cells can cover an area as large as Australia with 30×
30m cells. Operation experiments were simulated for 500 time steps,
calling the operation once for each time step, and the example model
experiments were simulated for 250 time steps. These counts were
chosen such that each model would take between half an hour and 3 h to
finish.

In Appendix B the pseudo code can be found of the “models” used in
the scaling experiments for individual kinds of map algebra operations.
The wildfire model we used is shown in Listing 1.

Because scalability is the main focus in this work, we have not
optimized our code for performance. We did measure throughputs, to
get an impression of the performance of each experiment. Here,
throughputs are a measure of how many raster cells are being calculated
per second during each experiment, assuming each experiment results in
a single raster at the end of each time step. Additionally, to get an
impression of the absolute performance of our framework when using a
single CPU core, we compared the latency of the example model with the
same model implemented using the PCRaster modelling framework
(Karssenberg et al. (2010)).

4.3. Usability

Besides the scalability aspects of the new modelling framework we
evaluate how easy the framework can be developed, and how well the
resulting software can be used by model developers. To characterize this
we evaluated the resulting source code with respect to one of the aspects
that are generally considered an important characteristic of maintain-
able code, namely whether or not the code is modular and contains
clearly separated layers of abstraction (ISO/IEC 25010:2011 (2011)).
This is not meant to be a complete software quality analysis, but an
evaluation of some of the implications of using the AMT programming
model as implemented in the HPX library in the implementation of a
modelling framework. To characterize the usability of the framework by
model developers, we review what the implications are for the modeller
to develop a model using our framework. Ideally, there should be no
difference between using our framework and comparable alternatives.

5. Results

5.1. Scalability and performance

The results of the partition shape experiments show that there is
often a range of partition sizes that result in relatively small latencies
(Fig. 7). To provide the HPX schedulers within each process with as
many tasks as possible, we selected the smallest optimal partition size to
use for the strong and weak scaling experiments (Table 3). The experi-
ments also show that the variability in latencies is relatively small at
optimal partition sizes (Fig. 7). We therefore did not perform the strong
and weak scaling experiments multiple times.

In general, the strong and weak scaling experiments show good
scalability (Fig. 8 and Table 4). In most cases the efficiencies are around
80% or higher. When scaling over cluster nodes the efficiencies are
lower, especially in the case of the experiments with the focal operation
and the example model. But even when using 12 cluster nodes it is still
useful to use additional nodes to obtain model results faster, or to
simulate larger problems. The strong scaling experiment of the zonal
operation over NUMA nodes, shows supra-linear scaling. This implies
that the performance of the zonal operation when using multiple NUMA
nodes is better than can be expected given the performance when using a
single NUMA node. One reason for this may be that the partition size
used in each scaling experiment is determined using the problem size
and maximum number of workers as used in the strong scaling experi-
ments (Section 4). It is possible that this partition size is less optimal
when running the model on a single NUMA node. This would then in-
crease the latency of running the zonal operation model on a single
NUMA node, and increase the associated scaling efficiencies.

The measured throughputs (Table 5) show that the local operation
experiment is able to provide results faster than the focal operation
experiment, which is faster than the zonal operation experiment. Since
the wildfire model contains more expressions per time step than the
other experiments, the speed with which it is able to fill the final raster at
the end of each time step is lower. Given the scaling efficiencies of the
experiments, throughputs increase with the number of workers.

We compared the latency of the wildfire model with the same model
implemented using PCRaster.2 In an experiment using a single CPU core,
with rasters of 500 × 500 cells and 5000 time steps, PCRaster took 5 min
and the new framework 5:45 min. These experiments used a single CPU
core, and performed I/O, to different file formats.

The latencies shown in Table 6 show how long the experiments took.
Although the amount of work per CPU core was kept more or less con-
stant between experiments of different kinds of workers (see Table 2), the
weak scaling latencies increase when going from CPU cores to NUMA

Table 2
Sizes of raster maps used in the scaling experiments. In case of strong scaling, the
same array sizes are used for all numbers of workers. In case of weak scaling, the
array sizes given in this table are multiplied by the number of workers used in
the experiment.

individual operations model

Worker strong weak strong weak
Core 10,000×

10,000
4, 000×

4, 000
5,000×

5,000
2, 000×

2, 000
NUMA

node
30,000×

30,000
10, 000×

10, 000
15,000×

15,000
5, 000×

5, 000
cluster

node
96,000×

96,000
30, 000×

30, 000
48,000×

48,000
15,000×

15,000

2 The PCRaster model is available in the source code repository associated
with this paper (Section 7).

K. de Jong et al.

Environmental Modelling and Software 139 (2021) 104998

8

nodes to cluster nodes. This is likely due to the loss in efficiency when
changing the kind of worker. The latencies of the networks between
NUMA nodes and cluster nodes add to the total latencies of performing
an experiment.

5.2. Usability

The source code implementing the modelling framework currently
contains two main layers of abstraction. The first one implements the
partitioned array and related functionality for creating new arrays,
distributing partitions over processes, and transporting partition data
between processes. This layer uses facilities provided by the HPX library,

like components for implementing array partition data servers, and
serialization archives for communicating data between processes. HPX
provides a relatively high level of abstraction on top of lower level ab-
stractions, for example for managing OS threads, scheduling tasks for
execution, communication between processes, and communication be-
tween cluster nodes. In the lowest abstraction level of the modelling
framework code, we did not have to concern ourselves with this.

In the second layer of abstraction in the framework, the algorithms
are implemented, using the functionality from the first layer. No lower
level abstractions are needed when implementing algorithms. For
example, in the implementation of the algorithms it is not necessary to
be aware of where partitions are located, or to manage the sending and
receiving of partition data. Such steps are therefore missing from the
descriptions of the algorithms shown in Appendix A.

The result of being able to separate responsibilities in multiple layers
of abstraction is that it has become possible to implement the modelling
algorithms using a few lines of code, especially after refactoring the code
common to similar operations. For example, all code common to the
binary local operations is refactored into a single C++ function. All
concrete binary local operations use this function in their implementa-
tion, passing only the part that is unique for the actual operation. In the
case of a parallel and distributed local operation calculating the sum of
two arrays, this part consists of a single line of code calculating the result
of summing two array elements.

Fig. 7. Latency of experiments for different kinds of workers and partition sizes. Partition sizes shown are the number of cells in square partitions.

Table 3
Sizes of partitions used in the scaling experiments. These sizes correspond with
the smallest sizes in Fig. 7, where the latencies are small.

Worker local focal zonal Model

Core 1, 000×

1, 000
1, 000×

1, 000
600× 600 650× 650

NUMA
node

1, 300×

1, 300
1, 000×

1, 000
975× 975 750× 750

cluster
node

1, 900×

1, 900
1, 200×

1, 200
1, 600×

1, 600
1, 500×

1, 500

K. de Jong et al.

Environmental Modelling and Software 139 (2021) 104998

9

Fig. 8. Scaling efficiencies of experiments, over different kinds of workers. For reference, efficiencies for linear scaling (upper dashed line) and serial scaling (lower
dashed line) are also shown.

K. de Jong et al.

Environmental Modelling and Software 139 (2021) 104998

10

6. Discussion

6.1. Scalability and performance

In this paper we presented the design and implementation of a pro-
totype environmental modelling framework using asynchronous many-
tasks, supported by the HPX library. The initial set of local, focal and
zonal operations included in our framework show good weak and strong
scaling characteristics over the three kinds of workers considered. We
have used a maximum number of 576 CPU cores (12 cluster nodes with
48 CPU cores each), and our results show that it is still beneficial to add
more cluster nodes to be able to process more data or obtain model re-
sults faster. The scalability of the example model is comparable with the
scalability of the individual operations. Apart from selecting a good
partition size, the example model did not require any tuning by the
model developer. The HPX runtime is able to schedule tasks generated
by multiple modelling operations at the same time.

Even though the scalability we measured was good, there is still
room for improvement. Also, when using our framework on larger
cluster partitions, with more than the 12 nodes we considered in this
study, scalability will likely continuously decrease. To improve the
scalability and performance of the models created with our framework,
in future work we will look into the effect of the parallel generation of
tasks. Currently, the main tasks implementing the modelling operations
are generated by a single process, using a single CPU core. Using more
CPU cores for this, will likely increase the speed with which tasks are
distributed over the processes. For the same reasons we will also
research the automatic load balancing between processes. The HPX

library contains facilities that make it feasible to include this in our
framework (see Heller et al. (2019) for an example in which this is
already done). Increasingly, with the inclusion of more kinds of
modelling operations, some processes may have consistently less to do
than others. Because tasks follow the data, moving partitions from one
process to the other automatically shifts the computational load as well.
Note that such future improvements to how the framework works
internally will not influence how the models themselves are developed
by the model developer, but only their scalability and performance.

We have focussed here on the computational aspects of a scalable
modelling framework, and disregarded that the runtime of models in-
cludes I/O as well. In practice, the time spent on I/O can be dominating
the runtime of a model, and more so as the part spent on computation
scales better. Scalable I/O depends on the use of parallel I/O, supported
for example by MPI-IO (MPI-Forum (2015)) and higher level APIs using
it, like NetCDF (UNIDATA (2008–2018)), HDF5 (The HDF Group
(1997–2019)), or the LUE physical data model (de Jong and Karssenberg
(2019)). The latter API is part of the same software library as the
framework described in this paper. Investigating how to incorporate
scalable I/O in the framework is an important next step.

Comparing our scalability and performance results with the results of
related studies is difficult. This is because we focus on the scalability of
the compute part of models, on the use of different kinds of workers,
including cluster nodes, and because other studies use different opera-
tions or models in their experiments. For example, PCML (Shook et al.
(2016)) does not support distributed computing, scalability results are
reported for a maximum of 16 CPU cores, and these include time spent
on I/O. The comparison of our example model with the same model
implemented with PCRaster showed that, although these two modelling
frameworks have a very different implementation, the new framework
containing modelling operations that are unoptimized for absolute
performance approaches PCRaster’s performance. Given the scalability
characteristics of the new framework, the new framework will be faster
and be able to process much larger problems when additional workers
are used.

6.2. Usability

Our framework allows modellers to write their models using simple
imperative statements similar to existing map algebra implementations.
No technical details related to parallel and distributed computing are
leaked to the model development interface, as illustrated by the pseu-
docode models in Appendix B. Currently, the modelling operations are
available as C++ API functions. Models are regular executables that can
be run from the command line, either distributed or non-distributed.
When run distributed, multiple copies of a model must be started. This
is handled by MPI-related tools or a batch scheduler, which are available
on every standard computer cluster. When run non-distributed, there is
no need for a dependency of the model on MPI, and models can be run on
regular desktop or laptop computers.

When executing models, the modeller must pass a partition size to

Table 4
Scaling efficiencies of strong and weak scaling experiments when using the maximum number of workers.

strong scaling weak scaling

Workers local focal zonal model local focal zonal model
6 CPU cores 88% 81% 87% 79% 87% 80% 86% 80%
8 NUMA nodes 79% 91% 113% 77% 86% 83% 92% 74%
12 cluster nodes 65% 54% 70% 42% 77% 57% 80% 70%

Table 5
Throughputs in MLUPS (million lattice updates per second) of weak scaling
experiments when using the maximum number of workers.

Workers local focal zonal Model

6 CPU cores 0.49 0.37 0.14 0.02
8 NUMA nodes 3.37 2.54 1.04 0.14
12 cluster nodes 27.28 18.51 9.18 1.00

Table 6
Latencies rounded to minutes of weak scaling experiment when using the
maximum number of workers. Note that the number of time steps and the shape
of the rasters used in the wildfire model experiment are smaller than the ones
used in the other experiments (see Table 2).

Workers local focal zonal model

6 CPU cores 27 36 94 68
8 NUMA nodes 33 44 107 97
12 cluster nodes 55 81 163 186

K. de Jong et al.

Environmental Modelling and Software 139 (2021) 104998

11

the model which results in the best performance. Having to determine
this partition size is something we would like to relieve the modeller of,
possibly by an automatic procedure. The integration of the APEX per-
formance environment for runtime adaptation (Huck et al. (2015))
would allow for the automatic selection of best partition sizes, for
example.

Most of the envisioned target users are not C++ developers, but are
familiar with the Python language. As a proof of concept, we developed
a Python package containing language bindings for two local operations
(available in the source code repository, Section 7). Eventually a Python
package will be made available containing all modelling operations.
Note that the syntax for implementing environmental models is almost
the same when developing models in C++ or Python.

We have implemented and performed experiments with an example
model simulating wildfire. This model was selected because it combines
only local, focal, and zonal operations. We are confident that other
models, in which the same operations are combined, will also result in
good scaling efficiencies. A favourable property of using asynchronous
many-tasks in the implementation of modelling operations, is that it
becomes less important which operations are used and in which order
they are called. Compared to approaches using the synchronous fork-
join paradigm, there is an increased chance of the runtime being able
to schedule tasks that are ready to run on workers.

Being able to scale models over multiple nodes in a cluster has the
advantage of being able to execute models faster, but also to execute
larger models. As mentioned in Section 4, the sizes of the rasters we used
were dependent on the kind of scaling experiment and the amount of
memory available in a single NUMA node. In a real modelling study, the
memory in all cluster nodes can be summed and used to calculate the
maximum raster sizes that can be used. For example, the 12 cluster
nodes used in our experiments have an aggregated amount of memory of
3072 GiB. Assuming only rasters containing double precision floating
point values and 10 state variables, similar to the wildfire model we
used, this results in raster sizes of about 200,000 × 200,000 cells. Due to
other software using memory, the HPX runtime using memory, and
because tasks from multiple time steps can be executing at the same
time, the real size will be somewhat lower. Assuming a cell size of 10 m,
the example model can model wildfire for an area of 2000 × 2000 km.
An area the size of a quarter of the Earth’s surface can be modelled when
using a cell size of 100 m. Adding more nodes to the cluster partition
would increase this maximum possible raster size to use for this model
further.

For the model developer using our framework, the usability of the
framework is important. For the framework developer, factors related to
the usability of the HPX library are important, in particular, the (in)
convenience of writing modelling operations in terms of asynchronous
many-tasks. Although there is a learning curve involved in using asyn-
chronous many-tasks, writing modelling operations in terms of inter-
dependent asynchronous many-tasks is comparable to writing regular
serial code. The main difference is that the framework developer cannot
assume that data is available by the time the model’s flow of control
reaches the operation. In principle all data is referred to by futures. An
operation’s tasks must be defined as something that will execute once
the required input data is available. The big advantage, of course, is that
resulting operations scale over multiple workers. And this is achieved
without the need for using explicit message passing using MPI, and the
use of synchronization primitives, as needed when using OS threads. It is

the responsibility of the HPX runtime to schedule tasks on workers. This
supports a good software development practice of defining stacks of
abstraction layers with different responsibilities, rather than mixing
framework code with code unrelated to modelling.

6.3. Future work

Given the promising results of this work, we will continue adding
more functionality and improving the existing functionality in our
future work. For example, besides the topics already mentioned in this
section, we will work on the integration of more advanced operations
used in environmental modelling to our framework, and assess how well
they, and models using them, scale. We will add operations with a higher
computational load, and a less predictable spatial distribution of
computational load, and less predictable dependencies between tasks,
than considered in this work. Examples of such operations are those that
operate on a hydrologic flow direction network, and operations that
operate on a friction-distance path surface.

7. Software availability

The scalable modelling framework is implemented as part of a soft-
ware package called LUE,3 which is hosted on GitHub at https://github.
com/computationalgeography/lue. The framework is implemented by
Kor de Jong (corresponding author) in C++ and the source code is freely
available under the MIT open source license.

A document called README.md is included in the root of the source
code repository detailing the instructions for building the software. LUE
is portable software and has been successfully built on various platforms
(operating systems: Linux, macOS; compilers: Clang, GCC; architecture:
x86-64).

A project containing the version of LUE used in this work, and con-
taining additional information about the commands used for the
described experiments can also be found on GitHub, at https://github.
com/computationalgeography/paper_2020_scalable_algorithms.

A release of LUE Python packages for various platforms is planned for
2021.

CRediT authorship contribution statement

Kor de Jong: Conceptualization, Writing – original draft, worked on
concepts, designed and implemented the framework, wrote the manu-
script. Debabrata Panja: Writing – original draft, wrote the manuscript.
Marc van Kreveld: Writing – original draft, wrote the manuscript.
Derek Karssenberg: Writing – original draft, wrote the manuscript.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

Funding: This work was supported by the Research IT innovation
programme (Utrecht University, The Netherlands).

3 LUE stands for Life, the Universe and Everything, which is the title of one of the books in Douglas Adams’ Hitchhiker’s Guide to the Galaxy “trilogy”. Here, it
refers to the fact that in designing LUE we try to make it applicable in as many contexts as possible. We pronounce LUE as the French pronounce Louis (LU-EE).

K. de Jong et al.

https://github.com/computationalgeography/lue
https://github.com/computationalgeography/lue
https://github.com/computationalgeography/paper_2020_scalable_algorithms
https://github.com/computationalgeography/paper_2020_scalable_algorithms

Environmental Modelling and Software 139 (2021) 104998

12

Appendix A. Algorithms

Algorithm 1. Local operation

Algorithm 2. Focal operation

K. de Jong et al.

Environmental Modelling and Software 139 (2021) 104998

13

Algorithm 3. Zonal operation

Appendix B. Experiments

In the scripts shown in this section, clone refers to an existing distributed partitioned array. An operation like uniform needs this information to be
able to create an output array. The code of the actual experiments is very similar to the pseudocode shown here, but is implemented in C++. It can be
found in the repository associated with this paper (Section 7).

When the experiment models are executed by the modelling framework, concurrent tasks are generated that execute in parallel on multiple
workers, potentially on multiple cluster nodes. Note that none of the model scripts contain technical details related to parallel and distributed
computing.

Listing 2. Pseudocode of local operation experiment.

K. de Jong et al.

Environmental Modelling and Software 139 (2021) 104998

14

Listing 3. Pseudocode of focal operation experiment.

Listing 4. Pseudocode of zonal operation experiment.

References

Burrough, P., McDonnell, R.A., Lloyd, C.D., 2015. Principles of Geographical Information
Systems, third ed. Oxford University Press.

Chamberlain, B., Callahan, D., Zima, H., 2007. Parallel programmability and the Chapel
language. Int. J. High Perform. Comput. Appl. 21 (3), 291–312. https://doi.org/
10.1177/1094342007078442. URL.

Charles, P., Grothoff, C., Saraswat, V., Donawa, C., Kielstra, A., Ebcioglu, K., von
Praun, C., Sarkar, V., 2005. X10: an object-oriented approach to non-uniform cluster
computing. In: Proceedings of the 20th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications. OOPSLA ’05.
Association for Computing Machinery, New York, NY, USA, pp. 519–538. https://
doi.org/10.1145/1094811.1094852. URL.

Clarke, K., Brass, J., Riggan, P., 1994. A cellular automaton model of wildfire
propagation and extinction. Photogramm. Eng. Rem. Sens. 60 (11), 1355–1367.

Dagum, L., Menon, R., 1998. OpenMP: an industry standard API for shared-memory
programming. Computational Science & Engineering, IEEE 5 (1), 46–55.

de Jong, K., Karssenberg, D., 2019. A physical data model for spatio-temporal objects.
Environ. Model. Software 122, 104553. https://doi.org/10.1016/j.
envsoft.2019.104553. URL.

Freire, J.G., DaCamara, C.C., 2019. Using cellular automata to simulate wildfire
propagation and to assist in fire management. Nat. Hazards Earth Syst. Sci. 19 (1),
169–179. https://doi.org/10.5194/nhess-19-169-2019. URL.

Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., Moore, R., 2017.
Google earth engine: planetary-scale geospatial analysis for everyone. Rem. Sens.
Environ. 202, 18–27.

Grubel, P., Kaiser, H., Cook, J., Serio, A., 2015. The performance implication of task size
for applications on the HPX runtime system. In: 2015 IEEE International Conference
on Cluster Computing. IEEE, pp. 682–689. https://doi.org/10.1109/
CLUSTER.2015.119. URL.

Guan, Q., Clarke, K.C., 2010. A general-purpose parallel raster processing programming
library test application using a geographic cellular automata model. Int. J. Geogr.
Inf. Sci. 24 (5), 695–722. https://doi.org/10.1080/13658810902984228. URL.

Heller, T., Adelstein Lelbach, B., Huck, K., Biddiscombe, J., Grubel, P., Koniges, A.,
Kretz, M., Marcello, D., Pfander, D., Serio, A., Frank, J., Clayton, G., Pflüger, D.,
Eder, D., Kaiser, H., 2019. Harnessing billions of tasks for a scalable portable
hydrodynamic simulation of the merger of two stars. Int. J. High Perform. Comput.
Appl. 33 (4), 699–715. https://doi.org/10.1177/1094342018819744. URL.

Heller, T., Diehl, P., Byerly, Z., Biddiscombe, J., Kaiser, H., 2017. HPX – an open source C
++ standard library for parallelism and concurrency. In: OpenSuCo 2017, p. 5.
Denver, Colorado USA, November 2017.

Heller, T., Kaiser, H., Iglberger, K., 2013. Application of the ParalleX execution model to
stencil-based problems. Comput. Sci. Res. Dev. 28, 253–261. https://doi.org/
10.1007/s00450-012-0217-1. URL.

Holzbecher, E., 2012. Environmental Modeling, second ed. Springer-Verlag Berlin-
Heidelberg.

Huck, K., Porterfield, A., Chaimov, N., Kaiser, H., Malony, A., Sterling, T., Fowler, R.,
2015. An autonomic performance environment for exascale. Supercomputing
Frontiers and Innovations 2 (3). https://doi.org/10.14529/jsfi150305. URL.

ISO/IEC 25010:2011, 2011. Systems and Software Engineering - Systems and Software
Quality Requirements and Evaluation (SQuaRE) - System and Software Quality
Models. Standard. International Organization for Standardization, Geneva, CH.

Kaiser, H., Diehl, P., Lemoine, A.S., Lelbach, B.A., Amini, P., Berge, A., Biddiscombe, J.,
Brandt, S.R., Gupta, N., Heller, T., Huck, K., Khatami, Z., Kheirkhahan, A.,

Reverdell, A., Shirzad, S., Simberg, M., Wagle, B., Wei, W., Zhang, T., 2020a. HPX -
the C++ standard library for parallelism and concurrency. Journal of Open Source
Software 5 (53), 2352. https://doi.org/10.21105/joss.02352. URL.

Kaiser, H., Lelbach, B.A., Simberg, M., Heller, T., Bergé, A., Biddiscombe, J., Bikineev, A.,
Mercer, G., Schäfer, A., Huck, K., Lemoine, A.S., Kwon, T., Habraken, J.,
Anderson, M., Copik, M., Brandt, S.R., Stumpf, M., Bourgeois, D., Blank, D.,
rstobaugh, Jakobovits, S., Amatya, V., Viklund, L., Gupta, N., Diehl, P., Khatami, Z.,
Bacharwar, D., Tapasweni Pathak, S.Y., 2020b. STEllAR-GROUP/Hpx: HPX V1.5.0:
the C++ Standards Library for Parallelism and Concurrency. R., A.. https://doi.org/
10.5281/zenodo.4011590, 9, URL.

Kale, L.V., Krishnan, S., 1993. CHARM++: a portable concurrent object oriented system
based on C++. In: Proceedings of the Eighth Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications. OOPSLA ’93. Association for
Computing Machinery, New York, NY, USA, pp. 91–108. https://doi.org/10.1145/
165854.165874. URL.

Karssenberg, D., 2002. Building Dynamic Spatial Environmental Models. Utrecht
University, The Netherlands. Ph.D. thesis.

Karssenberg, D., Schmitz, O., Salamon, P., de Jong, K., Bierkens, M.F., 2010. A software
framework for construction of process-based stochastic spatio-temporal models and
data assimilation. Environ. Model. Software 25 (4), 489–502.

Khatami, Z., Kaiser, H., Grubel, P., Serio, A., Ramanujam, J., 2016. A massively parallel
distributed N-body application implemented with HPX. In: 7th Workshop on Latest
Advances in Scalable Algorithms for Large-Scale Systems. IEEE, pp. 57–64.

Li, Z., Wang, F., Zheng, X., Jiang, W., Meng, Q., Liu, B., 2017. GIS based dynamic
modeling of fire spread with heterogeneous cellular automation model and
standardized emergency management protocol. In: Proceedings of the 3rd ACM
SIGSPATIAL Workshop on Emergency Management Using. EM-GIS’17. Association
for Computing Machinery, New York, NY, USA. https://doi.org/10.1145/
3152465.3152470. URL.

MPI-Forum 6, 2015. MPI: a message-passing interface standard. In: High-Performance
Computing Center Stuttgart. University of Stuttgart. URL, Version 3.1. https://www.
mpi-forum.org.

Qin, C.-Z., Zhan, L.-J., Zhu, A.-X., Zhou, C.-H., 2014. A strategy for raster-based
geocomputation under different parallel computing platforms. Int. J. Geogr. Inf. Sci.
28 (11), 2127–2144. https://doi.org/10.1080/13658816.2014.911300. URL.

Shook, E., Hodgson, M.E., Wang, S., Behzad, B., Soltani, K., Hiscox, A., Ajayakumar, J.,
2016. Parallel cartographic modeling: a methodology for parallelizing spatial data
processing. Int. J. Geogr. Inf. Sci. 30 (12), 2355–2376. https://doi.org/10.1080/
13658816.2016.1172714. URL.

The HDF Group, 1997. Hierarchical Data Format, Version 5, 2019. URL http://www.
hdfgroup.org/HDF5/. (Accessed 12 July 2019).

Thoman, P., Dichev, K., Heller, T., Iakymchuk, R., Aguilar, X., Hasanov, K.,
Gschwandtner, P., Lemarinier, P., Markidis, S., Jordan, H., Fahringer, T., Katrinis, K.,
Laure, E., Nikolopoulos, D.S., 2018. A taxonomy of task-based parallel programming
technologies for high-performance computing. J. Supercomput. 74, 1422–1434.
https://doi.org/10.1007/s11227-018-2238-4. URL.

Tomlin, D., 1990. Geographic Information Systems and Cartographic Modeling, first ed.
Prentice Hall.

Trucchia, A., D’Andrea, M., Baghino, F., Fiorucci, P., Ferraris, L., Negro, D., Gollini, A.,
Severino, M., 2020. PROPAGATOR: an operational cellular-automata based wildfire
simulator. Fire 3 (3). https://doi.org/10.3390/fire3030026. URL.

K. de Jong et al.

http://refhub.elsevier.com/S1364-8152(21)00041-4/sref1
http://refhub.elsevier.com/S1364-8152(21)00041-4/sref1
https://doi.org/10.1177/1094342007078442
https://doi.org/10.1177/1094342007078442
https://doi.org/10.1145/1094811.1094852
https://doi.org/10.1145/1094811.1094852
http://refhub.elsevier.com/S1364-8152(21)00041-4/sref4
http://refhub.elsevier.com/S1364-8152(21)00041-4/sref4
http://refhub.elsevier.com/S1364-8152(21)00041-4/sref5
http://refhub.elsevier.com/S1364-8152(21)00041-4/sref5
https://doi.org/10.1016/j.envsoft.2019.104553
https://doi.org/10.1016/j.envsoft.2019.104553
https://doi.org/10.5194/nhess-19-169-2019
http://refhub.elsevier.com/S1364-8152(21)00041-4/sref8
http://refhub.elsevier.com/S1364-8152(21)00041-4/sref8
http://refhub.elsevier.com/S1364-8152(21)00041-4/sref8
https://doi.org/10.1109/CLUSTER.2015.119
https://doi.org/10.1109/CLUSTER.2015.119
https://doi.org/10.1080/13658810902984228
https://doi.org/10.1177/1094342018819744
http://refhub.elsevier.com/S1364-8152(21)00041-4/sref12
http://refhub.elsevier.com/S1364-8152(21)00041-4/sref12
http://refhub.elsevier.com/S1364-8152(21)00041-4/sref12
https://doi.org/10.1007/s00450-012-0217-1
https://doi.org/10.1007/s00450-012-0217-1
http://refhub.elsevier.com/S1364-8152(21)00041-4/sref14
http://refhub.elsevier.com/S1364-8152(21)00041-4/sref14
https://doi.org/10.14529/jsfi150305
http://refhub.elsevier.com/S1364-8152(21)00041-4/sref16
http://refhub.elsevier.com/S1364-8152(21)00041-4/sref16
http://refhub.elsevier.com/S1364-8152(21)00041-4/sref16
https://doi.org/10.21105/joss.02352
https://doi.org/10.5281/zenodo.4011590
https://doi.org/10.5281/zenodo.4011590
https://doi.org/10.1145/165854.165874
https://doi.org/10.1145/165854.165874
http://refhub.elsevier.com/S1364-8152(21)00041-4/sref20
http://refhub.elsevier.com/S1364-8152(21)00041-4/sref20
http://refhub.elsevier.com/S1364-8152(21)00041-4/sref21
http://refhub.elsevier.com/S1364-8152(21)00041-4/sref21
http://refhub.elsevier.com/S1364-8152(21)00041-4/sref21
http://refhub.elsevier.com/S1364-8152(21)00041-4/sref22
http://refhub.elsevier.com/S1364-8152(21)00041-4/sref22
http://refhub.elsevier.com/S1364-8152(21)00041-4/sref22
https://doi.org/10.1145/3152465.3152470
https://doi.org/10.1145/3152465.3152470
https://www.mpi-forum.org
https://www.mpi-forum.org
https://doi.org/10.1080/13658816.2014.911300
https://doi.org/10.1080/13658816.2016.1172714
https://doi.org/10.1080/13658816.2016.1172714
http://www.hdfgroup.org/HDF5/
http://www.hdfgroup.org/HDF5/
https://doi.org/10.1007/s11227-018-2238-4
http://refhub.elsevier.com/S1364-8152(21)00041-4/sref29
http://refhub.elsevier.com/S1364-8152(21)00041-4/sref29
https://doi.org/10.3390/fire3030026

Environmental Modelling and Software 139 (2021) 104998

15

UNIDATA, 2008-2018. Network common data form. URL. https://www.unidata.ucar.
edu/software/netcdf/docs/index.html. (Accessed 12 July 2019). version 4.

van Deursen, W., Wesseling, C., Karssenberg, D., de Jong, K., Schmitz, O., 2019. The
PCRaster environmental modelling framework. URL. https://pcraster.computationa
lgeography.org.

Wilensky, U., 1999. NetLogo. Center for Connected Learning and Computer-Based
Modeling. Northwestern University, Evanston, IL, USA available at: http://ccl.
northwestern.edu/netlogo/. (Accessed 12 July 2019).

K. de Jong et al.

https://www.unidata.ucar.edu/software/netcdf/docs/index.html
https://www.unidata.ucar.edu/software/netcdf/docs/index.html
https://pcraster.computationalgeography.org
https://pcraster.computationalgeography.org
http://ccl.northwestern.edu/netlogo/
http://ccl.northwestern.edu/netlogo/

	An environmental modelling framework based on asynchronous many-tasks: Scalability and usability
	1 Introduction
	2 Model development using map algebra
	3 Asynchronous many-tasks and HPX
	4 Method
	4.1 Implementation
	4.2 Scalability and performance
	4.3 Usability

	5 Results
	5.1 Scalability and performance
	5.2 Usability

	6 Discussion
	6.1 Scalability and performance
	6.2 Usability
	6.3 Future work

	7 Software availability
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Appendix A Algorithms
	Appendix B Experiments
	References

