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Metagenomics can unveil the genetic content of the total microbiota in different
environments, such as food products and the guts of humans and livestock. It is
therefore considered of great potential to investigate the transmission of foodborne
hazards as part of source-attribution studies. Source-attribution of antimicrobial
resistance (AMR) has traditionally relied on pathogen isolation, while metagenomics
allows investigating the full span of AMR determinants. In this study, we hypothesized
that the relative abundance of fecal resistome components can be associated with
specific reservoirs, and that resistomes can be used for AMR source-attribution. We
used shotgun-sequences from fecal samples of pigs, broilers, turkeys- and veal calves
collected across Europe, and fecal samples from humans occupationally exposed
to livestock in one country (pig slaughterhouse workers, pig and broiler farmers).
We applied both hierarchical and flat forms of the supervised classification ensemble
algorithm Random Forests to classify resistomes into corresponding reservoir classes.
We identified country-specific and -independent AMR determinants, and assessed the
impact of country-specific determinants when attributing AMR resistance in humans.
Additionally, we performed a similarity percentage analysis with the full spectrum of AMR
determinants to identify resistome signatures for the different reservoirs. We showed that
the number of AMR determinants necessary to attribute a resistome into the correct
reservoir increases with a larger reservoir heterogeneity, and that the impact of country-
specific resistome signatures on prediction varies between countries. We predicted
a higher occupational exposure to AMR determinants among workers exposed to
pigs than among those exposed to broilers. Additionally, results suggested that AMR
exposure on pig farms was higher than in pig slaughterhouses. Human resistomes were
more similar to pig and veal calves’ resistomes than to those of broilers and turkeys,
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and the majority of these resistome dissimilarities can be explained by a small set
of AMR determinants. We identified resistome signatures for each individual reservoir,
which include AMR determinants significantly associated with on-farm antimicrobial use.
We attributed human resistomes to different livestock reservoirs using Random Forests,
which allowed identifying pigs as a potential source of AMR in humans. This study thus
demonstrates that it is possible to apply metagenomics in AMR source-attribution.

Keywords: metagenomics, source-attribution, antimicrobial resistance, resistome, random forests, machine
learning

INTRODUCTION

Source-attribution estimates the proportion of human cases of
a foodborne disease attributable to different reservoirs and/or
vehicles of transmission, i.e., different sources (Pires et al.,
2018). Microbial subtyping studies of source-attribution have
successively contributed in many countries to distribute the
burden of specific foodborne diseases by animal reservoirs (Hald
et al., 2004; Mughini-Gras and van Pelt, 2014; Mughini-Gras
et al., 2019; Pires et al., 2014; de Knegt et al., 2016; Thépault et al.,
2018; Zhang et al., 2019). Attribution estimates can be obtained
using different data inputs and distinct modeling approaches
(Mughini-Gras et al., 2018), but traditionally many single-
pathogen targeted studies have relied on frequency-matching
models and phenotypic data (Hald et al., 2004; Mughini-Gras
and van Pelt, 2014; de Knegt et al., 2016). However, with
the greater availability of genotyping information of foodborne
pathogens isolated from animals, food, the environment and
clinical cases, population genetic models have become an
increasingly popular choice (Thépault et al., 2018), and several
model developments have been seen in order to accommodate
whole genome sequencing (WGS) data (Cheng et al., 2013;
Raj et al., 2014; Lees et al., 2019; Tonkin-Hill et al., 2019).
At the same time, machine learning has been exploited as an
alternative approach to perform source-attribution with WGS
(Zhang et al., 2019; Munck et al., 2020). For example, a machine
learning decision tree algorithm has been recently proposed
for the attribution of Salmonella Typhimurium infections in
humans using core-genome multilocus sequencing (Munck et al.,
2020), with results comparable to those previously obtained when
combining Multiple Locus Variable-number Tandem Repeat
Analysis (MLVA) data with the Hald frequency-matching model
(de Knegt et al., 2016).

The transmission of foodborne pathogens to humans implies
some degree of concomitant transmission of antimicrobial
resistant (AMR) bacteria and AMR determinants. The magnitude
of such transmission has, however, been only limitedly estimated
to date, usually targeting a single combination of pathogen-
resistance type, e.g., ESBL-AmpC-producing E. coli (Evers et al.,
2017; Mughini-Gras et al., 2019), or by attributing AMR
infections to sources, proportionally to attribution of pathogen
subtypes and the prevalence of phenotypic resistance in each
subtype (Hald et al., 2007). Traditionally, source attribution has
been strongly based on modeling transmission from animals
to humans, but recently, human-to-human transmission has
been successfully incorporated in a frequency-matching model

(Mughini-Gras et al., 2019), which showed a high relative
contribution of that transmission route to human infections with
ESBL-AmpC- producing E. coli.

Due to the genetic nature of antimicrobial resistance,
and the possibility of horizontal transfer of resistance genes
between bacteria of different species, we propose here to
assess transmission of AMR by considering the abundance of
genetic determinants of resistance derived from metagenomic
sequencing (i.e., the resistome). Metagenomics has indeed been
previously demonstrated to be a valuable asset in trace-back
studies to determine the origin of AMR contamination in water
bodies (Baral et al., 2018; Gupta et al., 2019). We used the
fecal resistomes from broilers, pigs, turkeys and veal calves
sampled close to slaughter among nine European countries,
in order to identify reservoir-specific resistome signatures and
use them to predict the sources of the fecal resistome of
humans with occupational exposure to livestock. Human samples
included subjects working on pig farms, pig slaughterhouses or
broiler farms in one of the participating countries (Van Gompel
et al., 2020). We compared the predictions of models with
and without the inclusion of “humans” as a source of AMR
determinants, and the predictions of country-independent and
country-specific models.

This study allowed to predict the relative attribution to
different animal reservoirs of AMR determinants present in
human resistomes, and thus sets the scene for future source-
attribution studies of AMR transmission using metagenomics.

MATERIALS AND METHODS

All samples used in this study were collected during cross-
sectional studies under the scope of the European project
EFFORT1. Sampling protocol, number of samples collected, DNA
extraction, sequencing method and diversity analysis of the
resistomes have been described in detail elsewhere (Munk et al.,
2018; Van Gompel et al., 2020). Sampling occurred among nine
participating countries, which were anonymized with letters A-I,
as agreed by the project consortium.

Sample Collection
Shortly, a total of 25 pen-floor fresh fecal samples were collected
from and pooled in a single pool for each sampled pig-, broiler-,

1EFFORT – Ecology from Farm to Fork Of microbial drug Resistance and
Transmission (http://www.effort-against-amr.eu/).
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turkey- and veal calves- farm. Pig- and broiler-farms were
sampled in nine European countries (A-I), and turkey and veal
farms in three among those nine countries (Figure 1). Individual
fecal samples from humans with occupational exposure to food-
producing animals were collected in country F, with each sample
representing an individual subject. The characteristics of the
sampled broiler farm workers (n = 24), pig farm workers
(n = 54) and pig slaughterhouse workers (n = 70) have been
described elsewhere (Van Gompel et al., 2020). Here we use the
single term ‘workers,’ however, samples collected from humans
on pig and broiler farms included both farmers, their family
members and employees.

Shotgun Sequencing
The procedures for DNA extraction and shotgun sequencing
were described in detail elsewhere for the animal samples (Munk
et al., 2018) and for the human samples (Van Gompel et al., 2020).
Shortly, samples from pigs and broilers were mostly sequenced on
the Illumina HiSeq3000 platform (provider Oklahoma Medical
Research Foundation), samples from turkeys and veal calves were
sequenced on the Illumina NovaSeq 6000 platform (provider
Admera Health), and samples from humans were sequenced
on the Illumina HiSeq4000 platform (provider GenomeScan),
all using 2 × 150-bp paired-end sequencing per flow cell.
Library preparation for broiler and turkey samples involved PCR
amplification, whereas for pig, calf and human samples it was
amplification-free.

Read Mapping
The bioinformatic analysis of the metagenomic raw reads was
similar to the one described by Munk et al. (2018), with the use of
a more recent version of the ResFinder database containing 3026
reference sequences of AMR genes (accessed on 21st September
2018). Shortly, DNA sequences from each sample were analyzed
with MGmapper (Petersen et al., 2017). In order to avoid PCR
copies in the poultry and turkey data, identical read pairs were
removed using Picard v2.8.32. Adaptor sequences and low-quality
nucleotides were also removed using BBduk23. The resulting
trimmed read pairs were aligned to the ResFinder database4

described by Zankari et al. (2012) using the Burrows-Wheeler
Aligner (Li and Durbin, 2009). Properly paired reads, with at
least a 50-bp alignment in each read, were accepted. The resulting
mapped reads represented the acquired resistome in each sample.

Normalization of Read Counts
ResFinder-mapped counts were normalized to the length of
each reference sequence as well as to the number of reads in
each sample, thus converting counts into values of Fragments
Per Kilobase of reference and Million reads (FPKM) for each
ResFinder reference sequence. Genes with many alleles in
ResFinder result in unspecific mapping and randomly assigned
read pairs. To avoid sensitivity loss and wrong assignments,

2Picard – https://broadinstitute.github.io/picard
3BBduk2 – https://sourceforge.net/projects/bbmap
4ResFinder database – https://bitbucket.org/genomicepidemiology/resfinder
(accessed September 21, 2018).

FIGURE 1 | Parent and child nodes in Hierarchical Random Forests models
(HRF1, HRF2). Hierarchical structure of the models HRF1 and HRF2, with
parent nodes (countries) and child nodes (reservoirs within a country). Number
of observations per country (A-I) and per reservoir (Bro = broiler, Pig = pig,
Vea = veal calves, Tur = turkey) is indicated between brackets. One sample
corresponds to a pool of 25 individual samples from a single farm.
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we kept ambiguous hits, but aggregated their abundances to
higher levels, corresponding to 90% gene identity clusters (herein
referred to as AMR determinants). To determine these clusters,
we used CD-HIT-EST (v4.6.6) (Li and Godzik, 2006; Fu et al.,
2012) at a 90% identity level and otherwise default settings.
The resulting read count matrix contained 389 individual AMR
determinants. An overview of the gene-level composition of each
AMR determinant is provided in Supplementary Table 1.

Random Forests
We applied the supervised classification ensemble algorithm
Random Forests (RF) (Ho, 1995; Breiman, 2001) in order to
classify resistomes into corresponding reservoir classes, based
on their relative composition of AMR determinants. According
to Breiman (2001), Random Forests is “a classifier consisting of
a collection of tree-structured classifiers (. . .) (where) each tree
casts a unit vote for the most popular class” for each observation
and “after a large number of trees is generated, they vote for the
most popular class” overall, also called the ‘crisp’ class. The splits
within each tree are determined based on a random selection of
features, which is believed to improve model accuracy (Breiman,
2001). In its flat form, Random Forests compares one against all
classes (Gavish et al., 2018) for each observation, in this study,
one against all reservoirs. We applied in a first step hierarchical
Random Forests (HRF), which considers a hierarchical data
structure and uses flat RF algorithms at each internal hierarchy
node. In this step, observations were classified both in terms
of the reservoir and of the country of origin. In HRF, each
internal node classifier is trained exclusively on observations of
descendants of that particular node (Gavish et al., 2018), thus
here, classification of an observation in terms of the reservoir was
trained separately within each country node.

All analyses were performed in R v. 3.6.0 (R Core Team,
2019): Hierarchical Random Forests with the package HieRanFor
v.1.05 and Random Forests with the package caret v.6.0–84
(Kuhn et al., 2019).

We fit a total of five models in the study, termed HRF1, HRF2,
RF1, RF2 and RF3. In each model, we set the parameter mtry
(number of features available for splitting at each tree node)
as the square root of the number of predictor features (AMR
determinants), and we initially split the data into a training and
a testing subset, corresponding to random 70% and 30% of the
total number of observations, respectively. Model performance
was assessed on the basis of balanced accuracy (Kuhn et al., 2019)
and Kappa value (Cohen, 1960) for all models, and in terms of
out of bag error (OOB) (Gavish et al., 2018) at the HRF parent
nodes, (Figure 2 and Supplementary Table 2). The predictive
performance of each model was further assessed both with the
training set (self-attribution) and with the testing set. Predictions
for each observation consisted on i) the proportion of votes
given to different reservoir classes, here interpreted as the relative
probabilities of a sample being attributed to different reservoirs,
and ii) a crisp class. The importance of each AMR determinant
for class attribution was assessed based on the mean decrease

5HieRanFor package development page – https://r-forge.r-project.org/R/?group_
id=2021

in accuracy (MDA), i.e., the decrease in the model’s accuracy
resulting from removing that individual feature.

Further details of each model are given in sections 2.5.1
to 2.5.5.

HRF1 – Identification of Country-Independent,
Reservoir-Discriminant Resistome Signatures
The first step of the analysis, the hierarchical Random Forests
HRF1, considered the full animal resistome dataset, consisting of
479 observations and 389 AMR determinants, with observations
distributed among 9 countries (A – I) and 4 reservoir classes (pig
(181), broiler (177), veal calves (61), turkey (60)). Two hierarchy
levels were defined, L1 = ‘country’ and L2 = ‘reservoir’ and the
data was considered balanced at the level of the reservoir class
within each country (the terminal nodes), with approximately
20 farms sampled per reservoir, per country (Figure 1). The
model was run with 10× Monte Carlo (MC) random sampling
validation and predictions were obtained for the training set and
the testing set in each iteration. Random training and testing
subsets were drawn in each MC iteration. For each node in
the hierarchy, the list of AMR determinants and their MDA
for classification of the node’s descendants was extracted. Each
list was subsequently filtered to those AMR determinants which
contributed positively (MDA > 0) to the classification.

In order to define country-independent resistome signatures,
we investigated the overlap of the country-specific subsets of
AMR determinants between different groups of countries: i) 5
countries with pig and broiler observations only, ii) 4 countries
with observations of pig, broiler, turkey and/or veal calves and iii)
2 countries with observations of all four reservoirs. The overlaps
were determined and visualized in Venn diagrams with the
R package VennDiagram v.1.6.20 (Chen, 2018; Supplementary
Figure 1), and were the basis to define the subsets of country-
independent and country-specific resistome markers, used in
subsequent steps of the analysis.

The aim with HRF1 was to identify country-specific and -
independent AMR determinants with a positive impact on the
classification of animal resistomes into corresponding reservoirs.
The results of HRF1 informed the dimensionality reduction
(reduction of the number of features in the model) performed in
subsequent steps (HRF2, RF1, RF2, RF3).

HRF2 – Model Performance With
Country-Independent AMR Determinants
We selected a set of 119 AMR determinants with MDA > 0
determined in HRF1 for the two countries where all four
reservoirs were sampled. This country-independent subset of
AMR determinants defined the feature space in HRF2. These
AMR determinants allow distinguishing between the resistomes
of animal reservoirs across all included countries. HRF2 was
trained and assessed equally to HRF1. The aim of HRF2
was to assess the change in model performance after a
targeted dimensionality reduction step. In order to compare the
performance of HRF1 and HRF2, we investigated the percentage
of concordance between the crisp class and the true class, the list
of AMR determinants with positive MDA and the OOB errors at
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FIGURE 2 | Performance of Hierarchical Random Forests with full feature space (HRF1) and with reduced dimensionality (HRF2). Model performance measures for
HRF1 and HRF2 include out of bag (OOB) errors at parent nodes (individual country) (A) and mean balanced accuracy at terminal nodes (reservoir) (B). The figure
shows the distribution of both measures obtained with 100 iterations of HRF1 (full feature space, i.e., 389 AMR determinants) and HRF2 (reduced feature space, i.e.,
119 selected AMR determinants).

each country node, and the balanced accuracy at each terminal
node (country-reservoir).

RF1 – Source-Attribution of Human Resistomes With
an Animal Resistome Model
The same data used in HRF2 was randomly upsampled in
order to achieve a balanced number of observations between
reservoir classes. Upsampling was performed with the function
upSample from the R package caret v.6.0–84 (Kuhn et al., 2019),
which samples with replacement until class distributions are
equal. A flat RF model was then trained with no hierarchical
levels considered. First, the data was split into a training
and a testing set and then the algorithm was trained with
10 × 10-fold cross validation (i.e., 10-fold cross validation
repeated 10 times) on the training set. Predictions were obtained
for the initial training set and testing set, and additionally
for all 149 observations of human resistomes separately. This
model allowed attributing human resistomes to different animal
reservoirs in a probabilistic manner, by considering ‘pig,’
‘broiler,’ ‘turkey,’ and ‘veal’ as the only possible sources of
AMR determinants.

RF2 – Source-Attribution of Human Resistomes
Including Human as a Source
Following RF1, a similar RF model was developed by adding the
human samples to the initial dataset, thus allowing classification
votes to the class ‘human,’ additionally to the classes ‘pig,’ ‘broiler,’
‘turkey,’ and ‘veal.’ Before random splitting into a test and a
training set, the data was upsampled as described for RF1 in order

to achieve data balance between classes. Then, the RF2 algorithm
was also fit with 10 × 10-fold cross validation to the training set,
and predictions were obtained for the initial training and testing
sets, and exclusively for the human observations. RF2 allowed
the attribution of human resistomes to a source alternative to the
four food-producing animals considered in the previous models.
‘Human’ as a source represents an origin of AMR determinants
that cannot be attributed to one of the four animal reservoirs
here considered.

RF3 – A Country-Specific Source-Attribution Model
A third flat RF model was fit to all observations (animal and
human) originating from country F, where the three groups of
humans were sampled. RF3 considered thus an initial dataset
with a total of 230 observations, distributed among the reservoirs
‘pig’ (20), ‘broiler’ (20), ‘veal’ (20), ‘turkey’ (21) and ‘human’
(149). Since turkey farms have not been sampled in country F,
we assumed that consumers in country F are exposed to turkeys
with resistomes similar to those that were sampled in country
B, which represents the major turkey meat provider to country
F6,7. This initial dataset was upsampled, as described for RF1
and RF2 and then split into a training and a testing set. The
feature space included the subset of 109 AMR determinants
identified in HRF1 with MDA > 0 for reservoir classification
within country F (see Supplementary Table 4). The algorithm
was fit to the training set with 10 × 10-fold cross validation

6https://ec.europa.eu/eurostat/data/database
7https://comtrade.un.org/
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and predictions were obtained for the initial training and testing
sets, and exclusively for the human observations. The model
RF3 aimed at identifying the impact of applying country-specific
reservoir resistome signatures for the source attribution of
human resistomes.

Reservoir-Indicator AMR Determinants
We performed a similarity percentage analysis (SIMPER)
(Clarke, 1993) in order to discriminate reservoir-indicator AMR
determinants. We used pairwise comparisons of reservoirs’
resistomes and determined the average contribution of each AMR
determinant to the Bray-Curtis dissimilarity between every two
reservoirs. This analysis was performed with the full spectrum of
AMR determinants using the function simper from the R package
vegan v.2.5–5 (Oksanen et al., 2019). The AMR determinants
contributing to the reservoir pairwise dissimilarity were selected
and annotated by AMR class and representative AMR gene (see
Supplementary Table 4). In each pairwise comparison, the top
10 contributors were selected and the reservoir in which their
relative abundance in the resistome was highest was identified.
The resistomes were further hierarchically clustered based on
Euclidean distances and the Ward’s minimum variance method
(Ward, 1963), applied to the Hellinger-transformed relative
abundances of those top contributing AMR determinants, using
the function decostand from the R package vegan v.2.5–5
(Oksanen et al., 2019) and the R package pheatmap v. 1.0.12
(Kolde, 2019; Supplementary Figure 4). An identical analysis
was performed to identify AMR determinants contributing to
the resistome dissimilarity between each human group and
the animal reservoir to which it was occupationally exposed,
i.e., broiler or pig.

RESULTS

Selection of Country-Independent
Resistome Signatures
With the first hierarchical Random Forests model, HRF1,
we identified a subset of AMR determinants that allows
an accurate classification of a resistome into its animal
reservoir, independently of the country of origin. This was
achieved by identifying those AMR determinants with a positive
mean decrease in accuracy concurrently in i) two countries
where all four reservoirs were sampled (119 determinants),
ii) four countries where more than two reservoirs were
sampled (77 determinants), iii) five countries were only broilers
and pigs were sampled (35 determinants) (Supplementary
Figure 1 and Supplementary Table 3). We observed that the
number of predictor features necessary to classify a resistome
across countries increased with a larger heterogeneity of
reservoirs among the samples, however, all features important
to differentiate between pig and broiler resistomes only were
also important classifiers in the presence of additional reservoirs.
The number of country-independent, reservoir-discriminant
resistome features varied slightly between cross-validation
runs, however, features with top MDA remained unchanged.

Therefore, we chose the output from a random iteration of HRF1,
to proceed to the training of HRF2.

The performance of the HRF2 model with dimensionally
reduced data (119 AMR determinants) was compared to the
performance of HRF1 with 389 features. The overall model
accuracy was lower in HRF2 (mean accuracy = 0.826) compared
to HRF1 (mean accuracy = 0.833), however, the distribution of
the OOB errors in HRF2 were comparable to those of HRF1
for the classification of reservoirs within countries, for most
countries (Figure 2A). Countries G and H presented higher
mean/median OOB errors in HRF2, while countries A, B and
E presented lower mean/median OOB errors with the reduced
model. The balanced accuracy in the classification of each
reservoir species within individual countries was also assessed.
The mean accuracy in classification increased in 5/9 countries for
broiler samples (A, C, F, G, I), 7/9 countries for pig samples (A, D,
E, F, G, H, I), 1/3 countries for veal calves (B) and turkey samples
(E) (Figure 2B).

Table 1 shows that the concordance between true and
predicted reservoir class with HRF2 increased for classification
of countries A (8%), C (2.9%), E (7.8%), H (8%) and I (14.9%),
and decreased between 5.9 and 23.1% for the classification of
remaining countries. The concordance in the classification of
reservoir across countries increased for broiler (0.8%) and turkey
(20.3%) and decreased for pig (−3.3%) and veal calves (−11.2%).

Overall, HRF2 represented neither an overall improvement
nor an overall decrease in performance compared to HRF1.
Nonetheless, HRF2 resulted in a clear decrease in the
proportion of AMR determinants important for country-
specific classification and an increase in the proportion of
those important for classification in a larger number of
countries (Table 1). This result indicates that the subset of AMR
determinants selected in HRF1 and used as predictors in HRF2
contains a larger relative proportion of country-independent
resistome signatures.

Source-Attribution of Human Resistomes
The models RF1, RF2 and RF3 were used to probabilistically
attribute human resistomes to reservoirs, under different
hypotheses (see Supplementary Figure 2). RF1 was trained
exclusively on animal resistome data, hence human resistomes
could only be attributed to the four animal reservoirs. RF2 was
trained including both human and animal data, thus human
resistomes could additionally be attributed to a ‘human’ source.
Both RF1 and RF2 were trained on the set of AMR determinants
used previously in HRF2 (i.e., a set of country-independent
predictors), and therefore included data from all countries. In
terms of crisp class determination, these two models achieved
similar accuracy during training (mean accuracy values of
0.996 and 0.995, for RF1 and RF2, respectively (Supplementary
Table 2). However, by not including an attribution scenario
besides the four livestock sources (i.e., such as the “human”
class in RF2), the predictions of RF1 for the source of human
resistomes are unrealistic, with the totality of attribution votes
distributed exclusively among the sources ‘pig,’ ‘broiler,’ ‘turkey,’
and ‘veal’ (Figure 3). Nonetheless, the attribution results of RF1
indicate a consistently higher proportion of votes attributed to the
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TABLE 1 | Concordance between true class and predicted crisp class for training data set (self-attribution) and feature importance, with models HRF1 and HRF2.

Concordance in self-attributiona HRF1 HRF2 (HRF2- HRF1)

Percentage concordance for country class: A 83% 91% (+ 8%)

B 71% 64% (−7%)

C 85% 88% (+ 3%)

D 85% 79% (−6%)

E 79% 87% (+ 8%)

F 83% 75% (−8%)

G 97% 74% (−23%)

H 83% 91% (+ 8%)

I 69% 84% (+ 15%)

Percentage concordance for reservoir class: Pig 88% 84% (−3%)

Broiler 75% 76% (+ 1%)

Turkey 59% 79% (+ 20%)

Veal calves 95% 84% (−11%)

Feature importanceb HRF1 (% of total features in the model) HRF2 (% of total features in the model)

Number of AMR determinants with mean decrease in
accuracy > 0 for a set of:

1 country 29 (7%) 5 (4%)

2 countries 20 (5%) 6 (5%)

3 countries 12 (3%) 13 (11%)

4 countries 25 (6%) 15 (13%)

5 countries 23 (6%) 21 (18%)

6 countries 16 (4%) 10 (8%)

7 countries 21 (5%) 12 (10%)

8 countries 13 (3%) 10 (8%)

9 countries 32 (8%) 26 (22%)

Results represent a single random model iteration of HRF1 and HRF2, and predictions for each model’s respective training dataset (i.e., self-attribution performance).
HRF1 was trained on the full set of AMR determinants (389), and HRF2 was trained on a dimensionally reduced dataset (119 features). aConcordance in self-attribution’
represents the percentage of crisp class predictions of each model (HRF1 and HRF2) in agreement with the true class of an observation, in prediction of country of origin,
and in prediction of reservoir. bFeature importance’ represents the number (and percentage) of individual AMR determinants in each model that contributed positively
(MDA > 0) for classification among 1, 2, 3, 4, 5, 6, 7, 8, or 9 countries.

source ‘pig’ for every human resistome, which suggests a relatively
higher similarity between human and pig resistomes, than with
the remaining three reservoirs. The predictions with RF2 further
showed that every human resistome was in fact predominantly
attributed to the source ‘human,’ once the model included that
source. The second most attributed source with RF2 was ‘pig,’ in
accordance with the attribution pattern seen with model RF1.

RF3 was a country-specific model, trained on animal and
human samples collected in country F (in the case of turkey,
we assumed the resistome of turkeys to be comparable to that
observed in country B). The predictor AMR determinants were
those identified as specific to country F in model HRF1 (see
Supplementary Table 3). RF3 had a higher accuracy during
training (0.998) compared to RF2 (0.994) (Supplementary
Table 2) and a higher proportion of votes attributed to the
true class, in prediction with both testing and training sets
(Supplementary Figures 2E,F). The distributions of source votes
obtained with RF2 and RF3 among each of the three groups
of humans were compared in Figure 4. Among broiler-farm
workers, RF3 showed an increase in the proportion of votes for
the class ‘human’ at the expense of a decrease in the attribution
to the class ‘pig.’ RF3 thus showed that humans exposed to direct
contact with pigs had a higher proportion of attribution to ‘pig’
compared to humans exposed to direct contact with broilers.

Both RF2 and RF3 showed a higher attribution to ‘pig’ for pig
farm workers, compared to pig slaughterhouse workers.

Analysis of Reservoir-Indicator
Resistome Signatures
We assessed the pairwise dissimilarity between reservoirs across
all countries and observed that among the four food-producing
animals, the highest resistome dissimilarities were between
broiler-veal calves and broiler-pig (72.4 and 72.2%, respectively).
Opposingly, the two reservoirs with most similar resistome
compositions were pig and veal calves (38.9%). Compared
to human resistomes, dissimilarity was highest for broiler
and turkey (86.7 and 83.8%, respectively) and lowest for
veal calves and pig (61.6 and 61.8%, respectively). The mean
of all pairwise resistome dissimilarities was 66.9%. The top
10 AMR determinant contributors to each reservoir pairwise
dissimilarity are indicated in Supplementary Table 4. These
ten AMR determinants always contributed cumulatively above
50% (mean = 62%, standard deviation = 6%) to overall
dissimilarity between two reservoirs, and we did not observe a
relationship between the average pairwise reservoir dissimilarity
percentage and the total number of determinants contributing to
it (Supplementary Figure 3).
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FIGURE 3 | Source attribution of 149 human resistomes with flat Random Forests models. For each human fecal resistome (horizontal axis), the attribution results
are presented as the percentage of votes given to each of the reservoir sources (vertical axis). Each horizontal facet represents the predictions of one Random
Forests model (RF1, RF2, or RF3). RF1 was trained on resistomes from pig, broiler, turkey and veal calves from all countries; RF2 was trained on resistomes from
pig, broiler, turkey, veal calves from all countries and human resistomes from country F. RF3 was trained on resistomes from pig, broiler, veal calves and human
sampled in country F and from turkey sampled in country B and considered representative for country F. ”Human” as an attributed source represents any other
source besides one of the four livestock species included in the model. Each vertical facet represents the occupational exposure setting of the human samples
collected in country F – workers on pig farms, pig slaughterhouses or poultry farms.

Nineteen unique AMR determinants were identified among
the top contributors in all one-to-one reservoir comparisons
(Figure 5). For each occurrence of one of those unique
determinants in a pairwise comparison, we investigated in which
reservoir its mean abundance was highest. Figure 5 shows
in which comparisons determinants have been seen as top
contributors, and for which reservoirs they have been identified
with highest relative abundance. Some of the top contributors
have been identified as resistome signatures exclusive of a
single reservoir. These included the genes (and their 90%
homologous) aph(3’)-II, aph(3’)-IIIa and sul2 as markers of veal
calves resistomes, tet(A), tet(L) and tet(S/M) as markers of turkey
resistomes, ant(6)-Ia as marker of pig resistomes, lnu(A) as

marker of broiler resistomes and cfxA6 as marker of human
resistomes. Additionally, erm(F), mef(A), tet(40) and tet(Q) were
identified as resistome signatures primarily in veal calves, and
secondly in pigs in comparison with other reservoirs, while
blaTEM-126 and erm(B) were signatures primarily in broilers or
turkeys. The determinant cfxA2 was identified as a marker of veal
calves resistomes primarily and secondarily of human resistomes.
Figure 6 shows the contribution of each AMR class to the
average dissimilarity between every two reservoirs, considering
the 19 top contributing AMR determinants. The classes that
mostly contributed for the dissimilarity between resistomes
of different reservoirs were, by descending order, tetracycline,
macrolide, beta-lactam, aminoglycoside and sulfonamide. These
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FIGURE 4 | Distribution of percentage of votes attributed to each reservoir in predictions for human resistomes with a country-independent (RF2) and a
country-specific (RF3) Random Forests. The boxplots represent the distribution of the percentage of votes (vertical axis) attributed to each reservoir (horizontal axis)
among the total of human resistomes. Each horizontal facet represents the predictions of one Random Forests model (RF2 or RF3). RF2 was trained on resistomes
from pig, broiler, turkey, veal calves sampled among nine countries and from human sampled in country F; RF3 was trained on resistomes from pig, broiler, veal
calves and human sampled in country F and from turkey sampled in country B and considered representative for country F. ”Human” as an attributed source
represents any other source besides one of the four livestock species included in the model. Each vertical facet represents the occupational exposure setting of the
human samples collected in country F – workers of pig farms, pig slaughterhouses or poultry farms.

classes were all represented among the AMR determinants with
top contribution to pairwise dissimilarities.

The dissimilarity analysis performed separately for each
human group against pigs and broilers (Supplementary Table 5)
showed that the overall dissimilarity between pig resistomes
and the resistomes of pig farm workers was 8 to 12% lower
(56%) when compared to the dissimilarity to the other two
human groups (64% and 68.0%). In opposition, there was
negligible difference (2 to 3%) in the dissimilarity between
broiler resistomes and the resistomes of broiler farm workers
(87%) compared to the dissimilarity between broilers and
humans with direct contact to pigs (84% and 89%). Further
differences between resistomes of subgroups within each group
of workers here considered, i.e., farmers, their family members

and employees, were previously described elsewhere (Van
Gompel et al., 2020). Sixteen unique AMR determinants were
identified among the top 10 contributors in all pairwise
comparisons with the three human groups (Figure 7). Each
of those determinants was identified as a ‘pig,’ ‘broiler,’ or
‘human’ resistome signature, when identified as consistently
more abundant in those reservoirs. The determinants ant(6)-
Ia, mef(A) and tet(40) were identified as ‘pig’ signatures,
blaTEM-126, lnu(A) and erm(B) as ‘broiler’ signatures and
cfxA2, cfxA6 and tet(Q) as ‘human’ resistome signatures. Three
determinants – lnu(C), tet(O/W) and tet(W/32/O) – were always
more abundant in the animal resistomes than in the human
resistomes. Figure 8 shows the hierarchical clustering of samples
based on the relative abundance of those 16 determinants.
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FIGURE 5 | Antimicrobial resistance determinants with top contribution to pairwise dissimilarity between the resistomes of five reservoirs. The contribution of
individual AMR determinants to the dissimilarity between every two reservoirs. The genes indicated are the representative genes for the AMR determinants identified
among the top contributors for reservoir dissimilarity (see Supplementary Table 1 for further information on the composition of each AMR determinant). The color
of the points represents the reservoir for which the AMR determinant had a higher relative abundance (Fragments Per Kilobase of reference and Million reads (FPKM))
in a pairwise comparison. The horizontal axis represents the average proportional contribution of an AMR determinant to the overall average dissimilarity between
two reservoirs. The vertical axis shows the two reservoirs compared.

Overall, there was a clear separation between human, pig and
broiler resistomes in three separate clusters. Most humans from
the three occupational exposure settings cluster together in one
cluster, however, with more proximity to pig resistomes. Some
human samples overlap with the ‘pig cluster’ and no human
sample clusters together with broiler resistomes. Most human
samples overlapping with the ‘pig cluster’ belong to the group of
pig farm workers.

In order to assess the significance of the contribution of
individual AMR determinants to the pairwise dissimilarities here
investigated, multiple regression studies are needed including the
abundance of selected determinants as predictors of reservoir for
each pairwise combination. Additionally, the significance of the

reservoir signatures here identified can be further determined via
discriminant analysis.

DISCUSSION

Supervised classification algorithms have been increasingly
applied to trace back particular microbial contamination
(Knights et al., 2011b; Henry et al., 2016; McCarthy et al.,
2017) or antimicrobial resistance genes (Baral et al., 2018;
Li et al., 2018; Gupta et al., 2019) in complex samples to
different upstream sources in the context of environmental
contamination. Random Forests has often been considered
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FIGURE 6 | Distribution within antimicrobial class of the average contribution of individual AMR determinants to pairwise dissimilarity between the resistomes of five
reservoirs. Each boxplot represents the distribution of the contribution to dissimilarity among AMR determinants (top contributors) of the same antimicrobial class.
The five illustrated antimicrobial classes represent those that overall mostly contributed for the dissimilarity between resistomes of different reservoirs. Each plot facet
represents a comparison between two reservoirs. The horizontal axis shows values of the average contribution of AMR determinants to pairwise dissimilarity.

a reference algorithm against which other methods are
benchmarked, usually being among the top performers (Knights
et al., 2011a,b; Gupta et al., 2019). In this study, we
explored the use of both flat and hierarchical Random
Forests to attribute the source of AMR determinants to
different reservoirs.

One of the main challenges in the application of classification
algorithms to highly dimensional data, such as metagenomics, is
the identification of the set of features that results in the ideal
discrimination level for future predictions (Knights et al., 2011a).
This challenge is exacerbated when features are not endemic to a
single class (or source) (Knights et al., 2011b). Random Forests
provides a ranking of each feature’s importance, which can be
critically used to inform feature selection. In this study, the first
step of feature selection was based on the importance of each

AMR determinant in a first hierarchical Random Forests that
accounted for separation of samples according to country of
origin during model training. Other algorithms may have the
advantage of embedding a feature selection step and therefore
can be tuned to identify the minimum number of features that
guarantees a defined level of overall accuracy (Knights et al.,
2011a). It has been shown that the feature selection method itself
can influence the model’s classification accuracy (Gupta et al.,
2019). Future studies are thus needed to assess the performance
of alternative algorithms and feature selection approaches.

Applying a hierarchical model, with ‘country’ as one of
the hierarchy levels, allowed, however, not only to reduce the
number of features in subsequent steps, but also to identify
country-specific and country-independent AMR determinants
with a positive impact on the classification of animal resistomes
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FIGURE 7 | Antimicrobial resistance determinants with top contribution to pairwise dissimilarity between human resistomes and the resistomes of pigs and broilers.
The contribution of individual AMR determinants to the dissimilarity between the resistomes of humans and those of pigs and broilers. The genes indicated are the
representative genes for the AMR determinants identified among the top contributors for reservoir dissimilarity, in the similarity percentage analysis between
pigs/broilers and three groups of sampled humans – workers on pig farms, pig slaughterhouses and broiler farms (see Supplementary Table 1 for further
information on the composition of each AMR determinant). The color of the points represents the reservoir for which the AMR determinant had a higher relative
abundance (Fragments Per Kilobase of reference and Million reads (FPKM)) in a pairwise comparison. The horizontal axis represents the average proportional
contribution of an AMR determinant to the overall average dissimilarity between the resistomes of two reservoirs. The vertical axis represents the two reservoirs
compared (‘pigSl’ = pig slaughterhouse workers; ‘pigFarm’ = pig farm workers; ‘broFarm’ = broiler farm workers).

into corresponding reservoirs. This step was important to
subsequently define and assess a general source-attribution
model, independent of the country of origin of the reservoirs.
When assessing the performance of the first hierarchical
Random Forests model, we observed that the number of AMR
determinants necessary to classify a resistome across countries,
i.e., in a country-independent manner, increases with a larger
heterogeneity of reservoirs among the samples. While 35 AMR
determinants could be coincidently used to attribute a resistome
to the sources ‘pig’ or ‘broiler’ across five countries, our
method selected 119 determinants to differentiate between the
resistomes of pigs, broilers, turkeys and veal calves across two
countries only. The reduction of predictor features to those

most country-independent in a second hierarchical Random
Forests model did not result in an overall improvement in
model performance. However, improvements in classification
were observed individually for resistomes originating in countries
A, E and I. For these countries, there was a decrease in OOB error
and/or an increase in percentage concordance between predicted-
and true- country class and improved accuracy in the prediction
of two reservoir classes. Contrarily, classification accuracy overall
decreased for countries G, D and F, suggesting that the impact
of country-specific resistome signatures in prediction may be
higher in these countries. The performance of the second
hierarchical Random Forests also showed an improvement in
the classification of resistomes of broilers and turkeys, opposite
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FIGURE 8 | Distance between the resistomes of three groups of humans and the resistomes of pigs and broilers, based on the relative abundance of AMR features
top contributors for reservoir pairwise dissimilarity. The heatmap represents vertical clustering of resistomes (Ward.D2 agglomeration method) based on the euclidean
distance of the hellinger-transformed values of Fragments Per Kilobase of reference and Million reads (FPKM) of the AMR determinants indicated (horizontally
clustered by correlation). These AMR determinants represent the 16 top contributors for the pairwise dissimilarities between the reservoirs ”pig” and ”broiler” and
each of the three groups of humans occupationally exposed to direct contact with animals (workers on ”pig_farm,” “pig_slaughterhouse,” or ”broiler_farm”).

to a decrease in prediction accuracy for resistomes of veal
calves and pigs.

We built three flat Random Forests models under different
hypotheses and assessed their differences in prediction
performance. The first model, trained exclusively on animal
resistomes, proved obviously inadequate to correctly attribute
the source of human resistomes, illustrating the need to account
for an ‘unknown,’ ‘other,’ or ‘human’ source while building a
source attribution of antimicrobial resistance. However, the
predictions of this model were in accordance with those of the
second Random Forests, in the fact that they both indicate that
among the four livestock species considered, pigs seem to have
the resistome composition closest to the composition of the
human resistome. The third model, trained on observations
of a single country and on a set of country-specific resistome
signatures, showed a slight increase in accuracy during training
compared to the previous (country-independent model) and a
decrease in the proportion of votes attributed to ‘pig’ among
samples collected from broiler farm workers. This finding
supports the indication that occupational exposure to AMR

determinants was higher among workers exposed to pigs than
workers of broiler farms. Despite that difference between the
models, both showed that workers on pig farms had resistomes
more often attributed to the source ‘pig’ than workers in pig
slaughterhouses. Furthermore, the country-specific model
showed that, selecting the appropriate resistome signatures
of the reservoirs sampled in that country, may be needed in
order to improve attribution results and detect or strengthen
the evidence for particular transmission links. This may not,
however, be necessarily true for every country. For example, an
overall improvement in prediction was observed for countries
A, E and I when the feature space was reduced to a set of
country-independent resistome signatures. The fact that country
F was more difficult to classify with the same feature space may
indicate that the country-independent set of features did not
include important resistome signatures for source differentiation
within this country.

The results of the dissimilarity analysis between reservoirs
clearly showed that human resistomes have a composition
closer to resistomes of pigs and veal calves than to those
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of broilers and turkeys. Surprisingly, resistomes of the two
poultry species were less similar than the resistomes of pigs and
veal calves. Further studies that investigate differences in the
microbiome of and account for antimicrobial use practices in
different reservoirs may help to elucidate the dissimilarities here
estimated. However, two recent studies have shown differences
in the susceptibility to antibiotics of Lactobacillus isolated from
chickens (Dec et al., 2017) and from turkeys (Dec et al., 2018)
in the same country. While isolates from both species presented
high resistance prevalence against tetracycline, lincomycin and
enrofloxacin, isolates from chicken presented a higher prevalence
of resistance to tiamulin. Chicken-derived isolates were also more
often multidrug resistant than turkey-derived isolates, and while
the resistance gene erm(B) was highly prevalent in both cases,
the gene lnu(A) was more commonly found among chicken-
derived isolates.

At least 50% of the resistome dissimilarity between every
two reservoirs included in our study can be explained by a
set of 10 AMR determinants. Among these top contributors
to dissimilarity, we identified resistome signatures for each
individual reservoir. These signatures are to be considered
generally country-independent, since the analysis was based on
the full set of 389 AMR determinants. We also assessed the
similarity of the resistome of each human group (workers on pig
farms, pig slaughterhouses or broiler farms) to the resistomes
of broilers and pigs. The results clearly showed that the overall
dissimilarity between pig resistomes and the resistomes of pig
farm workers was lower when compared to the dissimilarity
to the other two human groups, while dissimilarity between
broiler resistomes and the resistomes of the three groups was
similar. This finding suggests the occurrence of transmission
of AMR determinants between workers and pigs within the
farm environment. This is also supported by the clustering of
samples based on the relative abundance of AMR determinants
with a top contribution to dissimilarity, since samples from pig
farm workers are those occasionally overlapping with samples
from pigs. Resistome signatures found for pigs and broilers in
this study included resistance genes previously also identified as
elements of the ‘core resistome’ of those species, using the same
set of samples (Munk et al., 2018). AMR determinants identified
here as exclusive (lnu(A)) or predominant (blaTEM-126) markers
for the reservoir broiler were also identified as exclusive of this
reservoir’s core resistome in that study. In another study, the
determinant lnu(A) was also one of the most prevalent (39%)
AMR genes identified in Lactobacillus isolated from chicken (Dec
et al., 2017). Genes here identified as exclusive (ant(6)-Ia) or
predominant (erm(F), mef(A), tet(40), tet(Q)) markers of pig
resistomes, were previously identified as part of both broiler’s
and pig’s core resistomes. This difference between studies in the
exclusive association of AMR determinants to a single reservoir’s
resistome could be due to the fact that our study additionally
included comparison to the resistomes of turkeys and veal calves.

The same pig and broiler resistomes have also been
recently assessed for associations with lifetime antimicrobial
use at farm level. Van Gompel et al. (2019) found significant
positive associations between the use of lincosamide/macrolide,
tetracycline or macrolide antimicrobials on pig farms and the

relative abundance of the clusters erm(F), tet(40), or mef(A),
respectively. Here, we identified these three AMR determinants
as resistome markers predominantly in pigs. Luiken et al.
(2019) found positive significant associations between the group
treatments macrolide/lincosamide/streptogramin or beta-lactam
antimicrobials on broiler farms, and the relative abundance of
erm(B) or blaTEM clusters, respectively. We identified both
AMR determinants as resistome markers predominantly in
broilers. The interpretation of our findings in the context
of those association studies suggests that the continued and
generalized use of certain antimicrobials in specific production
settings eventually will lead to the definition of the resistome
composition, not only within individual farms or individual
countries, but ultimately at a reservoir level, and may ultimately
influence the dynamics of the transmission of antimicrobial
resistance from livestock animals to humans.

The two antimicrobial determinants, cfxA2 and cfxA6, that
we identified here as resistome markers of the humans included
in the study, have been identified in β-lactamase-producing oral
anaerobic bacteria such as Prevotella spp. and Bacteroides spp.
(Binta and Patel, 2016).

In accordance with our findings, a study analyzing the
same human occupational populations (Van Gompel et al.,
2020) previously demonstrated higher abundance of AMR
genes in pig exposed workers compared to broiler exposed
workers and control subjects from the same country (persons
without occupational contact). That study also identified
significant between- and within occupational group resistome
compositional differences. The number of on-farm working
hours and working on pig a farm (compared to working on
a broiler farm) were found to be associated with the presence
of specific abundances of AMR genes in human stools, also
suggesting potential livestock-associated resistome acquisition in
humans. In addition, resistome of pig exposed workers were
compared in a differential abundance analysis with those of the
control subjects. The latter identified significantly different fecal
abundances of 30 AMR genes, including the increased abundance
of mef(A), tet(Q), erm(F) and tet(40), which were here identified
as predominantly originating from pigs.

In this study, we showed that it is possible to use
metagenomics data to attribute the occurrence of fecal
antimicrobial resistance in humans to different livestock
reservoirs. We used Random Forests algorithms and dissimilarity
analysis (SIMPER) to identify country-specific and reservoir-
specific resistome markers that can be used to design targeted
source-attribution studies. The need for country-specific models
needs to be assessed on a case-by-case basis, as countries may
present different heterogeneity between reservoirs’ resistomes.
In one of the countries, the results suggested a link between
occupational exposure to pigs and the presence in human stools
of antimicrobial resistance determinants mainly associated with
pigs. This finding must be interpreted with caution, since gut
resistome is expected to be influenced to some degree by gut
microbiome composition, and among the reservoirs included
in the study, pigs may have the gut microbiota closest to
humans. Further studies are needed considering the relationship
between microbiome and resistome in the different species
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and assessing the microbiome similarity between humans and
livestock reservoirs.

Additionally, some of the limitations of the present study
need to be further addressed, including expanding the sampling
of human resistomes to more than a single country and to
the general human population (non-occupationally exposed to
livestock), and collecting resistome samples of all livestock
species considered for each country in the analysis. Furthermore,
the number of samples collected for each population (e.g.,
reservoir) and subgroup within a population (e.g., different
subgroups of humans) should be balanced.

Despite the need for future improvements, this study
sets the scene for the implementation of metagenomics
in source-attribution in the food chain, and thus for an
alternative, resistome-based approach to assess transmission of
antimicrobial resistance.
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