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The use of coherent light for precision measurements has 
been a key driving force for numerous research directions, 
ranging from biomedical optics1,2 to semiconductor manufac-
turing3. Recent work demonstrates that the precision of such 
measurements can be substantially improved by tailoring the 
spatial profile of light fields used for estimating an observ-
able system parameter4–10. These advances naturally raise the 
intriguing question of which states of light can provide the ulti-
mate measurement precision11. Here we introduce a general 
approach to determine the optimal coherent states of light for 
estimating any given parameter, regardless of the complexity 
of the system. Our analysis reveals that the light fields deliv-
ering the ultimate measurement precision are eigenstates of a 
Hermitian operator that quantifies the Fisher information from 
the system’s scattering matrix12. To illustrate this concept, we 
experimentally show that these maximum information states 
can probe the phase or the position of an object that is hidden 
by a disordered medium with a precision improved by an order 
of magnitude compared with unoptimized states. Our results 
enable optimally precise measurements in arbitrarily complex 
systems, thus establishing a new benchmark for metrology 
and imaging applications3,13.

No physical observable can be determined with absolute cer-
tainty. Instead, the noise inherent in any measurement process sets 
a fundamental limit on the precision that a physical observable 
can be estimated with11,14. Whenever light or other kinds of elec-
tromagnetic radiation are involved in a measurement, a necessary 
condition to reach this ultimate precision is the optimization of the 
spatial distribution of the radiation field in the measured system13. 
To achieve this goal, a crucial task is to identify the spatial pattern 
that should be imprinted on the incoming field to get the maximum 
information out of it. First progress in this direction has recently 
been made using wavefront shaping techniques and metasurfaces to 
precisely estimate lateral displacements4,8, fluorophore positions5,6, 
spectral shifts7 or phase variations9.

A central challenge that remains unresolved, however, is iden-
tifying a unifying approach to reach the ultimate precision limit 
that is applicable even to complex scattering systems. Earlier work 
suggests that such an approach should be connected to the concept 
of Fisher information5,10,11,14, which quantifies the amount of infor-
mation relevant to the estimation of a given parameter from mea-
sured data. However, for the generic case of a complex medium, the 
Fisher information is intrinsically linked to the microstructure of 
the medium10, which is not only overwhelmingly complex in realis-
tic systems but also typically unknown.

Here, we overcome this difficulty by expressing the Fisher 
information in terms of a Hermitian operator that depends on the 

system’s optical scattering matrix. Based on this idea, we intro-
duce and experimentally demonstrate a direct approach to gen-
erate optimal coherent states of light for parameter estimation. 
These light states are shown to be specifically tailored even to a 
complex system, not only with respect to the specific observable 
of interest, but also with respect to the position of the observer. 
By unambiguously identifying these optimal light states, we 
establish a new general benchmark for metrology and imaging 
applications3,13. Furthermore, in the ideal case for which all opti-
cal modes supported by the system are accessible to the observer, 
our analysis reveals that maximum information states are, at the 
same time, the optimal states for optical micromanipulation15,16, 
thereby uncovering a fundamental relationship between informa-
tion theory and measurement backaction.

To set up this approach, we recall that a measurement scheme is 
optimal when the measurements, the estimation function and the 
choice of the incident state are all optimal concurrently11. To real-
ize this situation for coherent states of light, we start with a general 
model of scattering measurements on a complex medium param-
eterized by a scalar parameter θ (Fig. 1). This parameter can be a 
global parameter characterizing the entire scattering medium. It can 
also be a local parameter of limited spatial extent, such as the phase 
or the position of a small phase object hidden behind a scattering 
material, as in our experiments. We illuminate the medium from 
the far field by an incident coherent state Einj i

I
 characterized by the 

coefficients fEin
1 ; ¼ ; Ein

Mg
I

 in M spatial modes, which are individu-
ally addressed using wavefront shaping techniques17. The far field 
of the outgoing coherent state Eoutj i

I
 is then characterized by the 

coefficients fEout
1 ; ¼ ;Eout

N g
I

 in N spatial modes using a homodyne 
detection scheme, which introduces an external reference beam and 
measures the resulting number of photons in each spatial mode. 
The number of outgoing spatial modes can be taken as low as 
N = 1, a feature that can be relevant for applications requiring a fast 
single-channel detector.

Noise fluctuations in the measured data fundamentally limit 
the achievable precision on the determination of θ. This limit is 
mathematically expressed by the Cramér–Rao inequality, which 
sets a lower bound on the variance of unbiased estimators of θ. 
In general, the Cramér–Rao bound is given by the reciprocal of 
the Fisher information J ðθÞ ¼ E ð½∂θln pðX; θÞ2Þ

I
 where X is an 

N-dimensional random variable representing the data, p(X; θ) is 
a joint probability density function and E denotes the expectation 
operator acting over noise fluctuations14. Here, we assume that this 
noise arises only from the quantum fluctuations of coherent states, 
and not from other possible noise sources such as sample-to-sample 
or wave-to-wave fluctuations18. Considering that noise fluctuations 
are statistically independent for any two different outgoing modes, 
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we derived the following simplified expression for the Fisher infor-
mation (Supplementary Section 1.1):

J ðθÞ ¼ 4
XN

k¼1
∂θE

out
k

 2 : ð1Þ

This expression is obtained by considering a specific homodyne 
detection scheme, composed of a high-intensity reference beam that 
interferes with the kth spatial mode with a phase ϕk ¼ argð∂θEout

k Þ
I

.  
Alternatively, one can also calculate the quantum Fisher infor-
mation IðθÞ

I
, which sets a more general bound on the variance 

of unbiased estimators holding for any positive-operator-valued 
measure19. When evaluating the quantum Fisher information 
for an N-mode coherent state composed of simply separable 
pure states, we find that it coincides with equation (1) so that 
IðθÞ ¼ J ðθÞ
I

 (Supplementary Section 1.2), thereby demonstrat-
ing that the homodyne detection scheme considered here is opti-
mal for the estimation of θ.

We consider an incident state Einj i
I

 as being optimal for the 
Fisher information it generates when the corresponding outgoing 
state Eoutj i

I
 maximizes equation (1) for a given number of incident 

photons. To identify this state, the pivotal quantity is the scatter-
ing matrix S of the medium12, which relates incoming and outgoing 
states via Eoutj i ¼ S Einj i

I
. Using this relationship, the Fisher infor-

mation can be written in the quadratic form J ðθÞ ¼ 4 Einh jFθ Einj i
I

, 
where we used bra–ket notations for the complex inner product. We 
designate the term Fθ in the centre of this expression as the Fisher 
information operator that takes on the remarkably simple form 
(Supplementary Section 1.3)

Fθ ¼ ð∂θSÞy∂θS ; ð2Þ

where † stands for the conjugate transpose. As this operator Fθ 
is Hermitian by construction, the incident state that maximizes 
the Fisher information is given by the eigenstate associated with 
the largest eigenvalue of Fθ. Furthermore, in the limit of small 
parameter variations, we obtained a closed-form expression of the 
minimum-variance unbiased estimator (Supplementary Section 1.4),  
which is the optimal estimation function. Importantly, the variance 
of this estimator always reaches the Cramér–Rao bound, even for 
small numbers of incident photons. This confirms that the Fisher 

information is here the relevant quantity to assess the precision 
achievable with different light states.

To demonstrate how to generate these maximum informa-
tion states, we performed proof-of-principle experiments at opti-
cal frequencies (at a wavelength of 532 nm). We first choose as the 
observable parameter θ that we aim to estimate, the phase shift φ 
generated by a small cross (total length of 48 μm) displayed by a 
spatial light modulator (SLM), as represented in Fig. 2a. This tar-
get is hidden 1.2 mm behind a ground glass diffuser (scattering 
angle 15°). Our experimental set-up includes a second SLM used 
to control the phase of the incident field and a detection scheme 
based on off-axis holography (Extended Data Fig. 1). The experi-
mental procedure starts by measuring three reflection matrices for 
different values of φ, which allows us to access both the reflection 
matrix r and its derivative ∂φr for 2,437 incident states and 2,465 
outgoing states (Methods). Despite the large size of the measured 
reflection matrix, it constitutes only part of the full S matrix of the 
medium. This is not a limitation of our approach, however, as it 
also applies to non-unitary and non-square matrices. Defining the 
operator f φ ¼ ð∂φrÞy∂φr

I
, the eigenvector associated with the larg-

est eigenvalue of fφ is the optimal incident state based on the avail-
able knowledge. Illuminating the medium with this state using the 
input SLM, we measured the spatial distributions of the outgoing 
signal intensity (Fig. 2b) and of the Fisher information per unit area 
(Fig. 2c), respectively normalized by the average signal intensity 
and by the average Fisher information per unit area under plane 
wave illumination. Averaging over the field of view, the maximum 
information state generates a 300-fold enhancement of the Fisher 
information along with a 20-fold intensity enhancement compared 
with the average values measured under plane wave illumination.

We then explicitly checked how the maximum information 
state is shaped in the near field of the cross-shaped phase perturba-
tion. To this end, we measured the single-pixel sensitivity, which is 
defined here as the total Fisher information in the outgoing state for 
phase variations on each individual pixel on the hidden SLM. These 
measurements are performed by successively varying the phase 
shift induced by individual pixels sequentially, instead of vary-
ing the phase shift induced by the cross-shaped target as a whole 
(Methods). We find that the maximum information state is primar-
ily sensitive to a few pixels in the centre of the cross (Fig. 2d), which 
confirms its economical wavefunction design. We emphasize that 
optimal states are not conceived to reveal the shape of the target, 
but to estimate the phase shift it induces. This does not require the 
intensity to be uniformly distributed on the area defining the target, 
explaining why its shape is not always fully revealed.

An important characteristic of maximum information states is 
their specificity with respect to both the position of the observer 
and to the observable of interest. To explicitly probe the influence 
of the observer, we repeated the experiment from above, but instead 
with a reduced field of view in the detection plane (Fig. 2e–h and 
Extended Data Fig. 2). The maximum information state readjusts to 
this new observer by redirecting the spatial distributions of its out-
going signal intensity (Fig. 2f) and of its Fisher information per unit 
area (Fig. 2g) straight to the selected observer area. This confirms 
the essential role played by the set of optical modes we incorporate 
into the definition of maximum information states. Although the 
single-pixel sensitivity (Fig. 2h) is similar to that observed when the 
whole field of view is taken into account (compare with Fig. 2d), it is 
here more uniformly distributed inside the cross-shaped area. Such 
a redistribution in the plane of the hidden SLM is associated with 
smaller diffraction angles, thus allowing for a reduced spatial extent 
of the intensity distribution in the plane of the diffuser. To demon-
strate the specificity of maximum information states with respect 
to the observable of interest, we also repeated the experimental 
procedure by choosing the horizontal position x of a circular phase 
object (radius 30 μm) as being the observable parameter of interest 
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Fig. 1 | Principle of an optimal coherent scattering measurement. A 
scattering medium is characterized by an unknown parameter θ. This 
parameter is estimated by illuminating the medium with coherent light and 
by measuring the outgoing field state via a homodyne detection scheme. In 
many cases, plane wave illumination leads to imprecise estimations (top). 
The optimal incident states we generate here using wavefront shaping 
techniques enable the best estimations possible (bottom).
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(Fig. 2i–l and Extended Data Fig. 3). The single-pixel sensitivity is 
now localized on the right or left edge of the object, which attests 
that maximum information states selectively focus light waves onto 
those specific areas of the object that have the most pronounced 
dependence on the observable of interest. The maximum infor-
mation state typically focuses on a single edge rather than on both 
edges simultaneously, which is to be expected as the mirror sym-
metry in the system is broken by the diffuser.

To exemplify the advantages that these features provide for mea-
surements with very few photons where the estimation precision is 
limited by shot noise, we reduced the incident photon flux by plac-
ing a neutral density filter (fractional transmittance 8.3 × 10−7) in 
the optical path. Under these conditions, illuminating the medium 
with a plane wave does not allow reliable estimations of the phase 
shift induced by target. This is confirmed by calculating the pre-
cision limit σCRB for the 2,437 plane waves used to construct the 
reflection matrix (Supplementary Section 2.1). For these plane 
waves, the median of the obtained phase distribution is 1.8 rad, 
with a minimum value of 0.60 rad (Fig. 3a). In contrast, the preci-
sion limit associated with the maximum information state equals 
0.066 rad, an entire order of magnitude smaller than the minimum 
value measured for plane waves. Whereas reaching this precision 
limit would require amplitude and phase modulation of the incident 
field, we modulate only its phase via the input SLM in the experi-
ments. We find that the precision limit associated with phase-only 

modulation of the maximum information state equals 0.078 rad, a 
value that is only slightly larger than that for a joint amplitude and 
phase modulation. This observation corroborates the robustness of 
our approach with respect to small errors or imperfections in the 
preparation of the incident state.

To demonstrate the practical implementation of the estimation 
process with a maximum information state, we used this state to 
illuminate the medium and performed a sequence of measurements. 
The observable parameter we estimate is φ (the phase shift induced 
by the cross-shaped target), which is varied every 20 measurements 
between −0.25 rad and 0.25 rad in a step-like manner. From the 
knowledge of the expected outgoing state and its derivative with 
respect to φ, we can construct the minimum-variance unbiased esti-
mator of φ applicable to small parameter variations (Supplementary 
Section 2.2). We can then estimate the value of φ from measure-
ments of the outgoing state (Extended Data Fig. 4). Despite only 
approximately 24,000 incident photons probing the medium per 
measurement, each step can be clearly resolved (Fig. 3b,c). The 
observed standard error on the estimates is 0.11 rad, which cor-
responds to a transverse displacement of the target of 9.6 nm (see 
Extended Data Fig. 5 for estimations of lateral displacements). The 
observed standard error on the estimates almost reaches the preci-
sion limit predicted by the Cramér–Rao inequality. This confirms 
that shot noise is the dominant source of noise in our experiment, 
and demonstrates that the precision limit is correctly predicted from 
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Fig. 2 | Characteristics of maximum information states. a, Sketch of the experiment: the observer (left) is a camera with a field of view covering 880 μm2, 
separated by a diffuser (middle) from a cross-shaped target object (right) that induces a phase shift φ as our observable parameter of interest.  
b,c, Measured spatial distributions of the intensity (b) and of the Fisher information per unit area (c) for the optimal state with maximum overall information 
content, normalized by the average signal intensity and by the average Fisher information per unit area under plane wave illumination, respectively.  
d, Single-pixel sensitivity measured by shifting the phase of each pixel in the target area of the hidden SLM for the optimal state, normalized by the average 
single-pixel sensitivity under plane wave illumination. The cross-shaped target is indicated by white dashed lines. e–h, Analogous to a–d when the field of 
view of the camera covers a reduced area of 220 μm2, as delimited by white dashed lines in f and g. The maximum information state fully adjusts to the 
changes in the observer by delivering the Fisher information here primarily to the limited field of view. i–l, Analogous to a–d when the observable parameter 
is the horizontal position x of a circular phase object. The maximum information state adapts to the change in observable by redirecting its incoming 
intensity to those pixels on the very right or left edges of the target object that are most strongly affected by a lateral displacement Δx.
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reflection matrix measurements. We applied the same procedure for 
measurements performed by illuminating the medium with the best 
plane wave used to construct the reflection matrix. The precision 
limit is then much larger than the step size, thereby prohibiting a 
clear detection of the phase steps (Fig. 3d,e).

The operator Fθ used in our analysis not only constitutes an oper-
ational tool for the identification of maximum information states, 
but is also deeply connected to fundamental concepts in optics. 
Provided that reciprocity holds in terms of the transposition sym-
metry of the scattering matrix (ST = S), we can show (Supplementary 
Section 1.5) that the iterative phase conjugation of a small pertur-
bation Δθ converges towards the largest eigenvalues of Fθ. This 
insight not only suggests a potentially useful approach to identify 
maximum information states, but also provides a new understand-
ing of existing focusing procedures based on time-reversed adapted 
perturbation20–22. Moreover, in the ideal case of a unitary S matrix 
(S† = S−1) where all optical modes supported by the system are  
accessible, we obtain the identity Fθ ¼ Q2

θ
I

, where Qθ ¼ �iS�1∂θS
I

  
is the generalized Wigner–Smith operator. This operator was 
recently introduced to design optimal light fields for optical  

micromanipulation in complex media15,16. The simple relation 
between Fθ and Qθ suggests a new interpretation of Qθ as the operator 
representing the measurement backaction on the conjugate quantity 
to θ. The eigenstates of Qθ (also called principal modes) have the 
remarkable property of being insensitive with respect to small varia-
tions in θ except for a global phase factor23,24. Likewise, the Fisher 
information of maximum information states is exclusively enclosed 
in variations of the global phase of the outgoing state, rather than in 
the state’s intensity variations or speckle decorrelation. Nevertheless, 
this property strictly holds only for a unitary S matrix and deviations 
from this property are observed in our experiments (Supplementary 
Section 3.3). It is also interesting to discuss the special case for 
which the observable of interest is the dielectric constant ϵ of a tar-
get. Provided that S† = S−1, eigenstates of Qϵ maximize the integrated 
intensity inside the target16, which implies that maximum informa-
tion states are then, at the same time, the light states that maximize 
power delivery to the target. Finally, although we have considered a 
scalar parameter θ in our analysis, our formalism also enables the 
identification of light states that maximize the trace of the multi-
parameter Fisher information matrix (Supplementary Section 1.6), 
thus providing a possible strategy with which to perform precise 
estimations of multiple parameters.

To summarize, we demonstrate a method to identify and produce 
coherent light fields that are optimal for precision measurements in 
a complex environment. This work opens up new perspectives to 
enhance the performance of imaging techniques13 and, by simul-
taneously engineering the Fisher information operator itself, could 
also be used to improve the sensitivity of existing nanostructured 
sensing devices25,26. We emphasize that our results are generally 
applicable to any parametric dependence of a wave field and can 
thus be transferred to other types of waves, such as in acoustics27 
or in the microwave regime28. Finally, it can be expected that the 
bound derived in this work for coherent states will be surpassed 
using quantum metrology protocols11,29,30. In this context, our results 
provide a general benchmark with which to assess the performance 
of quantum states optimized for parameter estimation, and suggest 
a new path towards the identification of optimally-sensitive quan-
tum states of light using scattering matrices of complex systems.
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Methods
Optical set-up. The light source used is a continuous-wave solid-state laser 
(Coherent OBIS 532-120 LS FP) emitting at 532 nm. The laser light was coupled to 
a single-mode polarization-maintaining fibre and out-coupled using a collimator 
(Schäfter+Kirchhoff, 60FC-L-4-M75-01). The beam was separated into a signal 
path and a reference path using a 50:50 beamsplitter. In the signal path, the light 
beam passed a 50:50 beamsplitter and was then modulated by the input SLM 
(Holoeye Pluto VIS). It could then pass different neutral density filters that were 
mechanically placed or removed. The incident power on the objective was: 36.1 μW 
when all density filters are removed from the optical path; 275 nW when a neutral 
density filter of optical density 2 (ND2) was placed in the optical path (measured 
fractional transmittance T 0 ¼ 0:76 ´ 10�2

I
); and 30 pW when a neutral density 

filter of optical density 6 (ND6) was placed in the optical path (measured fractional 
transmittance T ¼ 0:83 ´ 10�6

I
).

The surface of the SLM was imaged onto a ground glass diffuser using a 
200 mm lens and a ×50 objective (Nikon 50X CFI60 TU Plan Epi ELWD, 0.6 
NA). A 90:10 beamsplitter was located between the lens and the objective. The 
diffuser was made by polishing a microscope coverslip. The resulting scattering 
angle, defined from the full-width at half-maximum of the transmitted intensity 
distribution, was approximately 15°. The diffuser was mounted on the windows 
of the hidden SLM (Holoeye Pluto BB) at a distance of 1.2 mm. The surface of the 
diffuser was then imaged using the objective, a 200 mm lens and a charge-coupled 
device camera (AVT Stingray F145-B) with an exposure time of 300 μs. Camera 
acquisition was triggered by the input SLM to limit phase noise due to the flicker 
of the SLM. Before reaching the camera, the beam passed a polarizer to ensure 
that only the horizontal component of the field was measured, and also passed 
a 90:10 beamsplitter to recombine the reference path with the signal path. Both 
quadratures of the complex field were measured in a single shot using digital 
off-axis holography. Using a tilted beam instead of the optimally shaped reference 
field does not impact the shape of the incident field optimized for the estimation 
of φ, but leads to a reduction in the Fisher information by a factor of two 
(Supplementary Section 2.1).

Construction of the reflection matrix and its derivative. We constructed densely 
sampled reflection matrices relating incident field states to reflected ones31,32. 
Reflection matrix measurements were performed with no density filter in the 
signal path. To illuminate the medium, we varied the incidence angle of a Gaussian 
beam characterized by a full-width at half-maximum of 120 μm, which was four 
times larger than the field of view (such Gaussian beams are referred to as plane 
waves here). We probed M = 2,437 different incidence angles, covering a numerical 
aperture of 0.5. The sampling was performed using a triangular lattice (in Fourier 
space), with a lattice constant taken to be the smallest angular separation at which 
the complex inner product of nearest-neighbour fields drops to zero.

For each incident angle, we recorded the reflected field using digital off-axis 
holography33,34. This method relies on a reference beam that is tilted by an angle 
with respect to the reflected signal beam. The complex field is then numerically 
reconstructed from the measured holograms by digitally filtering the zero-order 
component. In our experiments, the reflected field was sampled using a triangular 
lattice, with a lattice constant that we determined by finding the distance between 
the maximum and the first minimum of the autocorrelation of a random field. 
We used N = 2,465 different sampling points, covering an area of 880 μm2 on the 
surface of the diffuser. The reflection matrix r was therefore constructed column 
by column and, as a result, we obtained a 2,465 × 2,437 matrix. This matrix 
could then be used to faithfully predict the outgoing state for any incident state 
(Supplementary Section 3.1).

In the initial experiment, the parameter of interest was the phase shift φ 
generated by a cross-shaped target object. The reflection matrix r was then 
measured at an angle φ = φ0 by setting the phase shift induced by all pixels of 
the hidden SLM to a given value. Note that φ0 could be set to zero without loss 
of generality. To estimate the derivative of the reflection matrix with respect to 
φ, we measured two other reflection matrices r(φ0 − Δφ) and r(φ0 + Δφ), where 
Δφ = 0.54 rad. We could then estimate ∂φr by applying the centred finite difference 
scheme ∂φr ≃ [r(φ0 + Δφ) − r(φ0 − Δφ)]/(2Δφ). This matrix could then be used 
to faithfully predict the derivative of the outgoing state with respect to φ for any 
incident state (Supplementary Section 3.2).

In another experiment, the parameter of interest was chosen to be the lateral 
position x of a circular object. In this case, a super-Gaussian function of order 
7 was displayed by the hidden SLM, with a full-with at half-maximum equal to 
60 μm. The phase difference between the object and the background was set to 
π/2 rad and r was then measured at a position x = x0. To estimate the derivative of 
the reflection matrix with respect to x, we measured two other reflection matrices 
r(x0 − Δx) and r(x0 + Δx), where Δx = 5 μm. We could then estimate ∂xr by applying 
the centred finite difference scheme ∂φr ≃ [r(x0 + Δx) − r(x0 − Δx)]/(2Δx).

Measurement of the single-pixel sensitivity. To measure the single-pixel sensitivity, 
we successively varied the phase shift φj induced by each individual pixel j for  
100 pixels covering an area of 6,400 μm2 on the surface of the hidden SLM.  
This allowed us to access the derivative of the outgoing field with respect to φj using 
a centred difference scheme, and to calculate the associated Fisher information 

using equation (1). For each individual pixel, we performed an averaging of the 
derivative of the outgoing field over ten independent measurements. Once the 
Fisher information was calculated, we also subtracted a residual noise floor that 
we estimated by taking different measurements of the same outgoing state. We 
performed the same analysis by illuminating the medium with the maximum 
information state and with different plane waves, and we normalized the values 
obtained for the maximum information state using the average value obtained with 
different plane waves. Note that a high single-pixel sensitivity cannot be achieved 
without a high intensity inside the pixel area. Thus, mapping the single-pixel 
sensitivity in the plane of the hidden SLM also provided us with an indirect way to 
approximate the intensity distribution in the plane of the hidden SLM.

Monitoring of the global phase drift. Owing to the long acquisition time (113 min 
in total), the global phase of the measured outgoing field slowly drifted in time 
because of the imperfect thermal stability of the experimental set-up. During the 
acquisition, we continuously monitored this drift by regularly measuring a known 
outgoing field as a phase reference32. We used different phase-reference fields 
depending on the incident power on the sample.

When no density filters were placed in the optical path, the phase-reference 
field was generated by illuminating the medium with a given plane wave, with a 
slight angle so that no reflection from the back-focal plane of the objective could be 
observed. We then calculated how the global phase of this field changed over time 
by using a complex inner product of the phase-reference field measured at a given 
time with the phase-reference field measured at the beginning of the acquisition.

When any density filter was placed in the optical path, we first calculated 
a truncated reflection matrix r′, which did not include the few columns for 
which reflection from the back-focal plane of the objective could be observed. 
The phase-reference field was generated by illuminating the medium using the 
right-singular vector of r′ associated with its largest singular value. By doing so, we 
maximized the signal-to-noise ratio of phase-reference measurements. We then 
calculated how the global phase of this field changed over time by using a complex 
inner product of the phase-reference field measured at a given time with the field 
predicted from the knowledge of the reflection matrix.

Finally, we performed linear interpolations to estimate the global phase drift at 
any time during the acquisition, and we subsequently applied the appropriate phase 
correction to any measured data.

Data availability
Source data are provided with this paper. All other data that support the 
plots within this paper and other findings of this study are available from the 
corresponding author on reasonable request.
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Extended Data Fig. 1 | Optical setup. The phases on the input SLM are modulated to reproduce the maximum information state, which reaches optimal 
sensitivity in its output with respect to any specified parameter characterizing the object displayed on the hidden SLM, such as phase variations or lateral 
displacements. Neutral density filters are removed for reflection matrix measurements. BS, beamsplitter; ND, neutral density filters; Obj, objective; NA, 
numerical aperture; Pol, linear polarizer; L1 and L2, lenses with focal length 200 mm.
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Extended Data Fig. 2 | Measured intensity and Fisher information distributions for maximum information states associated with different detection 
areas. a-d, Measured spatial distributions of the intensity for optimal states, normalized by the average signal intensity under plane wave illumination.  
The observable parameter is the phase shift induced by the cross-shaped target, and optimal states are defined here with respect to a reduced field of  
view of the camera that covers an area of 220 μm2, as delimited by white dashed lines. e-h, Analogous to a-d for the measured spatial distribution of the 
Fisher information per unit area. Remarkably, the maximum information state always delivers the Fisher information to the designated observer window.
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Extended Data Fig. 3 | Single-pixel sensitivity for maximum information states associated with different observable parameters. a-c, Single-pixel 
sensitivity measured by shifting the phase of each pixel in the target area of the hidden SLM for the optimal state, normalized by the average single-pixel 
sensitivity under plane-wave illumination. The object displayed on the hidden SLM is a circular phase object, whose position is delimited by a white dashed 
circle. The field of view of the detection camera covers here an area of 880 μm2. The incident states used to illuminate the scattering medium are the 
maximum information states relative to a phase shift (a), a horizontal shift (b) and a vertical shift (c) of the object. d-f, Analogous to a-c when the field 
of view of the camera covers a reduced area of 144 μm2. In all cases, the maximum information state directs the incoming intensity to those parts on the 
hidden SLM that are most affected by the change in the observable parameter. Interestingly, when the target parameter is either a horizontal or a vertical 
shift of the object, the maximum information state typically focuses on a single edge rather than on both edges simultaneously, which is to be expected as 
the mirror symmetry in the system is broken by the diffuser.
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Extended Data Fig. 4 | Predicted and measured signal intensity distribution at low photon counts. a, Predicted distribution of the signal intensity for the 
optimal incident state expressed in analog-to-digital units (ADU). This distribution is calculated from the measured reflection matrix, considering that the 
neutral density filter ND6 (fractional transmittance 8.3 × 10−7) is placed in the optical path. b, Measured distribution of the signal intensity for the optimal 
incident state when ND6 is in the signal path. Such measurements are shot-noise limited, and the observed signal-to-noise per pixel is largely smaller than 
unity. Thus, the measured distribution of the signal intensity appears as a random noise, which has been low-pass filtered by the data analysis procedure 
used to digitally reconstruct complex fields from off-axis intensity measurements. Despite this low signal-to-noise per pixel, such data allow to correctly 
estimate the phase shift induced by the hidden target when using the minimum variance unbiased estimator. This can be achieved since only a single 
parameter (the phase shift induced by the target) needs to be estimated from a large number of independent sampling points. The Fisher information 
associated with each pixel of the detection camera effectively adds up, resulting in a total Fisher information that is sufficient to resolve the phase steps 
induced on the hidden SLM. c, d, Analogous to a and b for the best plane wave used to construct the reflection matrix.
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Extended Data Fig. 5 | Estimations of lateral displacements at low photon counts. Analogous to Fig. 3 when the observable parameter is the horizontal 
position x of the circular phase object shown in Fig. 2i. a, Histogram of precision limits for the 2,437 plane waves used to construct the reflection matrix 
and for the maximum information states (AP, amplitude and phase modulation; PO, phase-only modulation). b, Estimated lateral displacements of the 
circular phase object as a function of measurement index for measurements performed by illuminating the medium with the maximum information state. 
The calculated precision limit equals 1.4 μm, and the observed standard error on the estimates is 1.5 μm. c, Histograms of estimated angles for a positive 
lateral displacement (Δx+ = + 2.5 μm) and a negative lateral displacement (Δx− = − 2.5 μm) applied by the hidden SLM. The length of error bars equals 2 
σCRB. d, e, Analogous to b and c for measurements performed by illuminating the medium with the best plane wave.
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