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Abstract. A drawing of a graph is k-plane if no edge is crossed more
than k times. In this paper we study saturated k-plane drawings with
few edges. These are k-plane drawings in which no edge can be added
without violating k-planarity. For every number of vertices n > k + 1,
we present a tight construction with n−1

k+1
edges for the case in which

the edges can self-intersect. If we restrict the drawings to be `-simple we
show that the number of edges in saturated k-plane drawings must be
larger. We present constructions with few edges for different values of k
and `. Finally, we investigate saturated straight-line k-plane drawings.

Keywords: saturated drawings · k-planarity · simple drawings

1 Introduction

Given a simple undirected graph G on n vertices, a drawing of G in the plane
maps each vertex of G to a distinct point and each edge to a curve connecting
the two corresponding points. In the literature, it is usually required that the
edges are drawn as Jordan arcs. However, in order to understand the influence
of self-intersections in our study, we also consider drawings in which the edges
are allowed to self-intersect. In all our drawings we forbid edges to pass through
vertices, tangencies, and three edges to properly cross in the same point.

A drawing is k-plane if no edge is properly crossed more than k times. These
drawings have received a lot of attention in the graph drawing community [7,10].
In this paper we study saturated k-plane drawings, i.e., k-plane drawings to which
no edge can be added without violating the k-planarity of the drawing.

A drawing is `-simple if no edge crosses itself and two edges share at most `
points including their endpoints. Kynčl et al. [11] initiated the study of saturated
`-simple drawings, i.e. `-simple drawings to which no edge can be added without
violating the `-simplicity of the drawing. They presented bounds on the minimum
number of edges in saturated `-simple drawings. Recently the bounds for simple
and 2-simple drawings were improved by Hajnal et al. [8]. Saturated drawings
with few edges have also been studied by Aichholzer et al. [2] in the context of
thrackles, that are drawings in which every pair of edges intersects exactly once,
either at a proper crossing or at a common endpoint.
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Table 1: New and known bounds for the infimum ratio of edges to vertices for
arbitrarily large saturated k-plane drawings (disregarding lower order terms).
Numbers in the table are upper bounds while the colors represent the lower
bounds. For straight-line drawings no lower bounds are claimed. Arrows indicate
where the best known bound for higher simplicity coincides with the one for
lower simplicity. Citations and references to theorems point to where the result
is proven.

Upper
bounds

with self-
crossings

k + 1-
simple

4-simple 3-simple 2-simple simple
straight-

line

1-plane
1
2

= 0.5 3
2

= 1.5 7
3
≈ 2.33 11

5
= 2.2

Thm.1
→ → →

Thm.3 [5];Thm.4 Thm.6

2-plane
1
3
≈ 0.33 2

3
≈ 0.66 4

5
= 0.8 4

3
≈ 1.33 3

2
= 1.5

Thm.1
→ →

Thm.2 Thm.3 [3];Thm.4 Thm.6

3-plane
1
4

= 0.25 2
3
≈ 0.66 3

4
= 0.75 4

5
= 0.8 1 7

6
= 1.2

Thm.1
→

Thm.2 Thm.5 Thm.3 Thm.4 Thm.6

4-plane
1
5

= 0.2 2
5

= 0.4 3
7
≈ 0.43 6

13
≈ 0.46 2

3
≈ 0.66 1

Thm.1
→

Thm.5 Thm.5 Thm.3 Thm.4 Thm.6

k-plane
1

k+1

1

b k2 c+ 1
2

2

k+ 2
k+2

2
k−1

4k+2
k2+2

Thm.1 Thm.2
→ →

Thm.3 Thm.4 Thm.6

Lower bounds:
1

k+1
Thm.1 2

k+2
Thm.2 20

9
≈ 2.22 [4]

In this paper we study the minimum number of edges in saturated k-plane
drawings and put it in relation with different drawing restrictions, including `-
simplicity. Previously, saturated simple k-plane drawings have been studied for
k = 1 and 2. Brandenburg et al. [5] showed that every saturated simple 1-plane
drawing has at least 2.1n edges and that there are arbitrarily large saturated
simple 1-plane drawings with 7n

3 edges. For this problem, Barát and Tóth [4]
recently improved the lower bound to 20n

9 . Auer et al. [3] gave a saturated simple
2-plane drawing with at most 4n

3 edges. Extending this research to larger values
of k was suggested by Tóth as an interesting question [9, Section 3.2 Problem 15].

Relation to independent similar work. After submission of the first version of
our work, we learned that, independently, Chaplick et al. [6] had investigated
saturated drawings of sparse k-planar (multi-)graphs. The main difference is that
their setting allows for multiple parallel edges and therefore no two vertices can
lie in the same cell regardless of whether they are connected in the graph. This
leads to different results, even though the constructions and proof techniques
are similar.

One of the closest results is for saturated k-plane drawings without further
restrictions. Using a similar construction to ours in Section 3, they also obtain
a tight bound in their non-restricted setting. In their conclusion they describe



Saturated k-Plane Drawings with Few Edges 3

and illustrate a construction obtaining an 1
k+1 (n − 1) upper bound for k-plane

drawings of simple graphs without restricting the simplicity. Their construction
only applies for even values of k and matches the bound that we obtain in
Section 4.

After reading their paper, we included a new section, Section 7, resolving
an open question asked by Chaplick et al. on the existance of saturated simple
k-plane drawings of matchings for k = 4, 5, and 6 when inserting parallel edges is
allowed. We show that in this setting no saturated simple 4- and 5-plane drawings
of matchings exist. In contrast, we provide a construction for saturated simple
6-plane drawings of arbitrarily large matchings in which no (parallel) edge can
be inserted.

Our results. We study the infimum ratio of edges to vertices for arbitrarily
large saturated k-plane drawings. For different restrictions on the drawing, we
present both lower bounds and constructions with few edges that give upper
bounds. Table 1 summarizes our results. In Section 3 we show that if we allow
self-intersecting edges there are saturated k-plane drawings with n vertices and
n−1
k+1 edges. Moreover, we prove that the edge-vertex ratio in this construction is
the smallest possible. We begin our paper by encapsulating a helpful operation
for our constructions, called stashing, in Section 2 In Section 4 we show that if
we disallow self-intersections we need at least two times the amount of edges:

A saturated k-plane drawing with n vertices has at least 2(n−1)
k+1 edges. In this

setting, we present a construction with n vertices and 2(n−1)
k+2 edges. However, this

construction requires a k+ 1-simple drawing. In Section 5 we focus on drawings
with low simplicity. For 2-simple drawings we give a construction with n vertices

and less than 2(n−1)
k edges. Then, adapting a construction by Auer et al. [3],

we obtain simple drawings with n vertices and 2n
k−1 + O(k) edges. In Section 6

we consider straight-line drawings and present a construction with n vertices
and 4k+2

k2+2 (n− 1) edges. Finally, in Section 7 we study saturated simple k-plane
drawings of matchings in the setting in which inserting parallel edges must also
be prevented. Our constructions close the gap left open by Chaplick et al. [6].

2 Stashing

Several proofs throughout the paper use stashing into free cells to construct
upper bounds to the minimum edge-vertex ratio in a saturated k-plane drawing.
The next lemma provides a tool to more easily compute this bound when we
stash isolated vertices into free cells; compare Theorem 1.

Lemma 1. For k > 1, let D0 be a saturated k-plane drawing with n0 vertices,
m0 edges, and f0 > 0 free, non-intersecting cells, then there exist arbitrarily
large saturated k-plane drawings on n vertices with m = m0

n0+f0−1 (n− 1) edges.

Proof. Let D0 be the initial saturated k-plane drawing. The drawing D1 is de-
fined by stashing k − 1 isolated vertices into k − 1 free cells of D0. Note that
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D1 has one free cell. Let t > 1 be an integer and Dt the drawing obtained by
stashing D1 into the only free cell of Dt−1. For all t ≥ 1 we define D′t to be the
drawing resulting from stashing one vertex into the only free cell of Dt. Let n be
the number of vertices in D′t with t ≥ 1 and m the number of edges. We obtain
that m = tm0 and n = n0t + (f0 − 1)t + 1 = (n0 + f0 − 1)t + 1. Rearranging

gives us that t = n−1
n0+f0−1 and consequently m = m0(n−1)

n0+f0−1 . ut

It can also be helpful to not stash isolated vertices, but instead replace them
with two new vertices and a new edge completely drawn inside a free cell. The
following lemma establishes the resulting upper bound and shows that using new
edges instead of isolated vertices leads to a lower edge-vertex ratio if and only if
m0 > n0 + f0 − 1. In other words if and only if the edge-vertex ratio resulting
from stashing isolated vertices exceeds one.

Lemma 2. For k > 1, let D0 be a saturated k-plane drawing with n0 vertices,
m0 edges, and f0 > 0 free cells, there are arbitrarily large saturated k-plane
drawings on n vertices with m = m0+f0−1

n0+2f0−2 (n− 1) edges and if m0 > n0 + f0 − 1
this drawing has less edges than a saturated k-plane drawing obtained from D0

with Lemma 1.

Proof. Let D0 be the initial saturated k-plane drawing. The drawing D1 is de-
fined by stashing k−1 new edges connecting two new vertices into k−1 free cells
of D0. Note that D1 has one free cell. Let t > 1 be an integer and Dt the drawing
obtained by stashing D1 into the only free cell of Dt−1. For all t ≥ 1 we define D′t
to be the drawing resulting from stashing one vertex into the only free cell of Dt.
Let n be the number of vertices in D′t with t ≥ 1 and m the number of edges. We
obtain that m = t(m0 +f0−1) and n = n0t+2(f0−1)t+1 = (n0 +2f0−2)t+1.

Rearranging gives us that t = n−1
n0+2f0−2 and consequently m = m0+f0−1(n−1)

n0+2f0−2 .
For the second part of the lemma let DS be a saturated k-plane drawing on n

vertices with mS edges obtained from D0 with Lemma 1 and DI a saturated k-
plane drawing obtained as above with n vertices and mI edges. We are interested
when mI > mS :

m0

n0 + f0 − 1
(n− 1) >

m0 + f0 − 1

n0 + 2f0 − 2
(n− 1)

m0(n0 + 2f0 − 2) > (n0 + f0 − 1)(m0 + f0 − 1)

m0f0 −m0 > f0n0 − n0 + f20 − 2f0 + 1

m0 > n0 + f0 − 1.

ut

3 Allowing Self-Intersections

In this section we consider k-plane drawings without any additional restrictions.
In particular, we allow edges to self-intersect. As a consequence, the boundary
of one cell may consist of only one crossing and one edge segment. If the edge to
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. . .u v

Fig. 1: One edge with self-intersections. Gray squares represent isolated vertices
that we stash and the green cell is used for recursively stashing the construction.

which this edge segment belongs has k crossings, we can use such a cell to place
a vertex in it. In general, in a k-plane drawing we say that an edge is saturated if
it is crossed k times. A cell without vertices on its boundary and bounded only
by segments of saturated edges is called free. In a saturated k-plane drawing a
vertex in a free cell will be isolated. In this way we can produce a k-plane drawing
with low edge-vertex ratio: making an edge self-intersect k times and placing an
isolated vertex in every free cell we obtain a saturated k-plane drawing with one
single edge and k + 2 vertices.

To be able to produce arbitrarily large drawings, we can use one free cell
and, instead of placing a vertex, recursively place the construction. In general,
given a saturated k-plane drawing D with a free cell c, stashing a drawing D′

into c refers to producing a new drawing that consists of the union of the two
drawings, with D′ drawn inside c.

Theorem 1. There are arbitrarily large drawings on n vertices with n−1
k+1 edges,

which are saturated k-plane. Moreover, this bound is tight.

Proof. Let D0 be the initial drawing consisting of one edge with k self-intersec-
tions defining k non-intersecting free cells. The drawing D1 is defined by stashing
k − 1 isolated vertices into k − 1 free cells of D0; see Fig. 1. Note that D1 has
one free cell. Let t > 1 be an integer and Dt the drawing obtained by stashing
D1 into the only free cell of Dt−1. For all t ≥ 1 we define D′t to be the drawing
resulting from stashing one vertex into the only free cell of Dt. Let n be the
number of vertices in D′t with t ≥ 1 and m the number of edges. We obtain that
m = t and n = 2t+ (k− 1)t+ 1 = (k+ 1)t+ 1. Rearranging the equation we get
that t = n−1

k+1 and consequently m = n−1
k+1 .

Let D = D(G) be a saturated k-plane drawing of a graph G on n vertices and
let x be the number of crossings in D. Since G might not be connected, we denote
with γ the number of connected components of G. Consider the planarization
D = (P,C) obtained from D by replacing every crossing in D with a vertex and
every edge segment with an edge. Observe that D has at most one self-loop per
vertex and at most one pair of parallel edges between each two vertices. In the
following let γ′ ≤ γ.

To prove the desired lower bound we make use of Euler’s formula, accounting
also for the connected components: |P | − |C|+ f = γ′ + 1, where f includes the
number of faces defined by self-loops and multiple edges in D. Since the formula
is usually stated for connected, simple planar graphs we include the easy details
on how this version can be derived in Appendix A.
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Next, we count the number of vertices in P and edges in C. Since we added
one vertex to P for every vertex and crossing in D we get that |P | = n+ x. To
count the edges in C, traverse every edge in D from one of its endpoints to the
other one. For each crossing we see along this traversal there is one edge in C plus
one additional edge for the last edge segment. Since every crossing, also a self-
intersection, was seen twice during this traversal we obtain that |C| = m + 2x.
As a result we get from Euler’s formula that n−m− x+ f = γ′ + 1.

Using that there are at most k · m many crossings we get that f + n ≤
γ′ + 1 + (k + 1)m. Observe, that two non-adjacent vertices cannot share a cell
in D without contradicting the assumption that D is saturated. Hence, we find
f ≥ γ′: Each connected component of D has at least one vertex and no two
vertices of different components can lie on the same face. Consequently, γ′+n ≤
f + n ≤ γ′ + 1 + (k + 1)m, which yields m ≥ n−1

k+1 as desired. ut

4 Disallowing Self-Intersections

In Section 3 we saw that allowing self-intersections leads to very few edges being
necessary to create saturated k-plane drawings. In this and all following sections
we consider only k-plane drawings without self-intersections. The price we pay
is that the number of edges we need is roughly doubled.

For the best construction that we have without self-intersections, the drawing
that we use for stashing has two edges forming a spiral; see Fig. 2. We then can
use one free cell to recursively stash the drawing and the rest to stash vertices.
Intuitively, in our drawing we form almost one free cell for every crossing and
every edge is crossed k times. However, an essential difference with the previous
section is that here each crossing counts for two edges.

We split the proof into three lemmas. Lemmas 3 and 4 establish the upper
bound on the edge-vertex ratio for the cases of k even and odd, respectively. In
Lemma 5 we prove the lower bound.

Lemma 3. For even k > 1 there are arbitrarily large drawings on n vertices

with m = 2(n−1)
k+1 edges, which are saturated, k-plane, and in which no edge

self-intersect.

v u

w

(a) Construction for k even

v

w

u

(b) Construction for k odd

Fig. 2: Construction used in Theorem 2. Gray squares represent isolated vertices
that we stash and green cells are used for recursively stashing the construction.
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Proof. We construct a drawing D0 as follows. Take a path on three vertices and
let e = uv, f = vw be the two edges and u, v, w the three vertices. Draw e as
a straight line in the plane. Then we draw f as a spiral, intersecting e exactly
k times as shown in Fig. 2a. Crucially, since k is even we can cross such that u
and v are incident to the outer cell, while w is placed in the other cell which is
incident to v. As e and f share k crossings we cannot add the edge between u
and w without crossing e or f the k+1-st time. Hence, the drawing is saturated,
k-plane, and has no edge self-intersect. Furthermore, there are k − 1 free cells.
Using Lemma 1 we get that for any number of vertices n ≥ 3 the number of

edges m is 2(n−1)
3+k−1−1 = 2(n−1)

k+1 . ut

Lemma 4. For odd k > 1 there are arbitrarily large drawings on n vertices

with m = 2(n−1)
k edges, which are saturated, k-plane, and in which no edge

self-intersect.

Proof. We construct a drawing D0 nearly as in the proof of Lemma 3. An il-
lustration is shown in Fig. 2b. The only difference is that, since k is odd, the
k− 1-th crossing of e and f is such that f is on the lower side of the supporting
line through e, while the last crossing of f with e is from the upper side. Conse-
quently, f has to be drawn such that it creates a cell in which we either enclose
u or w. As a result there are only k − 2 free cells and for n vertices we obtain
2(n−1)

3+k−2−1 (n− 1) = 2(n−1)
k as the number of edges. ut

Lemma 5. Any saturated k-plane drawing on n vertices in which no edge self-

intersects has at least
⌊
2n−1
k+2

⌋
edges.

Proof. Given some saturated k-plane drawing D(G) of a graph G with n vertices,
m edges, and x crossings in which no edge self-intersects, let D = (P,C) be the
planarization of D. Furthermore, let γ be the number of connected components
in G and γ′ the number of connected components in D. Observe that γ′ ≤ γ.

In the following we proceed as in the the proof of the lower bound in The-
orem 1. Note that since in D no edge self-intersects, we find that D has not
self-loops. Nonetheless, arguing as before we again obtain that |P | = n+ x and
|C| = m+ 2x. Using Euler’s formula as derived in Appendix A we obtain that

n−m− x+ f = γ′ + 1

f + n = γ′ + 1 +m+ x.

Since no edge has self-intersections inD the number of crossings is upper bounded
by km

2 . Consequently we get that

f + n ≤ γ′ + 1 +
k + 2

2
m.

Again we can argue that no two non-adjacent vertices share a cell and hence
f ≥ γ′ holds. Finally, we obtain

γ′ + n ≤ f + n ≤ γ′ + 1 +
k + 2

2
m
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which yields m ≥ 2n−1
k+2 . ut

Lemmas 3 to 5 proof Theorem 2.

Theorem 2. For every k > 1 there are arbitrarily large drawings on n ver-
tices with n−1

b k
2 c+ 1

2

edges, which are saturated k-plane and in which no edge self-

intersects. Moreover, any saturated k-plane drawing in which no edge self-inter-

sects has at least
⌊
2n−1
k+2

⌋
edges.

5 Restricting the Simplicity

The construction in Section 4 of families of saturated k-plane drawings requires
two adjacent edges to cross k times. Thus, the resulting drawings are k+1-simple
but not k-simple. In fact, any k-plane drawing is k+1-simple. However, the best
studied k-plane drawings are the simple ones. By slightly increasing the edge-
vertex ratio, in this section we present families of saturated k-plane drawings
with few edges that are 2-simple and simple.

5.1 2-Simple Drawings

Our construction of families of saturated 2-simple 1-plane drawings is illustrated
in Fig. 3a. As in the previous sections, it is based on recursive stashing. However,
in this case it is done by repeatedly making a copy of the drawing in Fig. 3a and
identifying the bottommost edge with the green edge of the previous copy.

For 2- and 3-planarity our 2-simple construction is illustrated in Fig. 3b.
For the 2-plane construction we use the orange solid sub-arcs while for 3-plane
construction we use the orange dotted sub-arcs. The final drawings are obtained
by stashing as in the previous sections. To construct arbitrarily large saturated
2-simple k-plane drawings we start from the drawing in Fig. 3b with the orange
solid sub-arcs. We then insert two sets of k−2

2 independent edges crossing the
two free cells of the drawing as in Fig. 3c.

We first prove the case of saturated 2-simple 1-plane drawings in Lemma 6
and then for saturated 2-simple 2- and 3-plane drawings in Lemma 7. Then we
describe our construction for saturated 2-simple k-plane drawings with k > 3
and prove in Lemma 8 that the drawing has these properties as well as determine
the number of vertices, edges, and free cells.

Lemma 6. There are arbitrarily large drawings on n vertices with 3(n−2)
2 edges,

which are saturated, 2-simple, and 1-plane

Proof. Consider the drawing in Fig. 3a. The depicted graph consists of two
triangles that share a vertex. Let u, v, w, x, y be the five vertices and u, v, w and
w, x, y the two triangles. The depicted drawing is obtained by introducing a
crossing between uv and vw and wx and wy. The edges uv and xy are drawn
plane and no further crossings are allowed in this drawing. Let p be the crossing
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u v

x y

w

(a) Construction for k = 1

u v

wx

(b) Construction for k = 2
and k = 3 (dotted)

γ

κ

s1 s2c

(c) Edges added to the free
cells of (b) for k > 3

Fig. 3: The drawings used in Theorem 3. Gray squares represent vertices that we
stash and green cells are used for recursively stashing the construction.

point between uw and vw and q the crossing point between wx and wy. We draw
the edge xy into the cell completely bounded by the two edge segments between
q and w. The edge uv is drawn into the outer cell. Let D0 be this drawing.
Clearly, D0 is 2-simple and 1-plane as there are only two independent crossings.
Furthermore, every pair of non-adjacent vertices is separated from each other by
the edge segments between q and w. Hence, D0 is also saturated.

Next, observe that there is one cell completely bounded by the edge segments
between p and w that is empty and has only one vertex, namely w, incident to
its boundary. We draw a vertex into that cell and connect it with an edge to w
that is drawn inside of the cell; see the gray vertex in Fig. 3a. Let the resulting
drawing be D1.

Similarly to when we stash an isolated vertex into a free cell, we now recur-
sively add copies of D1. To obtain D2 consider two copies of D1, D1 and D′1.
We identify the edge xy in D1 with the edge uv in D′1 and draw the remainder
of D′1 completely inside the cell bounded by the edge segments between u, v,
and w. Finally, rename the vertices such that the vertices u, v, w, x, and y in
D2 correspond to the ones of D′1 with the same name. Let t > 1 be an integer
and Dt the drawing obtained by identifying the edge uv in a copy of D1 with
the edge xy in Dt−1 and drawing the remainder of D1 completely inside the cell
bounded by the edge segments between x, y, and w in Dt−1.

It remains to compute the number of edges in Dt. For each added copy of D1

we find four vertices in Dt. Adding the two additional vertices of the last edge xy
in Dt which we do not identify with a copy of D1 we get that Dt has n = 4t+ 2
vertices in total. Similarly, Dt has six edges for every added copy of D1, hence

m = 6t edges in total. Hence, with t = n−2
4 we get that m = 6 (n−2)

4 = 3(n−2)
2 .

ut

Lemma 7. For k = 2, 3 there are arbitrarily large drawings on n vertices with
4(n−1)

5 edges, which are saturated, 2-simple, and k-plane .

Proof. First we show the lemma for k = 2 Consider the drawing shown in Fig. 3b
ignoring the dotted variation. It consists of a cycle on four vertices. Let u, v, w, x
be those vertices and uv, vw, wx, and ux the edges. We draw the edges such
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that uv and wx and vw and ux each cross twice. Let D0 be the resulting drawing
Clearly D0 is 2-plane and 2-simple. Consequently non of the four edges can be
crossed. Observe that the non-adjacent pairs of vertices, namely u and w and v
and x, are incident to different cells. Hence, the drawing is saturated. Finally,
we observe that there are two free cells formed by the crossings between uv and
wx and vw and ux. Consequently, the number of vertices in D0 is n0 = 4, the
number of edges m0 = 4, and the number of free cells f0 = 2 Using Lemma 1 we
obtain that there are arbitrarily large saturated 2-simple 2-plane drawings on n
vertices with m = 4n

4+2−1 = 4n
5 edges.

For the case of k = 3 we modify the previous drawing D0. The modification
is illustrated in Fig. 3b with the dotted variation. It consists of adding a crossing
between the edges uv and vw and wx and ux close to v and x, respectively. Let
D′0 be the resulting drawing. Clearly the drawing is 3-plane. It is also 2-simple
as no edge shares more than 2 points with any other edge. Furthermore, the
non-adjacent vertices u and w and v and x are still incident to different cells.
Hence, D′0 is a saturated 2-simple 3-plane drawing. Again, observe that therer
are two free cells formed by uv and wx and vw and ux which yields that D′0 has
the same number of vertices, edges, and free cells as D0. Consequently, we obtain
the same bound on the number of edges in arbitrarily large saturated 2-simple
3-plane drawings as for the case of saturated 2-simple 2-plane drawings. ut

To proof our bounds for 2-simple k-plane drawings we require an additional
construction. It is a drawing consisting of z independent edges that we draw in
a certain way, such that it can be inserted into the drawing used in Lemma 7.
The construction will result in a drawing with 2z + 2 crossings, hence the final
drawing always has even planarity.

Let Gz be a graph consisting of z > 0 independent edges. In the following we
describe how to construct the drawing Mz from Gz; Fig. 3c depicts M4. Let γ
and κ be two curves crossing each other in points s1 and s2, forming an empty
cell as shown in Fig. 3c. We denote that cell with c. Furthermore, we extend γ
and κ to infinity, such that each splits the plane into two areas. We denote the
area above κ with cκ and the area below γ with cγ .

To construct the drawing Mz of Gz we begin by drawing z pseudocircles ωi,
1 ≤ i ≤ z. Each ωi is drawn such that it intersects γ and κ twice in between s1
and s2. Furthermore, we require the crossings of the ωis to appear on γ and κ
as we traverse them from s1 to s2 as follows: the first crossing is with ω1, the
second with ω2 and so on until ωz, then the z + 1-st crossing is again with ω1,
the z + 2-nd one with ω2, and the 2z-th crossing is with ωz. Since this order is
the same along γ and κ we get that all crossings between the ωis lie outside c.
Furthermore, all pseudocircles pairwise intersect, once in cγ and once in cκ. Also,
by the imposed ordering there exists a point on each ωi that lies inside the cell
c and not in the interior of or on any ωj with j > i. Starting from such a point
in c on ωi and traversing ωi such that κ is crossed first we require the crossings
with the other ωi to appear in the same order of the indices. Consequently, for
every ωi with 2 < i < z there exists a cell lying inside cγ that is bounded by
ωi−2, ωi−1, and ωi+1 let ci be that cell for ωi. For ω1, ω2, and ω3 we choose
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the cells bounded by γ, κ, and ωi+1; κ, ωi−1, and ωi+1; and ωi−2, ωi−1, and κ,
respectively. For each ωi cut the pseudocircle inside ci and replace the endpoints
with the vertices ui and vi in Gz. Draw the edge uivi by following the non-plane
segment of ωi with endpoints at the positions of ui and vi. Let Mz be the such
obtained drawing of edges uivi from Gz.

To construct the drawing used in Theorem 3 we combine the drawings from
Lemma 7 with two copies M1

z and M2
z of the drawing Mz for z > 0 as follows.

Let u, v, w, and x be the four vertices of the four cycle and uv, vw, wx, and ux
the edges. Then, uv crosses with wx and vw crosses with ux. Identify uv with γ
and wx with κ in M1

z and vw with γ and ux with κ in M2
z . Furthermore, we can

draw the curves in each of M1
z and M2

z such that no edge in M1
z intersects vw

or ux and no edge in M2
z intersects uv or wx. Let Rz be the resulting drawing.

Lemma 8. For z > 0 the drawing Rz is saturated, 2-simple, and 2z + 2-plane
and Rz has 4z + 4 vertices, 2z + 4 edges, and 2(z2 + z + 1) free cells.

Proof. Let Rz for z > 0 be a drawing obtained as described above. We begin by
showing that Rz is a saturated 2-simple 2z + 2-plane drawing. It is easy to see
that Rz is in fact 2-simple and 2z+2-plane since the drawing of the four cycle is
2-simple and 2-plane and further the edges added by M1

z and M2
z each have 2z

crossings with other edges in M1
z and M2

z respectively. Additionally, each edge
in M1

z crosses the edges uv and wx twice and each edge in M2
z crosses the edges

vw and ux twice, meaning that each of these four edges is crossed a total of
2z+2 times. Now since the drawing is 2z+2-plane and each edge is also crossed
precisely this number of times, no edge can be crossed again. Furthermore, no
two non-adjacent vertices lie inside the same cell. Consequently, no edge can be
added to Rz and the drawing is also saturated.

It remains to count the number of vertices, edges, and free cells. The former
two are straight-froward as the four cycle contributes exactly four vertices and
four edges, and the two copies of Mz each contribute 2z vertices and z edges.
Hence, Rz has n0 = 4z + 4 vertices and m0 = 2z + 4 edges. To count the free
cells f0 we to count the free cells introduced by M1

z and M2
z .

Since they are symmetric we consider here the free cells added by M1
z . The

free cells incident to edge segments added to Rz by M2
z can be counted in

the same manner. We use that the edges were constructed from pseudocircles,
where each two pseudocircles intersect twice, we find that there are a total of z2

intersection points between the pseudocircles hence z2 + z cells. The edges uv
and wx subdivide 2z − 1 cells into three cells and add two more cells which are
incident to the crossings between uv and wx. In total we obtain z2+z+2z−1+2 =
z2 + 3z+ 1 many free cells. Finally, we have to subtract the 2z cells in which we
placed vertices and get that edge segments added by M1

z are incident to z2+z+1
free cells in Rz. Consequently, there are 2(z2 + z + 1) free cells incident to edge
segments added by M1

z and M2
z . Since the two free cells of the four cycle were

already counted and no other free cells exist this is also the total number of free
cells in Rz. ut

With Lemmas 6 to 8 we are ready to prove the main theorem of this section.
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Theorem 3. For k > 0 there are arbitrarily large saturated drawings on n ver-

tices with 3(n−2)
2 edges if k = 1, 4(n−1)

5 edges if k = 2 or k = 3, and with 2(n−1)
k+ 2

k+2

edges if k > 3, which are saturated, 2-simple, and k-plane.

Proof. Lemmas 6 and 7 proof the cases of k = 1, 2, and 3.
For the case of k > 3 we consider the drawing Rz with z > 0. From Lemma 8

we know that Rz is a saturated 2-simple 2z + 2-plane drawing. Consequently, if
we choose z = k−2

2 the resulting drawing is in particular k-plane. Furthermore,
by the same lemma, we know that Rz has n0 = 4z + 4 vertices, m0 = 2z + 4
edges, and f0 = 2(z2 + z + 1) free cells. Using Lemma 1 we obtain a bound on
the edge-vertex ratio in terms of z

m0

n0 + f0 − 1
=

2z + 4

4z + 4 + 2z2 + 2z + 2− 1
=

2z + 4

2z2 + 6z + 5
=

z + 2

z2 + 3z + 5
2

.

Substituting k−2
2 for z in the above equation yields

z + 2

z2 + 3z + 5
2

=
k−2
2 + 2

(k−22 )2 + 3k−22 + 5
2

=
k−2+4

2
k2−4k+4

4 + 6k−12
4 + 10

4

=
k+2
2

k2+2k+2
4

=
2k + 4

k2 + 2k + 2

=
2(k + 2)

k(k + 2) + 2

as desired. ut

Remark. The construction for k > 3 in Theorem 3 works for every even value
of k. For odd values we can begin with a saturated 2-simple k-plane drawing
D for k > 3 and even. We add one new edge ab between new vertices a and b
which we place inside the two free cells and inside all edges of two Mz copies. We
draw ab such that it crosses the edges ux and wx as well as all edges in the two
copies of Mz in D. Then, by adding the dotted variation for uv (see Fig. 3b) we
obtain a drawing D′ in which all edges but ab are crossed k+1 times. In fact, ab
itself has only k crossings. This is not a problem though, as the vertices a and
b are placed in free cells. Consequently, by adding one edge and two vertices as
well as subtracting two free cells we obtain that D′ is saturated 2-simple k-plane
drawing with k > 3 and k odd and if D′ has n vertices it has

2

k + 15
k+3 − 1

edges.
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5.2 Simple drawings

Auer et al. [3] presented an elegant construction for saturated simple 2-plane
drawings. In this section we generalize their construction to all values k > 0.
The resulting drawings are also reminiscent of the ones in [11]. The construction
for k = 1 achieves the same edge-vertex ratio as the construction by Brandenburg
et al. [5] for saturated simple 1-plane drawings.

The constructions proving Theorem 4 are illustrated in Fig. 4. In the figure,
all the vertices on the left and on the right are identified. Thus, it is more easily
visualized on a vertical cylinder.

We first describe the general construction and proof that for all k > 0 it yields
a saturated simple k-plane drawing. Let k > 1 and t ≥ 0. Consider z = t+ k+ 3
vertices ui which we draw sorted from i = 1 to z along a vertical line on the
surface of the cylinder from top to bottom. We then add all edges uiui+1 and
uiuj with j = i+ k + 2 for all 1 ≤ i ≤ z, ignoring non-existent entries. We also
add all missing edges u1ui for i = 1, . . . , k + 2 and uzuj for j = t+ 1, . . . , z.

For k = 1 we modify the above construction slightly. We consider z = t + 6
vertices ui and add the same edges as above. Additionally, we also add all possible
edges uiui+2 for 1 ≤ i ≤ z. Let Sk,t be the resulting construction.

Lemma 9. For every k > 0 and t ≥ 0, Sk,t is a saturated simple k-plane
drawing.

Proof. Clearly, the construction is simple and k-plane for any value of k and t.
Let z be the number of vertices in Sk,t. Regardless of the values of k and t we find
the path u1, u2, . . . , uz in Sk,t. Furthermore, every edge in the path uiui+1 for
1 < i < z − 1 is crossed k times, hence these edges are saturated. Additionally,
each edge uiuj for j = i+ k+ 2 crosses k edges uaub with i+ 1 ≤ a ≤ i+ k and
i+ 2 ≤ b ≤ i+ k + 1, consequently these edges are saturated. Finally, we added
all the edges incident to u1 and uz to vertices with indices lower than k + 3.
For k > 1 This means, that any edge that is could potentially be added has to
either cross an edge uiui+1 or uiuj with j = i+ k + 2. Moreover, for k = 1 the
same holds after adding the edges uiui+2. Consequently, no edge can be added
without violating k-planarity of the drawing and the Sk,t is saturated. ut

We divide the proof of Theorem 4 into several lemmas. Lemma 10 proves the
result for saturated simple 1-plane drawings, in Lemma 12 we show the bound
for saturated simple 2-plane drawings, and in Lemma 13 we give the proof for
saturated simple 3-plane drawings. The latter two lemmas also make use of the
intermediate lemma Lemma 11, which shows how many vertices and edges our
construction has for k > 1.

Lemma 10. There are arbitrarily large drawings on n vertices with 7n−9
3 edges,

which are saturated, simple, and 1-plane.

Proof. Let S1,t be a drawing constructed as above for t ≥ 0. By Lemma 9 we
know that S1,t is saturated, simple, and 1-plane. Finally, consider k = 1 and
t ≥ 0 and let S1,t be the resulting construction. For the number of vertices we
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u1

u2

u3

u4

u5

u6

u1

u2

u3

u4

u5

u6

(a) Construction for k = 1

u1

u2

u3

u4

u5

u6

u1

u2

u4

u5

u6

u3

(b) Construction for k = 2

u1

u2

u3

u4

u5

u6

u1

u2

u4

u5

u6

u3

(c) Construction for k > 2

Fig. 4: Construction for saturated simple k-plane drawings. The dashed left and
right sides of the drawings are identified.

get z = t + 6. Again counting the sum of degrees d we get that u1 and ut have
degree 3, u2 and uz−1 have degree 4, u3 and uz−2 have degree 5, and every other
vertex has degree 6. Hence, d = 2(3 + 4 + 5) + 6t = 6t + 24 and consequently
there are mz = 3t+ 12 edges.

As S1,t is simple and 1-plane there are no cells with zero or only one vertex
on its boundary. Hence, we consider cells with two vertices on their boundary.
Stashing vertices incident to these two vertices into the cells then improves the
edge-vertex ratio. This was also used in [5] and [4]. We find that every vertex ui
for i = 4, . . . , z − 3 is on the boundary of four such cells. Hence, accounting for
the cells that are also incident to u3 and uz−2, there are 2(z − 5) + 1 = 2t + 3
cells with only two vertices on their boundaries. Stashing all these degree two
vertices into S1,t we obtain the drawing H1,t with

n = t+ 6 + 2t+ 3 = 3t+ 9

vertices and

m = mz + 2(2t+ 3) = 3t+ 12 + 4t+ 6 = 7t+ 18

edges. Rearranging for t we get that

t =
n− 9

3

and hence there are

m = 7t+ 18 = 7
(n− 9)

3
+ 18 =

7n− 63 + 54

3
=

7n− 9

3

edges. ut
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For k > 1 we compute the number of vertices and edges in the following
lemma.

Lemma 11. For k > 1 and t ≥ 0 Sk,t has z = k + t + 3 vertices and mz =
3k + 2t+ 3 edges.

Proof. Let Sk,t be as above for some k > 1 and t ≥ 0 we get that there are
z = t + k + 3 vertices. To compute the number of edges we look at the degrees
of all vertices ui in Sk,t. For u1 and uz we find that both vertices have degree
k + 2, for u2 and uz−1 we get degree 3, and all remaining vertices have degree
four. In total the sum d of degrees in dependence on t and k is

d = 2 · (k + 2) + 2 · 3 + 4 · (t+ k − 1).

Hence, there are

mz = (k + 2) + 3 + 2 · (t+ k − 1) = 3k + 2t+ 3

edges in Sk,t if k > 1. ut

Lemma 12. There are arbitrarily large drawings on n vertices with 4n+7
3 edges,

which are saturated, simple, and 2-plane.

Proof. Let S2,t be a drawing constructed as above with t ≥ 0. By Lemma 9 we
know that S2,t is saturated, simple, and 2-plane. We also know by Lemma 11that
it has z = t + 5 vertices and mz = 2t + 9 edges. We see that the number of
free cells per edge is clearly zero. Furthermore, the number of edges in S2,t is
approximately 2n. It turns out that in this situation the edge-vertex ratio can
be lowered by stashing a pendant vertex into each cell that is bounded by edges
with k crossings and has only one vertex on its boundary.

Let S2,t be a construction as above for t ≥ 0. Then there are two cells with
only one vertex on their boundary per vertex ui with 5 ≤ i ≤ z−4, one such cell
per vertex ui with i ∈ {2, 3, 4, z− 3, z− 2, z− 1}, and u1 and uz are not incident
to any such cell. Hence, we can stash 2(z−8)+6 = 2(t+5−8)+6 = 2t pendant
vertices. Let H2,t be the drawing obtained by stashing these 2t pendant vertices
into S2,t and let n be the number of vertices and m the number of edges in S2,t.
Then, we have n = z + 2t = 3t + 5 and m = mz + 2t. Rearranging for t we get
that

t =
n− 5

3

and hence we obtain that there are

m = 2t+ 9 + 2t = 4t+ 9 = 4
n− 5

3
+ 9 =

4n+ 7

3

edges. ut

Remark. Before proving the case for k > 2 we note that adding pendant
vertices would not decrease the edge-vertex ratio in the following proof. This
can be shown similarly to the argument in Lemma 2.
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Lemma 13. For k > 2 there are arbitrarily large drawings on n vertices with
2n
k−1 +

3k−2− 9
k

1− 1
k

edges, which are saturated, simple, and k-plane.

Proof. Let Sk,t be a drawing constructed as above for k > 2 and t ≥ 0. By
Lemma 9 we know that Sk,t is saturated, simple, and k-plane. We also know
by Lemma 11 that it has z = k + t + 3 vertices and mz = 3k + 2t + 3 edges.
Consider the edges uiui+1 for i = k, . . . , z− k− 1, each of these edges forms the
upper boundary of k − 2 free cells. Furthermore, for k > 3 the edges uiui+1 for
i = 3, . . . , k − 1 and z − 4, . . . , z − k bound each 1, . . . , k − 3 free cells. Hence,
there are

(k − 2)(z − 2k) + 2 ·
k−3∑
i=1

i = (k − 2)(z − 2k) + (k − 3)(k − 2)

= (k − 2)z − k2 − k + 6

free cells. By placing one isolated vertex into each free cell of Sk,t we obtain the
construction Hk,t with

n = z + (k − 2)z − k2 − k + 6

= (k − 1)z − k2 − k + 6

= (k − 1)(t+ k + 3)− k2 − k + 6

= kt+ k2 + 3k − t− k − 3− k2 − k + 6

= (k − 1)t+ k + 3

vertices and m = mz edges. Rearranging the number of vertices for t gives

t =
n− k − 3

k − 1

and hence we obtain that there are

m = 3k + 2t+ 3

= 3k + 2
n− k − 3

k − 1
+ 3

=
3k(k − 1) + 2(n− k − 3) + 3(k − 1)

k − 1

=
3k2 − 3k + 2n− 2k − 6 + 3k − 3

k − 1

=
2n

k − 1
+

3k2 − 2k − 9

k − 1

=
2n

k − 1
+

3k − 2− 9
k

1− 1
k

.

edges. ut

Combining Lemmas 10, 12 and 13 we obtain the desired theorem.
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Theorem 4. There are arbitrarily large saturated simple k-plane drawings on

n vertices with: 7n−9
3 edges if k = 1, 4n+7

3 edges if k = 2, and 2n
k−1 +

3k−2− 9
k

1− 1
k

edges if k > 2.

5.3 Other drawings with few edges

The following result completes the picture for saturated 3- and 4-simple 3- and
4-plane drawings. The proof is based on the constructions depicted in Fig. 5.

In this section we give the formal proofs for the constructions shown in Sec-
tion 5.3. All three are applications of Lemma 1.

Lemma 14. There are arbitrarily large saturated 3-simple 3-plane drawings with

m = 3(n−1)
4 edges.

Proof. Consider the drawing shown in Fig. 5a. It is a K4 drawn with an idea
similar to the one used in Lemma 7. Each edge is crossed three times. Two
crossings are with adjacent edges and one with the independent edge relative to
that edge. This creates five free cells. Applying Lemma 1 with n0 = 4, f0 = 5,
and m0 = 6 gives the result. ut

Lemma 15. There are arbitrarily large saturated 3-simple 4-plane drawings with

m = 3(n−1)
7 edges.

Proof. Consider the drawing shown in Fig. 5b. It is a path on three vertices u,
v, w, and x drawn such that uv and wx each cross the edge vw and each other
twice as shown in Fig. 5b. This creates four free cells. Applying Lemma 1 with
n0 = 4, f0 = 4, and m0 = 3 gives the result. ut

Lemma 16. There are arbitrarily large saturated 4-simple 4-plane drawings with

m = 2(n−1)
5 edges.

Proof. Consider the drawing shown in Fig. 5c. It consists of two independent
edges uv and wx with vertices u, v, w, and x. The drawing is such that the two
edges cross each other four times and the vertices w and x are placed in one cell
bounded by the two edges. This leaves two free cells. Applying Lemma 1 with
n0 = 4, f0 = 2, and m0 = 2 gives the result. ut

(a) 3-simple 3-plane: 3(n−1)
4

(b) 3-simple 4-plane: 3(n−1)
7

(c) 4-simple 4-plane: 2(n−1)
5

Fig. 5: Constructions for Theorem 5. Gray squares represent isolated vertices
that we stash and green cells are used for recursively stashing the construction.
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Lemmas 14 to 16 proof Theorem 5.

Theorem 5. There are arbitrarily large saturated 3-simple 3- and 4-plane draw-

ings on n vertices with 3(n−1)
4 and 3(n−1)

7 edges, respectively, and also arbitrarily

large saturated 4-simple 4-plane drawings on n vertices with 2(n−1)
5 edges.

6 Straight-Line Drawings

Finally, we consider k-plane drawings in which edges are drawn as straight-lines.
We construct a family of saturated straight-line 1-plane drawings with n vertices
and 11n−12

5 edges by gluing K4s together and placing three vertices of degree two
for each K4, as shown in Fig. 6a. Note that this edge-vertex ratio of 11

5 = 2.2 is
lower than the lower bound on the edge-vertex ratio for saturated simple 1-plane
drawings, that is 20

9 ≈ 2.22 [4]. For k = 2, 3, and 4 we take a convex 4k-gon and
by adding 2k chords as shown in Fig. 6c for k = 3 we obtain a grid of free cells.
For k > 4 we contract two neighboring groups into one vertex each as shown in
Fig. 6b. This creates two fans of k edges that form a grid of free cells. Stashing
into the free cells yields a family of drawings on n vertices obtaining the desired
bounds. For k = 3 the above construction gives an edge-vertex ratio of 6

5 , but if
instead of stashing isolated vertices we stash isolated edges we can improve the
ratio to 7

6 ; see Fig. 6c.
For k = 1, 2, and 3 and up to eight vertices we tested all possible saturated

straight-line k-plane drawings using the order type database [1], confirming for
these small values that our constructions are the best possible.

We begin by considering the case of k = 1 in the following lemma and then
give the proof of Theorem 6.

Lemma 17. There are arbitrarily large drawings on n vertices with 11n−12
5

edges, which are saturated, straight-line, and 1-plane

Proof. Consider the construction shown in Fig. 6a. Let t > 1 be an integer and
place 2t + 2 vertices on an ellipse as shown in Fig. 6a. We add the following

. . .

. . .

u0

u1

u2 ut−2
ut−1

ut

v0 vt
v1 vt−1

v2 vt−2

(a) Construction for k = 1

. . .

. . .

..
.

..
.

. . .

..
.

..
.

. . .

A1

A2

B1

B2

(b) Construction for k > 1 (c) Construction for k = 3

Fig. 6: Constructions used in Theorem 6. Gray squares represent vertices that
we stash and green cells are used for recursively stashing the construction.
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edges. Split the vertices into an upper and lower set and let ui bet the vertices
in the upper and vi be the vertices in the lower set. We assume the vertices in
either set to be labeled from zero to one as we traverse the upper or lower arc
of the ellipse. Then we add the edges uiui+1, vivi+1,uivi, uivi+1, and viui+1 for
all 0 ≤ i ≤ t. The resulting drawing Dt is clearly straight-line and 1-plane. Note
that for all i the four vertices ui,ui+1,vi+1, and vi form a K4 with one crossing
between the edges uivi+1 and viui+1. Then, Dt is saturated as adding any edge
uivi+j with j > 1 has to cross the edge ui+1vi which is already crossed by the
edge uivi+1. Moreover, we cannot add any edge uiui+j for j > 1 as it would
again cross the edge ui+1vi. The same holds for j < 1 using edge ui−1vi and for
viui+j and vivi+j .

To obtain the bound we add vertices of degree two to Dt. More precisely,
we add for each K4 three vertices of degree two, namely, if c is the crossing
point of the considered K4 in the cells bounded by ui, ui+1, and c, ui+1,vi+1,
and c, and vi,vi+1, and c. Then Dt has n = 2t + 2 + 3t = 5t + 2 vertices and
m = 5t+1+6t = 11t+2 edges. With t = n−2

5 this yields m = 11n−25 +2 = 11n−12
5

for the number of edges. ut

Theorem 6. For every k > 0 there are arbitrarily large drawings on n vertices

with 11n−12
5 if k = 1, 3(n−1)

2 if k = 2, 7(n−1)
6 if k = 3, n − 1 if k = 4, and

4k+2
k2+2 (n− 1) if k > 4 edges, which are saturated, straight-line, and k-plane.

Proof. The case of k = 1 is proven in Lemma 17. Next, we show how to derive
a bound for k > 1. Let s = 4k. Take a cycle Cs on s vertices and divide the
vertices into four equally large sets A1,A2 and B1,B2, such that their vertices
are consecutive in Ct. Furthermore, we choose the sets such that as we traverse
the cycle starting from the first vertex of A1 we encounter first all vertices of
A1, then of B1, followed by vertices in A2 and finally the ones in B2. We label
the vertices such that we encounter them in each group from index 1 to t. Then,
we draw Cs into the plane such that the drawing is plane and the vertices lie
all on a unit circle. Finally, add all edges, we call them chords below, a1i a

2
i with

a1i ∈ A1 and a2i ∈ A2 and all edges b1i b
2
i with b1i ∈ B1 and b2i ∈ B2; see Fig. 6b.

Let D0 be the resulting drawing. Clearly, D0 is k-plane. It is also saturated: No
edge between vertices in the same group can be added as it would require that
there exists another vertex in the same group between them, but this vertex has
a neighbor in the group opposite of the considered one. In the same way, no edge
can be added between vertices in different groups without crossing a chord.

The crossings of the chords in D0 create a grid-like set of free cells in the
center of the circle; compare also Fig. 6b. This grid has (k− 1)2 many cells and
all of them are free as they are only bounded by edge segments of the chords.
Using one free cell to stash the whole construction we obtain with Lemma 1 and
n0 = 4k, f0 = (k − 1)2, and m0 = 4k + 2k = 6k that

m =
6k(n− 1)

4k + (k − 1)2 − 1
=

6k(n− 1)

4k + k2 − 2k
=

6k(n− 1)

k2 + 2k
=

6(n− 1)

k + 2
.
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For k = 2 and k = 4 this yields the claimed bounds. However, for k = 3 we

find that the resultant bound would be 6(n−1)
3+2 = 6(n−1)

5 . Hence, by Lemma 2 we
can obtain a better edge-vertex ratio by stashing new edges instead of isolated
vertices; see Fig. 6c for an illustration. Doing so, we obtain by Lemma 2 and
with n0 = 4 · 3 = 12, f0 = (3− 1)2 = 4, and m0 = 6 · 3 = 18 that for k = 3 there
are saturated straigth-line 3-plane drawings on n vertices with

(18 + 4− 1)(n− 1)

12 + 2 · 4− 2
=

21(n− 1)

18
=

7(n− 1)

6

edges as desired.
To obtain the bound for k > 4 we modify the construction by contracting

the vertices in A1 and B1 into one vertex each. Let a1 and b1 be the resulting
vertices and D′0 the modified drawing. The vertices a1 and b1 are incident to k
edges each that were previously inserted between vertices in A1 and A2 and B1

and B2. Since we did not change the groups A2 and B2 these edges still cross
and hence there are also (k − 1)2 free cells in D′0. With the number of vertices
as n′0 = 2k + 2 and the number of edges in D′0 as m′0 = 2k + 2 + 2k = 4k + 2
we obtain that there are arbitrary large saturated straight-line k-plane drawings
with

(4k + 2)(n− 1)

2k + 2 + (k − 1)2 − 1
=

(4k + 2)(n− 1)

2k + 2 + k2 − 2k
=

4k + 2

k2 + 2
(n− 1)

edges as desired. ut

7 Saturated k-Plane Drawings of Matchings

Throughout this section we consider multi-graphs, i.e., two vertices can be con-
nected with more than one edge and we disallow self-intersecting edges. To clearly
distinguish this setting from the previous sections, we call saturated drawings in
which inserting parallel edges is allowed multi-saturated.

Chaplick et al. [6] presented multi-saturated simple k-plane drawings of ar-
bitrarily large matchings for k ≥ 7. They also rule out the existance of such
drawings for any k ≤ 3. In this section we resolve the remaining open cases of
k = 4, 5, and 6. We prove that for k = 4 there are no multi-saturated k-plane
drawings of arbitrarily large matchings, regardless of the simplicity, i.e., only
self-intersecting edges are not allowed. For the case of k = 5 we show that multi-
saturated k+ 1-simple k-plane drawings of arbitrarily large matchings exist, but
no multi-saturated simple k-plane drawings. Finally, we present a construction
for multi-saturated simple 6-plane drawings.

Lemma 18. There are no multi-saturated 4-plane drawings of arbitrarily large
matchings without self-intersecting edges.

Proof. Let G = (V,E) be a matching on n vertices and m edges, D(G) a multi-
saturated 4-plane drawing of G without self-intersecting edges, f the number
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Fig. 7: A multi-saturated 4-plane
drawing of a matching with two edges.
Since no cell is free the drawing cannot
be stashed.

Fig. 8: A multi-saturated 5-plane
drawing of a matching with two edges.
Stashing is possible in the outer cell.

of cells in D(G) and xi the number of edges that have i ∈ N0 crossings in
D(G). Consider the planarization D = (P,C) of D(G). To simplify the following
argumentation we remove each vertex in V and its unique incident edge from
D. Note that this does not change the number of cells f . We know that |P | =
(4x4 + 3x3 + 2x2 +x1)/2 and |C| = 3x4 + 2x3 +x2. With Euler’s formula it now
follows that

f = 3x4 + 2x3 + x2 − (4x4 + 3x3 + 2x2 + x1)/2 + 2

= x4 +
1

2
(x3 − x1) + 2.

Moreover, we know that f ≥ 2
∑4
i=0 xi since every vertex in V has to be part of

a distinct cell in D(G). Consquently, we obtain that

2(x4 + x3 + x2 + x1 + x0) ≤ x4 +
1

2
(x3 − x1) + 2

4x4 + 4x3 + 4x2 + 4x1 + 4x0 ≤ 2x4 + x3 − x1 + 4 (1)

2x4 + 3x3 + 4x2 + 5x1 + 4x0 ≤ 4.

The only solution to this equation that do not result in an empty graph or a
graph containing only one edge is

x4 = 2 and xi = 0 for i = 0, 1, 2, 3.

This solution leads to an equality between the left-hand and right-hand side
in Equation 1, which implies that the only possible connected multi-saturated
4-plane drawings of a matching have two edges and as many cells as there are
endpoints of edges, see Figure 7 for an example. Stashing into such a drawing is
not possible and hence the lemma follows. ut

Lemma 19. There are no multi-saturated `-simple 5-plane drawings of arbitrar-
ily large matchings for ` < 6.

Proof. The proof follows the same idea as the one for Lemma 18. Let G = (V,E)
be a matching, D(G) a multi-saturated 5-plane drawing of it, f the number of
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Fig. 9: A multi-saturated 5-plane
drawing of a matching with three
edges. Since no cell is free the drawing
cannot be stashed.

Fig. 10: A multi-saturated 5-plane
drawing of a matching with four edges.
Since no cell is free the drawing cannot
be stashed.

cells in D(G), and xi the number of edges that have i ∈ N0 crossings in D(G).
Again, we consider the planarization D = (P,C) of D(G) with the vertices from
V and their incident edge removed. We know that |P | = (5x5 + 4x4 + 3x3 +
2x2 + x1)/2 and |C| = 4x5 + 3x4 + 2x3 + x2. Using Euler’s formula in the same
manner as above we obtain that

x5 + 2x4 + 3x3 + 4x2 + 5x1 + 4x0 ≤ 4.

The only solutions to this equation not resulting in an empty graph, a graph
with only one edge, or a non-integer number of crossings are

xi = 1 for i = 3, 5 and xj = 0 for j = 0, 1, 2, 4 (1)

x4 = 1 and x5 = 2 and xi = 0 for i = 0, 1, 2, 3 (2)

x4 = 2 and xi = 0 for i = 0, 1, 2, 3, 5 (3)

x5 = 2 and xi = 0 for i = 0, 1, 2, 3, 4 (4)

x5 = 4 and xi = 0 for i = 0, 1, 2, 3, 4. (5)

Solution (1) implies that at least one edge has to self-intersect, which is not
allowed in our present setting. Any drawing realizing Solution (3), i.e., two edges
with four crossings each, is not multi-saturated as either edge can be crossed
another time while every cell of the drawing must contain a vertex. Solutions (2)
and (5) imply connected drawings with as many cells as there are endpoints of
edges. Hence, stashing in them is not possible. Drawings realizing Solutions (2)
and (5) can be seen in Figure 9 and 10 respectively. Finally, Solution (4) leads to a
drawing with five crossings and two edges per connected component. In Figure 8
we give an example of a multi-saturated 6-simple 5-plane drawing realizing this
solution. As two edges with five crossings each can never result in a 5-simple
drawing the lemma follows. ut

Theorem 7. There are no multi-saturated simple k-plane drawings of match-
ings for k ∈ {4, 5} on n vertices, while such drawings exist for k = 6. Moreover,
for k = 6 we can construct such drawings of arbitrarily large matchings.

Proof. The claims for k = 4 and 5 follow directly from Lemmas 18 and 19.
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Fig. 11: A multi-saturated simple 6-
plane drawing of a matching with only
seven edges.

Fig. 12: A multi-saturated simple 6-
plane drawing of a matching with nine
edges. The edge colors indicate edges
that behave symmetrically.

Figure 11 shows an example of a matching of seven edges drawn with exactly
six crossings per edge. Clearly, the drawing is also simple as no two edges cross
each other more than once. Moreover, every vertex lies in a distinct cell and
no two lie in the same cell. Let u be an arbitrary vertex of the drawing, then
we cannot add an edge between u and any other vertex in the drawing without
crossing the cell boundaries of the cell containing u. Yet, each edge on that
boundary is already crossed six times. ut

The matching in Figure 11 is also as sparse as possible, matching the lower
bound by Chaplick et al. [6]. In Figure 12 we show a fully symmetric saturated
simple 6-plane drawing of a matching with nine edges. Exploiting its symmetry
one can generate saturated simple 6-plane drawings of arbitrarily large matchings
without relying on stashing (i.e. the planarization is a connected graph).

8 Conclusion

With this paper we initiated the study of saturated drawings in the context of k-
planarity. We presented constructions depending on the simplicity of the drawing
and translated results from the study of maximal 1- and 2-planar graphs. The,
in our opinion, the most interesting open problems are tightening the bounds
for saturated k+ 1-simple and simple k-plane drawings. In particular, achieving
a tight bound for saturated simple 1-plane drawings. Our results show that as
we reduce the simplicity the number of edges we require to construct saturated
k-plane drawings seems to increase.
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Proceedings of the 27th International Symposium on Graph Drawing and Net-
work Visualization (GD’19). LNCS, vol. 11904, pp. 482–495. Springer (2019).
https://doi.org/10.1007/978-3-030-35802-0 37

3. Auer, C., Brandenburg, F.J., Gleiß ner, A., Hanauer, K.: On sparse maximal 2-
planar graphs. In: Didimo, W., Patrignani, M. (eds.) Proceedings of the 20th Inter-
national Symposium on Graph Drawing (GD’12). LNCS, vol. 7704, pp. 555–556.
Springer (2013). https://doi.org/10.1007/978-3-642-36763-2 50
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A Deriving Euler’s formula for disconnected plane graphs

For completeness, we show in this section how to derive the version of Euler’s
formula used in the proof of the lower bound of Theorem 1. Let G = (P,C) be
an embedded planar graph with γ′ > 0 many connected components and f the
number of faces in G. Usually Euler’s formula is stated as

|P | − |C|+ f = 2

and it is assumed that the given graph is simple and connected. In our case G
might be neither simple nor connected. More precisely, we allow a vertex in G to
have at most one self-loop or be involved in one pair of multi-edges. We count
these self-loops and multiple edges by adding one to the number of faces for each
occurrence of either. As a result, the number of edges introduced per self-loop
and multiple edge just cancels with the additionally added faces.

To handle the connected components of G note that every such component
is itself a connected embedded planar graph. Let Pi, Ci, and fi be the vertices,
edges, and the number of faces for the i-th connected component of G, then
|Pi| − |Ci|+ fi = 2 holds for each 1 ≤ i ≤ γ′. Summing over all i we get

γ′∑
i=1

|Pi| −
γ′∑
i=1

|Ci|+
γ′∑
i=1

fi = 2γ′.

Note that since we count the outer face for each component we have

γ′∑
i=1

fi = f + (γ′ − 1).

Consequently we obtain

γ′∑
i=1

|Pi| −
γ′∑
i=1

|Ci|+
γ′∑
i=1

fi = 2γ′

|P | − |C|+ f + (γ′ − 1) = 2γ′

|P | − |C|+ f = γ′ + 1.
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