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Abstract: This paper explicitly incorporated the impact that realized investments in new transportation
infrastructure have on adoption speed in a real option framework for taking sustainable investment
decisions under uncertainty and analyzed the consequences of this dependence for optimal business
investment strategies. We used a modified Generalized Bass Model to shape the adoption diffusion
process and incorporate this approach into an N-fold compound real option framework. We applied
the combined model to the case study of the introduction of hydrogen fuel stations for hydrogen cars
in the Netherlands. We performed a scenario analysis for six different transportation infrastructure
investment strategies combined with four different parameterizations. The results show the risk
of ignoring the potential interaction between the adoption process and the speed with which the
required transportation infrastructure will become available. This may lead to suboptimal decisions
with respect to the optimal timing of corporate investment spending, as well as with respect to the
assessment of the overall feasibility of the project.

Keywords: sustainable energy; hydrogen infrastructure; investment uncertainty; real option model;
adoption speed; Generalized Bass Model; scenario analysis

1. Introduction

Real option modeling has become an increasingly popular approach for the valuation of large
infrastructural projects as well as the valuation of innovative business projects in technology-intensive
industries in recent decades [1]. Examples that have applied real option logic include sustainable energy
solutions [2–4], waste management [5], natural resources [6], real estate projects [7], large infrastructure
projects [8], and many others (see [9] for an overview of applications). Some seminal works on real
options include [10–16].

Although standard cost–benefit analysis or net present value (NPV) has been used to conduct a
socioeconomic analysis of new transportation infrastructure, there has been an increased call to apply
new methods and tools to analyze sustainable transportation systems. Real option modelling is a novel
approach that is well suited for this as it takes into account the simultaneous existence of uncertainty,
irreversibility of investment, and some freedom on the timing of the investment [17]. As such,
it incorporates the value of waiting and operational flexibility in the investment decision-making—even
with a negative NPV now, the project still may be profitable at a later point in time. Put differently,
NPV may tend to undervalue a project. To operationalize the real option approach—or the NPV
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method for that matter—assumptions have to be made about the future demand for the new product
or technology and the speed at which adoption will take place. In many applications, future demand is
modelled exogenously and independently from the availability of the necessary infrastructure, see for
instance [18] for the case of hydrogen investment.

In reality, the assumption of exogeneity of future demand may be unwarranted in some cases,
especially when costly infrastructure is required to successfully introduce a new technology. In such
cases, the speed and degree of adoption of the new technology may well depend on the availability of
the infrastructure [19–21]. If so, an investment problem with chicken–egg characteristics may emerge:
without sufficient infrastructure, consumers will not adopt the new technology [22]; but without
(likely) adoption, investors will not build the infrastructure [23]. Put differently, supply and demand
are interdependent. Obviously, appropriate modelling of the investment decision problem then needs
to take this interdependency into account.

In this paper, we aimed to contribute to the literature by explicitly incorporating the impact
that realized investment in new infrastructure has on adoption speed in a real options framework
and by analyzing the consequences of this dependence for optimal investment. This way, we jointly
modelled the interdependency of demand and supply. We incorporated the impact of the adoption
speed in a generalized N-fold compound option model [24,25]. To model the adoption process,
we use a Generalized Bass Model—GB model—(see [26]), which is frequently used in business and
marketing studies for the analysis of new products and technologies. By including adoption speed
in an infrastructure’s investment decision model, corporate decision-makers will be better able to
understand the interactions between infrastructure build up and the users. In this way, we try to bridge
the gap between theory and practice in applying real option logic in corporate decision making.

Subsequently, we illustrated the relevance of combining the GB model with the real options
approach by applying it to the hydrogen case. Earlier work that incorporated the Bass model in
investment decisions under uncertainty in migration flows is [27]. It is generally acknowledged that the
introduction of hydrogen-fueled cars would imply an expensive and time-consuming transition process
involving a high degree of uncertainty, for instance with respect to technology and safety [28,29],
public acceptance [30,31], changes in government support and regulation, and future demand [32,33].
Corresponding to the concept behind the GB model, we focused in particular on demand uncertainty
and its dependence on the available supply of infrastructure. During the transition period, there is a
significant challenge in matching the scale and timing of the fueling infrastructure investment with
the actual hydrogen demand [23]. Entry commitments involve sacrificing flexibility and increasing
exposure to the uncertainties of new markets.

Theoretically, from the infrastructure provider’s cost perspective, it is important that there are just
enough stations to ensure satisfactory utilization of each station and keep the cost as low as possible.
An underutilized station drives up costs significantly. From a revenue perspective, the infrastructure
investor aims at realizing a high adoption speed. For potential adopters, it is equally important that
the number of refueling stations is more than sufficient. That is, consumers will perceive adequate
refueling availability over a sufficiently large refueling coverage area as an important factor in their
decision on whether to switch to hydrogen cars [20,22]. In addition to infrastructure investors and
consumers, car producers are a third party involved that has to optimize its investment decision.
For simplicity, we did not take this into account in the analysis. This implies a choice between having
higher fixed costs initially by building more stations at a faster speed in combination with higher
potential revenues due to higher and faster adoption on the one hand and investing at a slower speed
with lower costs but also slower expected growth of revenues on the other hand. Deciding on a fast
build-up of infrastructure will raise initial losses. Of course, it would be possible to pass these costs on
to the price of hydrogen fuel, but that would make adoption less attractive in turn.

In particular, in our application we made the diffusion process—which models future demand—a
function of the number of available refueling stations. Estimating this GB model for the hydrogen
case directly is infeasible due to the lack of realized data. Instead, we established a scenario analysis
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where we combined six different investment strategies with four different parameterizations of the
GB model. The variation in parameterization captures different degrees of demand sensitivity to
existing infrastructure. The exploratory research will shed light on the way the optimal investment
path depends on the sensitivity of demand to available infrastructure and the consequent process of
market penetration, as well as provide direction for investors, policymakers, and decision makers.

The paper is structured in the following way. The next section concisely reviews the literature on
modeling diffusion processes. Section 3 presents the N-fold compound option model. In Section 4,
we briefly summarize the setup of the hydrogen investment case for the Netherlands. We developed the
specific GB model, which allowed us to incorporate the sensitivity of demand to existing infrastructure
in the optimal investment decision. Section 5 contains a scenario analysis based on the GB model to
investigate the way the feasibility of investment depends on the sensitivity of demand on existing
infrastructure. Section 6 concludes.

2. Modeling Diffusion Processes

The study of the diffusion of innovations has received research interest since the 1960s. A first
approach has focused on using stylized curves to explain diffusion processes. The seminal work of [34]
links the temporal diffusion of new technologies to adoption rates of distinct stylized types of consumers,
such as innovators, early adopters, early majority, late majority, and laggards. For visualization of such
a stylized curve we refer the reader to [35]. Studies covering (early) adopters of alternative fuel vehicles
include [22], while [36] applied the model of Rogers on renewable heating systems. Variations on
this initial model can be found, for instance, in the works of [37,38], with a transition phase losing
momentum (the chasm) and a take-off phase (the tornado). Another strand of the stylized curve
approach is the spatial spread of adoption of innovations [39,40]. Typically three stages of spatial
diffusion are used: the center, outward from the vicinity of the center, and the special gaps, see an
example in [41].

A second approach argues that diffusion is much more complex than the stylized curves suggest
and uses a more quantitative approach. A full comparison of those approaches is outside the confines
of this article, we refer the reader to see [35,42–45] for detailed overviews. Generally speaking, there are
two broad quantitative approaches to model diffusion paths for new products and technologies.
First, there is the “aggregate approach” to modeling diffusion. It implicitly assumes that the social
system is homogeneous and adoption of a new product or technology is dominantly driven by
consumer interaction, that is, by “word-of-mouth”. The seminal model in this line of research was
introduced by [46] and has been modified and augmented in many ways since. In this model,
the focus is on the total number of new adopters in a given period where all individual non-adopters
at the time have an identical probability to adopt. The advantage of the approach is that it allows
parsimonious modeling on a macro-level, requiring few data. The disadvantage is that it does not
shed light on the underlying trade-off an individual makes when deciding to adopt or not, and ignores
the possible influence of individual factors in this decision. Second, a more recent line of research
recognized the potential role of consumer heterogeneity and gave it a central role in the diffusion
process. In this research, individual agents optimize some utility or benefit function, conditional on
a number of individual constraints and preferences and on product and technology characteristics,
and possibly subject to uncertainty as well. Obviously, the probability to adopt then will differ across
agents. Apart from allowing for adoption heterogeneity, the approach also has the advantage of
allowing for interdependencies between agents through network effects and by allowing the analysis
of spatial diffusion. However, the approach faces substantial challenges too. The utility function
and decision rule need to be chosen and an aggregation procedure has to be constructed to translate
the myriad individual decisions into a macro framework. Often, this approach combines elements
like multiagent [47], complex system [48], and game theory [8]. Other scholars such as [49,50] used
agent-based modelling techniques as a framework for assessing possible pathways of the transition to
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a sustainable mobility society. System dynamics modeling is also used to analyze the complementary
vehicle–infrastructure relationships exhibited in a hydrogen transportation system [51].

Aggregate diffusion models are used extensively in marketing, business studies, and policy
research to provide forecasts of adoption (demand) for new (durable) consumer products as well as
new technologies. A recent application in the energy field was [52], who used a diffusion model to
forecast demand for carbon capture and storage (CCS) technology. The models focus on the macro
population level and are based on the overall statistical behavior of potential adopters. We start our
discussion with the Bass model [46], which—together with its broad offspring—is the most widely
accepted, used, and cited model in the field [42,43]. In the Bass model, the expected adoption of
the new technology can be presented using a simple differential equation. For the moment, we use
continuous time notation:

dK
dt

= p[K −Kt] +
q

K
Kt[K −Kt] = [p +

q

K
Kt][K −Kt]. (1)

In Equation (1), Kt refers to the number of adopters at time t, d(.) is the difference operator, and K
equals the ceiling or potential amount of adopters for the given technology. The equation states that in
a short period, a constant fraction p of the non-adopters are expected to start using the technology.
In addition, new adoption depends on the amount of agents that already have adopted the new
technology, governed by the expression qKt/K. This latter term captures the impact of the consumer
interaction, or the network effect. Alternatively, the Bass model can be written as

yt =
dY
dt

= [p + qYt][1−Yt] (2)

where Yt = Kt/K. While Equation (1) was expressed in absolute number of adopters, it should be noted
that Equation (2) is expressed in percentage of adoptions. Yt is the—expected—cumulative percentage
of adopters at time t, which will approach one as time evolves. The time derivative of Yt, expressed as
yt, is the probability density function, representing the instantaneous likelihood of purchase at time t.
It is only based on the two diffusion parameters p and q, and on (1 − Yt), the percentage of non-adopters
at time t. In the literature, p is typically referred to as the “coefficient of innovation” or the “external
influence”. It gives the proportion of the current non-adopters that will switch to the new technology
per unit of time, independent of the current adoption success. In the standard Bass model, p is assumed
to be constant. The parameter q is generally referred to as the “coefficient of imitation” or the “internal
influence” and is assumed to be constant as well. It captures the communication or network effect in the
adoption process. It can be easily shown that both Equations (1) and (2) have a closed-form solution.

Using the elegant and successful Bass model as a starting point, the literature shows an impressive
proliferation of extensions and refinements. We refer to [53] for an overview of early day diffusion
model characteristics. On the one hand, a number of approaches simplify the Bass model by assuming
the coefficient of innovation p to equal zero, see for instance [54]. On the other hand, the literature
criticizes the Bass model for being too restrictive in its assumptions itself. The Bass model is quite
rigid in assuming (i) the parameter q to be constant regardless of the degree of penetration arrived at
already; (ii) confining the inflection point of the S-curve—that is, the point at which the rate of adoption
is highest—to be below but close to 50%; and (iii) assuming a perfectly symmetric diffusion pattern
before and after the inflection point [53]. This puts severe limits on the applicability of the Bass model.
As an alternative, [53] proposed a logistic diffusion model—labeled a non-uniform influence (NUI)
model—which led to Equation (3):

yt =
dY
dt

= [p + qYδt ][1−Yt]. (3)

When δ equals one, the model converges towards the Bass model. However, for δ not equal
to one, different diffusion paths arise with a time-varying coefficient of innovation, and faster or slower
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adoption depends on the value of δ and asymmetric effects. If 0 < δ < 1, it causes an acceleration of
influence leading to an earlier and higher peak. If δ > 1, it causes delay in influence leading to a lower
and later peak. In empirical applications, both examples of high and low δ values are found. In [55],
this logistic model was used in restricted form with p = 0 to allow for a convenient closed-form solution.

Another line of criticism has focused on the lack of attention in the basic Bass model for
underlying economic drivers of the adoption process. The Bass model imposes a semiautomatic
process, where only the previously achieved degree of adoption can influence the probability of new
adopters. However, from an economic perspective one would expect marketing effort and price to be
important determinants of the speed at which agents are willing to adopt a new product or technology.
Moreover, the same factors could also have an impact on the market potential. In terms of the Bass
model, p, q, and K all could be functions of such drivers. Examples of models that endogenize market
potential K are [56,57], while [58] is a good example of modeling the probability of adoption as a
function of marketing effort. An extended overview of diffusion models that include price and/or
advertising as economic fundamentals is provided in [26].

In an attempt to integrate the above criticism into the standard Bass framework, [26] proposed the
GB model. It is a generalization of the basic Bass model, which, on the one hand, allows the inclusion
of decision variables (such as price and advertising), and on the other hand, maintains the basic shape
of the diffusion curve. The GB model has the following form:

yt =
dY
dt

= [p + qYt][1−Yt]xt (4)

where xt may be a function of decision variables such as marketing effort and price. Note that
Equation (4) can be easily rewritten as follows:

yt =
dY
dt

= [pxt + qxtYt][1−Yt] = [p ∗ (xt) + q ∗ (xt)Yt][1−Yt]. (5)

Equation (5) again looks like the basis Bass model with parameters p* and q*, which are functions
of xt. The main difference is that these two parameters now are time-dependent functions of one
or more economic drivers potentially. Compared to other models that directly model the impact of
economic decision variables on the adoption rate, [26] have imposed the extra restriction that p* and q*
have exactly identical time dynamics, given by xt. Theoretically, there appears to be no clear reason
why one would assume the rate of innovation (p*) and the rate of imitation (q*) to respond similarly to
changes in price or advertisement.

The variable xt is operationalized as follows [26]:

xt = 1 + β1P′t + β2A′t (6)

where P is price and A is marketing effort (spending). Then, Pt is the rate of price change and At the rate
of change in advertising spending at time t. The GB model has the appealing property that both price
and advertising can be incorporated in the diffusion process, while still allowing the model to reduce
to the basic model in case the rate of change of P and A are approximately constant. Actually, Ref. [26]
claimed the basic Bass model works so well in many applications because the price and advertisement
development is rather smooth so that parameters p and q can capture the effect of economic drivers on
the rate of adoption.

Obviously, the GB model has general potential and can be applied to a wide range of innovations.
In this paper, we provide an illustration by applying it to the case of the introduction of infrastructure
for hydrogen cars in the Netherlands. This case study is particularly suitable as the literature argues that
the problem of infrastructure is a significant barrier for hydrogen to take off as an alternative fuel [33].
Using a simulation analysis, we focused on the consequences of incorporating the interdependence
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between the development and the roll-out of a hydrogen infrastructure and the adoption of hydrogen
cars by consumers for the investment decision in a fueling station network.

3. Multistage Compound Option Investment Modelling

To illustrate the impact of adoption speed on the investment decision, we used the standard
N-fold compound real option model of [24,25]. Compound options have been widely used in the
financial literature to evaluate sequential investment opportunities. Large-scale capital investments
are often sequential and thus require a series of irreversible investments, while significant positive
project cash flows are realized only when the whole project is complete. Such an investment process
may be interpreted as a sequence of options, such that every investment phase creates an option for
an investment in the next phase. If a previous stage turns out to be successful, the next one will
be initialized; otherwise, the investment is discontinued. This process goes on until the final stage.
Figure 1 visualizes this sequential chains of options.
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Following [25], the multistage investment will be priced as a compound option, interpreted as
a chain of call options to invest. Let us consider an investor who wants to invest in a project whose
commercial phase cannot be launched upon the successful competition of previous k investment
stages. Let Tk+1 be the time of the market launch, when, upon paying the commercialization cost Ik+1,
the firm earns the project value V. The project payoff at time Tk+1 is max[V − Ik+1 , 0]. Let Ck+1(V, t)
denote the value at time t of this onefold compound option or single stage investment opportunity.
We assume that the commercialization phase is reached upon investing an amount Ik, at time period
Tk, with Tk+1 ≥ Tk ≥ · · ·T2 ≥ T1 ≥ 0. The project starts with I1 as the startup costs, while Tk and Ik
are maturities of intermediate phases that lead up to the commercialization phase and the respective
investment costs. At any stage k the investor can decide to abandon the project or to enter the next stage,
hence, the optional nature of the investment project (Figure 2). The multistage investment problem
may be viewed as a compound option, that is options on options, and its value may be derived in a
recursive way.
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A generalized N-fold compound option model explicitly incorporating both commercial (market)
and technical uncertainty to value sequential multistage investment projects is developed in [25].
Technical uncertainty refers to technical success of each investment stage by multiplying the option
value at each decision point with the probability of technical success at that stage. In this model,
the project has a commercial risk σ and technical success probabilities p1, p2, . . . , pk+1 at each investment
stage. The project value is unknown and is denoted by Vt at time t. It is described by a geometric
Brownian motion:

dVt = µVtdt + σVtdWt, (7)

where µ and σ represent the growth rate and the standard deviation of the project value. The stochastic
variable dWt follows a Wiener process with dWt ∼ N

(
0,
√

dt
)
. The term dWt includes technological risk,

market risk (alternative competing technologies), political risk, etc. In this paper, we do not elaborate
on these specific risks, nor do we try to model them, as we are primarily interested here in the effect
of the interaction between infrastructure availability and demand sensitivity to infrastructure on the
project value and on investment decisions. Appendix A explains the N-fold compound option model
in more detail.

4. An Application to the Case of Hydrogen Infrastructure in the Netherlands

In this section, we first introduce the setup of the hydrogen infrastructure project in the
Netherlands. Subsequently, we develop and discuss the way we adapted the GB model to this
particular case. In particular, we show how we modelled the sensitivity of hydrogen cars to available
hydrogen infrastructure.

4.1. Description of the Hydrogen Infrastructure Project

The setup of the hydrogen infrastructure project is loosely based on the EU HyWays project [59].
It lays out a phased roadmap for hydrogen stations in 10 European countries, viz. Finland, France,
Germany, Greece, Italy, the Netherlands, Norway, Poland, Spain, and the United Kingdom [59].
This hydrogen energy roadmap distinguishes the following four settings with respect to policy support
and technical learning: “baseline”, “modest policy support and modest learning”, “high policy support
and high learning”, and “very high policy support and high learning”. Here, we took the “modest
policy support and modest learning” setting as our starting point.

Furthermore, the roadmap assumes a number of stages. Phase I (2010–2015) was a small scale
experimental (pre-commercial) phase which brought up to 10,000 hydrogen vehicles on European
roads. Phase II (2015–2020) is the early commercial phase. The roadmap assumes that in the early
commercial phase, three to six early user centers will be developed in each country. For the Netherlands,
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these are the regions around Amsterdam, Rotterdam, and Nijmegen (see [18] for an application on a
regional scale). The ambition is to link these national centers through so-called hydrogen corridors.
Subsequently, nationwide networks will be rolled out. With respect to the number of required stations,
the HyWays roadmap assumes that in the early commercial phase about 400 stations will be necessary in
the early user centers, plus another 500 to facilitate the hydrogen corridors. In the full commercialization
stage III, an increase is foreseen to 4 million between 2020 and 2025 and to 16 million hydrogen cars
after 2025. In the final stage after 2025, 13,000 to 20,000 stations ultimately will be needed to serve ten
million hydrogen vehicles.

All of the above numbers are for the total of 10 participating countries, so we needed to scale
those numbers to obtain estimates for the Dutch market. When measured in terms of the number of
users, the Netherlands accounts for 3.34% of the total target population in the EU, while measured
in kilometers of roads they account for 3.95% of the EU total [60]. Taking 4% as the approximate
proportion of the Netherlands within the HyWays project, this would correspond to 400 hydrogen cars
by 2015, 20,000 cars by 2020, and a further growth to 640,000 after 2025. With respect to the number of
stations, the HyWays setup implies that about 30 stations would be built by 2015 and 800 by the end of
phase III (compared with the minimum number of hydrogen filling stations for the UK (1198) and
California (2085), see [23]). In reality, the objectives of the HyWays scenario have not been realized so far
and the project considerably lags behind the 2008 expectations. We nevertheless used its assumptions
and original time path for the setup and simulations in this paper.

The timing of achieving those target numbers is dependent on the specific setting underlying
the scenario. The number of years for each phase uses the same timing as [18], which comprised of
an earlier regional study on one specific Dutch area. The current country-level study on the entire
Dutch territory used the same timing for reasons of comparability and was roughly in line with the
HyWays scenario. Different phases are obviously possible and our models allows for the calculation
of this, but such analysis is outside the confines of the current article. In our analysis, we took a
34 year horizon. We chose the precommercial phase I to run from 2010 until 2014. It comprised of
technology refinement and market preparation. The early commercialization phase II is from 2015
until 2024 and the full commercialization phase III from 2025 until 2044. In the real option analysis,
we used a proxy for the cash flows after 2044. Subsequently, we designed six different strategies with
respect to the timing of investment in infrastructure, leading to different speeds of construction for the
refueling stations. In all scenarios, the final number of 800 stations is reached in 2044. At that time
hydrogen-fueled vehicles are supposed to be cost effective compared to electric vehicles. Furthermore,
we assumed demand (adoption) to be governed by a Bass model.

For some intuition behind these different phases, consider the following. Generally, the introduction of
an innovative technology leads to early adoption by enthusiasts. In this case, the pre-commercialization
phase would be attained when enough hydrogen stations are in place to satisfy the refueling needs of
many early adopters [22,35]. These consumers will be somewhat more willing to be inconvenienced
by driving out of their way to refuel with hydrogen. The early commercialization phase is attained
when enough hydrogen stations are in place to satisfy a larger portion of the general population.
High volume sales to the general public take place in the final, full commercialization phase. Since many
consumers want to be able to drive long distances and do not want to be confined to a specific area,
a local infrastructure probably will not suffice in this stage anymore. To overcome range anxiety or to
avoid congestion at charging or fueling stations, at least a coarse national network would have to be in
place [19].

We approached the optimal building strategy in deciding the coarseness of the hydrogen refueling
station network from the business-driven perspective of an infrastructure provider. This is a different
perspective than most of the literature so far, which has focused on the optimal location of recharging or
refueling infrastructure from a planning perspective. For instance, [61] incorporated driving patterns
to analyze the optimal location of public charging systems for electric cars in New York City, while [20]
performed a similar analysis for hydrogen fueling stations in Seville.
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The advantage of a multiphased process is that it allows staged investments and investment
decisions. Moreover, it makes a real option analysis an attractive and appropriate approach to assess the
attractiveness of the investment. Each stage can be viewed as an option on the value of subsequent stages
and valued as a compound option [24,25]. It is important to note that phase III (full commercialization)
cannot proceed without the execution and successful completion of phase II, which itself will only take
place upon the successful transition from phase I. The end points of phases I and II thus represent
decision times (to stop or to continue), in addition to the starting decision at the beginning of stage
I for the investor in hydrogen infrastructure. A positive continuation decision at that time requires
the option value of the future project to exceed the extra investment required to enter the next phase.
If not, the project will be terminated.

To calculate the expected operating cash flows for each project phase, we needed to quantify
the present value of the expected operating revenues Rt less operating expenses Ct, which requires
a substantial amount of assumptions with respect to the input values of all parameters of the cash
flow model. To calculate hydrogen demand for fuel cell passenger vehicles, we assumed that each
vehicle will use approximately 0.7 kg of hydrogen each day, amounting to 255.5 kg per year. For an
average fuel cell vehicle with a fuel economy of 80 to 96 km per kg, this would accommodate about
56 to 64 km of driving on an average day [62,63]. For hydrogen fuel to be competitive with fossil fuels,
the literature generally assumes a retail price of €10/kg [64]. We took into account the regular fuel taxes
in the Netherlands, such as excise duty and VAT, which would lower the net retail price to €4/kg.

Although hydrogen is much cheaper produced from natural gas, the production process is
always associated with the emission of greenhouse gases and local pollutants [65]. The sustainable
hydrogen cost is initially about €5/kg (phase I), but due to technical learning, we assumed it will
gradually decrease to €4/kg in phase II and a long-term production cost of €3.4/kg in phase III (adapted
from [64,66]). This includes all the relevant expenses, for instance, transportation to the refilling station
and carbon capture and storage (CCS) costs if necessary. After 2044, annual operational cash flows are
assumed to remain constant forever. Their present value in 2044 was used in the computations as the
residual value of the investment.

For the computations, we furthermore used a 25.5 percent marginal tax rate [67], an average
Eurozone inflation rate of 2.24% [68], a 1.13% real interest rate, a 21.21% net working capital requirement
in a given year (as percentage of the sales) [69], and a straight-line depreciation over the 20 year
economic life of each station. We used a risk-adjusted discount rate of 8% for calculating the NPV
of the project cash flows. This cost of capital corresponds to the 2010 sector averages of oil and gas
distribution (7.19%), environmental (7.62%), natural gas (8.07%), power (8.23%), automotive (8.58%),
and chemical (8.88%) [69]. For our real option calculations, we finally needed the input of the volatility
of the project return—we used an annual standard deviation of 66.75%, obtained from [18].

Each stage also requires investments in the necessary amount of hydrogen fuel stations in order to
operate the fuel network. The cost of a hydrogen fuel station depends upon many factors, including the
type of station, location, equipment manufacturing volume, and continuing technology advancements.
Here, we based our assumptions on [66]. We assumed a standard hydrogen station initially costs €0.95
million. Unit investment costs will decrease over time as a result of economies of scale and learning.
To reflect this, we specified the cost function as $(N) = α ·N−b, where $(N) is the investment cost
of the Nth unit, b is a learning parameter, and α the investment cost of the first unit (€0.95 million).
We chose b to be equal to 0.0465, so that the unit costs decrease to €0.70 million by 2044. The average

investment cost to build N fuel stations will therefore be equal to I = a ·
N∫
1

N−bdN. Fixed one-time

installation costs amounted to 30 percent of the unit costs and annual maintenance costs were 3.5%.
Additional labor costs are €0.5 million per year.
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4.2. The Model

In our application, we started from the GB model in Equation (4). However, rather than assuming
that xt is a function of price and marketing effort, we assumed xt is a function of availability of
refueling stations. Put differently, we hypothesized that potential buyers of a hydrogen car—adopters
of the new hydrogen technology—will be more inclined to actually buy the car when they know
there will be sufficient refueling stations in the region in which they intend to drive the car [19,22].
Specifically, we proposed

xt = 1 + β
Nt −Nt

Nt
(8)

where Nt equals the cumulative number of refueling stations that has been built up until year t and Nt

equals the cumulative number of refueling stations that would have been built up until year t when
the same amount of stations would be built every year over the complete 34 year planning horizon.
The gap in Equation (8) then indicates how far the actual building—investment—strategy deviates
from the constant investment path. Note that when actual investment exactly follows the linear trend,
the gap will be zero and xt will equal one for the whole period. In this “neutral” scenario, the model
reduces to the basic Bass model, consistent with the argument of [26].

Further, we defined β as the diffusion coefficient that controls the effect of available stations in
accelerating and decelerating the diffusion process. The motivation behind this setting was to reflect
the importance of refueling infrastructure investments on the market penetration of hydrogen cars.
When β equals zero, the sensitivity of adoption to realized stations is zero and the model reduces to the
standard Bass model. The higher β, the stronger the effect of early investment on adoption will be.
We used the combination of Equations (1), (4), and (8) in our scenario analysis, using different paths for
Nt and different parameter values for β. The overall equation thus looks like

dK
dt

= [p +
q

K
Kt][K −Kt] ∗ [1 + β

Nt −Nt

Nt
]. (9)

5. A Scenario Analysis

Direct estimation of a simple Bass model or an extended GB model for the hydrogen case is
infeasible, due to the lack of actual data on infrastructure investment and consumer adoption. This is
similar to many previous disruptive technologies prior to market entry [33]. For that reason, we focused
on a scenario analysis.

As discussed previously, we assumed that the rollout of an infrastructure for hydrogen fuel cell
vehicles will cover the period 2010–2044. In these 34 years, we assumed 800 fueling stations will be
built to service a maximum capacity of 640,000 vehicles (K). However, the timing of the building
process was taken as a free parameter here. The purpose of the scenario exercise was to investigate the
impact of different speeds at which the stations are built on the potential profitability of the overall
project, taking into account the impact of the building strategy on the adoption speed of hydrogen cars
in the market.

We did this by embedding the GB model of Equation (9) into the real option framework. In the
following section, we define six plausible investment scenarios, distinguished by the speed at which
refueling stations are built. The GB model pins down the diffusion process of adoption through three
parameters p, q, and β. For p and q we use constant values across all scenarios, calibrated on the
HyWays characteristics [59]. For β we used four different parameter values, reflecting different demand
sensitivities with respect to the availability of infrastructure. The higher β, the more weight potential
users attach to having easy access the refueling infrastructure in their adoption decision. The results
will shed light on the way the optimal investment (building) strategy depends on the sensitivity of
adoption to available infrastructure.
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5.1. Scenario Assumptions

We took a two-step approach. First, we motivated the six different scenarios.
Subsequently, we elaborated on the choice of p, q, and β.

We started from the so-called “neutral” scenario—henceforth labeled Neutral. This is the base
scenario in which the stations are built at constant speed over the whole 34 year period. It is constructed
as a neutral, steady increase scenario. That is, every year about 24 stations (=800/34) are added to
the existing stock of stations. It follows from Equation (9) that in the “neutral” scenario the diffusion
process will take the typical S-shaped Bass distribution. In this case the gap variable in xt is zero

throughout the whole period regardless of the value of β, because the investment gap Nt−Nt
Nt

is zero.
Subsequently, we designed a number of other scenarios in which the building speed differs from

Neutral. Obviously, an infinite number of scenarios is possible. We chose a grid that has a sufficiently
wide range to capture many of the realistic scenarios and appropriately investigate the sensitivity of
investment decisions through real option analysis. Note that all scenarios were constrained by the
requirement that 800 stations need be built in 34 years. It implies that building scenarios that start slow
will have to catch up later on, while scenarios that start fast need to reduce building down the road.
Second, we chose for linear building patterns for reasons of tractability and plausibility.

Four scenarios follow a similar pattern, with a linear (constant speed) build-up until 2024 and a
second linear path between 2024 and 2044. Cautious has a very slow start with only 50 stations built in
the first fourteen years. As a result, building speed has to pick up substantially to build the remaining
750 stations between 2025 and 2044. In Conservative, the number of stations built in the first fourteen
years doubles to 100 (compared to Cautious). In Confident, again a doubling takes place, to 200 in the
first fourteen years. Note that all of these scenarios still build at a lower speed initially than Neutral.
In Neutral, 329 stations are built between 2010 and 2024. Aggressive is the mirror image of Confident
relative to Neutral. In Aggressive, 460 stations are built in the first fourteen years, which is as much
more relative to Neutral as Confident is less. Finally, Catch-up starts with the same speed as Confident,
but accelerates after ten years (in 2020) until it reaches the level of Aggressive in 2034 where it slows
down again to follow the latter path. The building strategy in the Conservative scenario roughly equals
that of HyWays [59]. Table 1 provides an overview of the build-up per scenario.

Table 1. Building speed per scenario and regime (new stations per year).

Scenario # of New Stations Built in Each Time Period (The Build-Up is Linear)

Period
1–34

Period
1–14

Period
14–34

Period
1–10

Period
10–24

Period
24–34 Total

Neutral 800 800
Cautious 50 750 800

Conservative 100 700 800
Confident 200 600 800
Aggressive 460 340 800
Catch-up 143 487 170 800

Note that the regime changes in the different scenarios do not necessarily coincide with the
decision years 2014 and 2024 in the real option analysis. However, we evaluated all scenarios on the
basis of these decision points for the infrastructure developer. Figure 3 provides a graphical illustration
of the different investment strategies and corresponding growth of the number of refueling stations in
the different scenarios.
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We now turn to the parameterization of the model. Obviously Bass type models have been used
extensively in the literature to model the diffusion of new products and technologies. The Bass model
is often used for prediction purposes, where it is well-known that long-run forecasts become more
uncertain. In this paper, we were not really aiming at long-run point forecasts of adoption per se.
The purpose of the paper was to shed light on the question of how uncertainty, both on the supply side
(availability of infrastructure) and on the demand side (sensitivity to availability) and their interaction,
impacts on the decision of whether or not to make long-term investment decisions. We used four
different specifications of the Bass model as well as six different investment scenarios to capture the
range of uncertainty, without claiming—or needing to claim—that one of the forecasted sales time
paths is the correct one. Especially for consumer durables, many empirical applications are available,
see for example [26,53,70]. Estimates for p typically are in the range from 0 to 0.04, while estimates for
q range from around 0.20 to about 0.70. In some applications, the ceiling K is pre-specified, in others it
is estimated as an extra parameter. Estimation methods include simple OLS, maximum likelihood
estimation (MLE), and nonlinear least squares (NLS). We refer to [70] for a comparison and discussion.
Moreover, estimation typically requires reformulating Equation (1) or (9) in discrete time. The discrete
version of Equation (9) looks as follows

dKt = Kt −Kt−1 = [p +
q

K
Kt−1][K −Kt−1] ∗ [1 + β

Nt−1 −Nt−1

Nt−1
]. (10)

It allows for the estimation of four parameters, p, q, β, and K.When β is set to zero, the model
reduces to the standard Bass model with three parameters to be estimated.

Due to lack of data, we did not estimate but calibrated the parameters p and q in Equation (10) at
0.004 and 0.275 to allow the diffusion process to converge gradually towards the potential adoption
level K (640,000) by the year 2044. These values fall into the range usually found when estimating the
Bass model. For β we chose four different values reflecting differences in the sensitivity of demand to
the availability of refueling stations using the GB model. In particular, we consecutively set the value
of β equal to zero, 0.25, 0.50, and 0.75. When β equals zero, the number of available refueling stations
plays no role in the consumers’ decision to adopt the new technology and the GB model reduces to
the standard Bass model. The higher the value of β, the more important the availability of sufficient
refueling stations is for consumers.
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5.2. Results

For each combination of a specific scenario and a value of β, we now could compute the adoption
speed and corresponding demand for hydrogen vehicles. From this, the time path of costs and revenues
and operating cash flows can be computed. These in turn serve as input for the computation of the net
present values for each stage, as well as the real option value at the start of the project. The results of
this exercise are reported in Tables 2–5. Each table corresponds to a different value of β. The results for
scenario Neutral were identical across β values as the investment gap equaled zero all the time.

Table 2. Comparing scenarios for β = 0.

Scenarios

Net Present Value Real Option Value

Phase I Phase II Phase III Total Option
Value

Project
Value

Investment
Decision Rank

Neutral −97 −182 152 −128 136 39 Invest 5
Cautious −24 −53 76 0 169 145 Invest 1

Conservative −37 −77 91 −23 161 124 Invest 2
Confident −64 −124 119 −69 149 85 Invest 3
Aggressive −130 −241 187 −184 128 −2 Reject 6
Catch-up −64 −164 141 −87 148 84 Invest 4

Table 3. Comparing scenarios for β = 0.25.

Scenarios

Net Present Value Real Option Value

Phase I Phase II Phase III Total Option
Value

Project
Value

Investment
Decision Rank

Neutral −97 −182 152 −128 136 39 Invest 5
Cautious −22 −43 14 −51 123 101 Invest 1

Conservative −36 −69 41 −64 125 89 Invest 2
Confident −63 −119 91 −91 129 66 Invest 4
Aggressive −131 −247 211 −166 145 14 Invest 6
Catch-up −63 −159 121 −102 133 70 Invest 3

Table 4. Comparing scenarios for β = 0.5.

Scenarios

Net Present Value Real Option Value

Phase I Phase II Phase III Total Option
Value

Project
Value

Investment
Decision Rank

Neutral −97 −182 152 −128 136 39 Invest 5
Cautious −21 −36 −62 −119 69 48 Invest 2

Conservative −35 −62 −18 −116 83 48 Invest 2
Confident −62 −114 61 −116 108 46 Invest 4
Aggressive −131 −253 233 −152 159 28 Invest 6
Catch-up −62 −155 100 −117 121 59 Invest 1

Table 5. Comparing scenarios for β = 0.75.

Scenarios

Net Present Value Real Option Value

Phase I Phase II Phase III Total Option
Value

Project
Value

Investment
Decision Rank

Neutral −97 −182 152 −128 136 39 Invest 2
Cautious −20 −31 −150 −201 13 −7 Reject 6

Conservative −34 −58 −86 −178 38 4 Invest 5
Confident −62 −110 28 −144 86 24 Invest 4
Aggressive −132 −260 251 −142 170 38 Invest 3
Catch-up −62 −152 79 −134 106 44 Invest 1
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We started with the case of β = 0, where infrastructure availability does not influence adoption
speed. Essentially, the GB model reduces to the basic Bass model and adoption only is a function of the
parameters p and q. As a result, all scenarios are equal on the revenue side. However, the different
scenarios do differ in the speed at which stations are built and, thus, in the time path of cash outflows.
The results are provided in Table 2. The first three columns of Table 2 contain the net present values for
each investment phase in present value terms: phase I is between year 1 and year 4, phase II is between
year 5 and year 14, and phase III is between year 15 and year 34. Column 4 sums these NPVs and gives
the overall NPV of the project at its start. According to the NPV criterion, a minimum condition for
the project to start is a positive NPV. Column 5 has the real option value of the project today. As the
infrastructure project is a multistage investment, we used the n-fold compound option model of [25] to
compute the real option values. According to the real option criterion, the project is feasible when the
call option value today exceeds the initially required net investment. We assumed this equals the NPV
of phase I operating cash flows in present value terms. The project value in column 6 equals the call
option value minus the cash flows (required investment) from phase 1. That is, a positive project value
implies the option is “in-the-money” and can be exercised to start the project.

A first thing to note from Table 2 (the case of β = 0, where infrastructure availability does not
influence adoption speed) is that the NPV analysis would result in rejection of the project, regardless
of the specific time path of investments. This is a common result for large infrastructural projects
as uncertainty about future revenues is large and upfront investment outlays are high. From a
NPV perspective, no infrastructure developer will start the current hydrogen project. This is exactly
the reason why real option theory provides an attractive alternative in project assessment. Table 2
shows that the option criterion would only reject the project in the most risky scenario, Aggressive.
The scenarios in which investment starts very slowly would do best. This result is not surprising.
Since demand (adoption) is insensitive to the availability of infrastructure (β = 0), aggressively and
quickly building many stations in the early years does not pay off. It leads to high costs without
compensating revenues. Slow investment in the early years reduces costs in the first phase, as can
be seen by comparing the Phase I NPV across scenarios in column 1. It puts the scenarios where
investment starts more aggressively at a disadvantage.

Tables 3–5 have the same design as Table 2 and provide information on the role of higher sensitivity
of demand to available refueling stations. In Table 3, β rose to 0.25, suggesting consumer demand is
somewhat sensitive to the availability of refueling stations. It remains true that the project would be
rejected on the basis of overall NPV, but would be accepted using real option valuation, regardless of
the specific building design. In terms of project value, the scenarios converge a bit. Especially the
two slow scenarios (Cautious and Conservative) would now have a substantially lower project value,
while the project value for Aggressive would increase somewhat. These effects are due to the fact
that the faster building scenarios now benefit on the revenue side from faster adoption compared to
the slow building scenarios. However the impact is insufficient to alter the ranking of the projects
substantially. Only Confident and Catch-up would change places.

When demand sensitivity was increased even more with a β of 0.5, we did see somewhat more of
an effect. Table 4 shows that with this value of β, the scenarios would actually converge considerably
in overall performance. Differences both in overall NPV and in project value would be relatively small.
Catch-up would actually show the best performance. In Table 5, we provide evidence for the case
when demand sensitivity is high (β = 0.75). Now, Cautious and Conservative would make up the rear.
Actually, the project would be rejected for Cautious and only marginally accepted for Conservative.
Since Conservative is the scenario that we derived from the Hyways case, it deserves attention on its
own. Interestingly, it would do quite well when there is low demand responsiveness to the availability
of infrastructure, but would fall to the bottom of the rankings when demand responsiveness increases.

In this particular setup, the consequences of failing to correctly incorporate the endogeneity of
demand in the analysis in terms of inappropriately accepting or rejecting the project at the start are
limited. Taking the β = 0 scenario as our benchmark, the results show that with relatively strong
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demand responsiveness, Aggressive may be incorrectly rejected, while Cautious may be incorrectly
accepted—and even deemed optimal. The project would be accepted on the basis of the real option
value for all other scenarios for all values of β. However, there is no guarantee decisions would also
turn out this way.

Overall, our analysis shows it is important to understand and appropriately model the diffusion
process of a new technology like the development of hydrogen vehicles and the corresponding
infrastructure. Ignoring the potential interaction between the speed with which the required
infrastructure—and for that matter also a sufficient set of attractive vehicles themselves—will become
available and the adoption process may lead to suboptimal decisions with respect to the optimal
timing of investment spending as well as with respect to the assessment of the feasibility of the project
in general.

5.3. Recent Events

When we compare the time line of the fueling network build-up assumed in the original Hyways
scenario [59,60], it becomes clear that the initial expectations were never met. Under the original
plan, about 30 stations should have been built between 2010 and 2014. Between 2015 and 2024,
between 50 and 460 stations should have been built, while the plan assumes 800 stations across the
Netherlands at the end of 2044. At the beginning of 2020 only four fueling stations were present in the
Netherlands (Groningen, Arnhem, Rotterdam, Helmond). In March 2020, a fifth fueling station was
opened in The Hague. It is obvious that in reality the network is far behind the original plan. If we look
at the other countries in the original Hyways plan, we observe that countries such as Finland, Greece,
and Poland still have no fueling stations, while Spain and Italy only have three stations each. Only the
UK (17 stations), France (27 stations), and especially Germany, with a broad network of 89 stations,
are doing better (see Figure 4). Overall, the Netherlands ranks at this moment only at the 9th spot of
European countries with hydrogen fueling stations. Dutch policymakers in the meantime updated
their beliefs on a realistic pathway to developing a hydrogen economy and have launched new policy
initiatives [71,72].

In the meantime the European economy has been hit hard due to the outbreak of the COVID-19
outbreak. It is hard to predict how this will impact the development of Dutch and European hydrogen
market. On the one hand, increased uncertainty would induce firms to delay investments [73].
This would imply a further delay in the construction of hydrogen fueling stations. If this scenario
unfolds, the Dutch fueling network will remain too embryonal for the hydrogen market to take off over
the next decade. On the other hand, the call for significant government intervention in the economy
after the COVID crisis is very predominant. This is especially the case to support sustainable energy
solutions [74]. The EU’s Green Deal to reduce carbon emission might results in a faster scaling up of
hydrogen fueling networks across Europe than was the case before the pandemic [75].

The most successful development of a hydrogen infrastructure network can be found outside of
Europe. At the end of May 2020, Japan had a network of 111 stations (see Figure 5). The first station
was opened in 2003, while the second was only put in use in 2010. As of 2014 the development of
a hydrogen fueling network started taking off aggressively due to a strategic plan of the Japanese
government [76]. This has caused a very rapid increase in the number of stations: 27 in 2015, 49 in
2016, and 12 in 2017 (see Figure 5). This was probably only possible with the dedicated support of the
Japanese industry, for instance, from car producers such as Toyota and Nissan who commercialized
hydrogen cars, but also from the energy subsidiaries of large industry players, such as Toshiba or
Kawasaki, in developing hydrogen as an energy carrier [77]. Although plans exist for the construction
of 24 new stations (situation in June 2020), it remains unclear when they will be actually constructed.
It becomes clear that the momentum seems lost as the construction of new hydrogen fueling stations
slowed down significantly after 2018. Even though Japan had plans to build an additional 50 stations
in 2020, with the aim to have a wider network ready for the August 2020 Olympic Games in Tokyo [78],
it remains unclear whether the current slowdown is due to COVID-19 or is more of a structural problem.
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6. Conclusions

In this paper, we explicitly incorporated the impact that realized investments in new infrastructure
may have on the adoption speed in a real options framework for taking investment decisions under
uncertainty and analyzing the consequences of this interdependence for optimal business investment
strategies. The investment in fueling stations for hydrogen vehicles has the characteristics of a
chicken–egg problem: without sufficient infrastructure, consumers will not adopt the new technology;
but without (likely) adoption, investors will not build the infrastructure. To address the issue of
choosing an optimal investment path when adoption depends on previous investments in the necessary
infrastructure, we combined a real option modeling approach with a modified generalized Bass model
for the adoption diffusion process.

As an illustration, we applied the combined model to the case study of the introduction
of infrastructure investments for fueling stations for hydrogen vehicles in the Netherlands.
We performed a scenario analysis where we combined six different investment strategies with
four different parameterizations of the GB model. We assumed that the number of available refueling
stations—relative to a linear trend—is a key driver of the diffusion model that captures the adoption
decision. The variation in parameterization captured different degrees of demand sensitivity to
existing infrastructure.

Our results show that it is important to understand and appropriately model the diffusion process
of a new technology, like the development of hydrogen vehicles and the corresponding infrastructure.
Ignoring the potential interaction between the speed with which the required infrastructure—and
for that matter also a sufficient set of attractive vehicles themselves—will become available and the
adoption process may lead to suboptimal decisions with respect to the optimal timing of investment
spending as well as with respect to the assessment of the feasibility of the project in general.

If policymakers want to stimulate the emergence of sustainable energy solutions, such as hydrogen,
they need to be aware of the importance of the interaction between demand and supply. When designing
policies or roadmaps for a hydrogen economy, explicitly incorporating the impact of the size and
coverage of the network of fueling stations on the adoption speed of consumers is a key dimension to
successfully induce private investors to make optimal investments. Without such explicit attention,
there is a significant challenge in matching the scale and timing of the fueling infrastructure investment
with the actual hydrogen demand. Policymakers are recommended to invest in studies to estimate the
sensitivity of consumer demand to available infrastructure. Based on demand studies, policymakers can
develop pathways for optimal market penetration and use it to support the timely takeoff of hydrogen
infrastructure. For instance, our results show that with relatively strong demand responsiveness,
one pathway would have been incorrectly rejected, while another pathway would have been incorrectly
accepted. By estimating demand responsiveness more accurately, a more effective pathway could be
chosen to support the takeoff of hydrogen infrastructure investments.

Although our study shows interesting exploratory results, more research is needed to obtain
realistic estimates of the magnitude of the relevant parameters that govern the adoption diffusion
process for new technologies in order to guide policymakers and private investors better. We call upon
researchers to focus more attention to this aspect of our modeling approach.
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Appendix A. The N-Fold Compound Option Model

If we define a sequence of call options with value Ck on the call option whose value is Ck+1 with
exercise price Ik and expiry date Tk, such that

Ck(Ck+1(V, Tk), Tk) = pkmax[Ck+1(V, Tk) − Ik, 0], (A1)

where Ck+1(V, Tk) stands for the value of the underlying compound option. The pricing formula for
the k + 1-fold compound option, C1(V, 0) at t = 0, is given by the following expression:

C1(V, 0) = hk+1VNN
(
a1, a2, . . . , aN; Rk+1

1

)
−

k+1∑
l=2

hl!Ile−rTlNl
(
b1, b2, . . . , bl; Rl

1

)
+−h1I1e−rT1N1(b1) (A2)

where
al = bl + σ

√
Tl; l = 2, . . . , k + 1 (A3)

and

bl =
ln V

V∗l
+

(
r− σ2

2

)
Tl

σ
√

Tl
; l = 2, . . . , k + 1. (A4)

V∗l is the at-the-money option solution of

Cl+1(V, tl) = Il; l = 1, . . . , k + 1 (A5)

ρ f g =

√
T f

Tg
; 1 < f < g ≤ k + 1 (A6)

Rl
1 =

(
al

f g

)
f ,g=1,2,..., l

with
{

a f f = 1
a f g = ag f = ρ f g

; 1 < f < g ≤ k + 1 (A7)

and
hk+1 = p1p2 . . . pk pk+1 (A8)

hk = p1p2 . . . pk (A9)

h2 = p1p2 (A10)

h1 = p1. (A11)

For details of the proof we refer to the original paper by [25].

Appendix B. Input Parameters of the Real Option Model

Table A1 gives an overview of the input parameters of the real option calculations in Section 5.2
(Tables 2–5). Part of the parameters are similar for all scenarios, such as the timing of the investments
(time to maturities T1, T2, and T3), the risk-free interest rate rf, and the standard deviation of the
project return σ. See upper panel of Table A1. Other parameters are scenario specific depending on
the simulated build-up of the fueling stations network (6 scenario, see Section 5.1). These parameters
include the present value of the operating cash flows of the full commercialization phase (V), the exercise
prices of the compound option: I1, I2, and I3.
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Table A1. Overview of input parameters of real option calculations.

Joint parameters for all scenarios

T1 4
T2 14
T3 34
rf 1.13%
σ 66.75%

Scenario specific parameters (in million euros)

Scenario 1 Scenario 2 Scenario 3 Scenario 4 Scenario 5 Scenario 6

V 269 268 268 270 267 281
I1 97 37 63 129 23 63
I2 248 105 168 328 71 223
I3 343 520 441 245 561 413

Legend: Tx, the time to maturity of the x-fold compound option; rf, the risk-free interest rate; σ, the standard
deviation of the project return; V, the present value of the operating cash flows of the full commercialization phase;
Ix; the exercise price of the x-fold compound option.
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