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Specific and adequate nutrition during pregnancy and early life is an important

factor in avoiding non-communicable diseases such as obesity, type 2 diabetes,

cardiovascular disease, cancers, and chronic allergic diseases. Although epidemiologic

and experimental studies have shown that nutrition is important at all stages of life, it

is especially important in prenatal and the first few years of life. During the last decade,

there has been a growing interest in the potential role of epigenetic mechanisms in the

increasing health problems associated with allergic disease. Epigenetics involves several

mechanisms including DNA methylation, histone modifications, and microRNAs which

can modify the expression of genes. In this study, we focus on the effects of maternal

nutrition during pregnancy, the effects of the bioactive components in human and bovine

milk, and the environmental factors that can affect early life (i.e., farming, milk processing,

and bacterial exposure), and which contribute to the epigenetic mechanisms underlying

the persistent programming of immune functions and allergic diseases. This knowledge

will help to improve approaches to nutrition in early life and help prevent allergies in

the future.

Keywords: epigenetics, epigenetic imprinting, environmental factors, unprocessed (raw) milk, breastfeeding,

allergy, nutritional programming, bioactive milk components

INTRODUCTION

There is increasing evidence to suggest that maternal diet during pregnancy, breastfeeding,
early life nutrition, and early life malnutrition can have sustained effects on immunological
outcomes, such as respiratory allergies, and metabolic outcomes such as type 2 diabetes
and obesity. Nutritional programming during gestation might permanently affect
the immunological competence and nutritional status in early life Figure 1. This is
exemplified by the thrifty phenotype, where the metabolic response to undernutrition
during the fetal period is inappropriate during overnutrition later in life, leading to
disease manifestations (1). Several studies have since shown that prenatal exposure
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FIGURE 1 | As described in this review, early life nutrition (breastfeeding, raw milk consumption, and some infant formula components), early life environmental

exposures (such as farming environment), as well as prenatal development under the influence of maternal diet can all have sustained effects on health outcomes later

in life. PUFA, polyunsaturated fatty acids; HMO, human milk oligosaccharides.

to famine is associated with the development of type 2 diabetes
later in life (2–4), and an epigenetic link was demonstrated
in relation to the Dutch hunger winter where epigenetic
modification of the IGF2 gene was shown to be linked to famine
during prenatal development (5).

Epigenetic mechanisms may play an important role in these
effects. It has even been suggested that early life nutrition
forms the basis for susceptibility to a plethora of chronic
age-related non-communicable diseases (NCD), like respiratory
allergies (6–9). Thus, specific and adequate nutrition during
pregnancy and early life are considered important factors
that could reduce instances of allergic diseases. Epidemiologic
and experimental studies show that nutrition is important for
(immunological) health, especially when we are very young
and during prenatal development, which may influence health
and disease throughout our lives (6, 10). The structures of
the mucosal immune system in the gastrointestinal (GI) tract
are fully developed in utero by gestational week 28 (11).
Increasing evidence suggests that maternal diet and other
prenatal exposures can influence this development by crossing
the placenta (12–14). In the first year of life, the mucosal
immune system is further shaped by microbial colonization
and oral feeding (15). Breastfeeding is the normal way of
providing newborns with nutrients for healthy growth and
development and a diet exclusively comprised of breastfeeding
has various beneficial outcomes, such as reducing the risk of
GI diseases, allergies, colitis, and respiratory infections (16).

Besides conferring protection against these short-term outcomes,
breastfeeding also reduces the long-term risks of developing
diseases like type 2 diabetes and obesity (17). In analogy to
breast milk, raw, unprocessed, bovine milk is a rich source of
immunomodulatory components (18–20). Studies have indicated
that it may protect against common respiratory infections in
infants that consume unprocessed bovine milk (21). In addition,
epidemiological evidence shows a clear association between the
consumption of raw cow’s milk and the prevention of allergy
development (22–29). Epigenetic mechanisms that are regulated
by many immune processes can thereby influence the course of
allergic diseases.

Epigenetic mechanisms (Box 1) and transcription regulatory
factors allow a flexible adaptation in the fetus. They neonate
to a fluctuating external environment whereby heritable, non-
DNA encoded, alterations in gene expression patterns occur.
Especially relevant in early life, several factors drive the
epigenetic changes that occur throughout life: environment
(e.g., exposure to microbial components in inhaled dust),
diet (e.g., components present in breast milk and bovine
milk), and the GI microbiota and its metabolites (e.g.,
through the production of short-chain fatty acids [SCFA]
after fermentation of dietary non-digestible oligosaccharides).
Thus, environmental, dietary, and microbiota-derived epigenetic
modifications during gestation and early life can shape future
immunity to the development of diseases like obesity, type
2 diabetes, allergy, asthma, and infections. Most of our
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BOX 1 | Epigenetic mechanisms.

Epigenetics refers to systems that control gene expression in a heritable fashion without changing the genomic sequences. The epigenome is much more flexible

than the genome and shows different phenotype variations that are influenced by environmental factors and dietary habits. Epigenetic mechanisms include DNA

methylation, histone modifications, and RNA interference by microRNAs (miRNAs) (See in this Box figure). Epigenetic mechanisms thus contribute to the regulation

of gene expression at the level of transcription by DNA methylation and by modifying chromatin accessibility through posttranslational modifications of histones, and

after transcription by mRNA silencing. These epigenetic mechanisms can regulate gene expression by modifying the accessibility of the DNA to transcription enzymes

without altering the DNA nucleotide sequence, influencing stability of mRNA or translation efficiency, and others (30–32). The transfer of a methyl group onto DNA,

performed by DNA methyltransferases (DNMTs), can directly regulate the rate of gene transcription. DNA demethylation is catalyzed by several enzymes serving as

controllers for the equilibrium of DNA methylation (33). For example, methylation of DNA in the promoter regions of cytokines can influence immune responsiveness

by steering Th cell differentiation into Th1, Th2, Th17, or Treg (34, 35). For more details see Box 2. In addition, histone modifications like acetylation, methylation,

phosphorylation and others can also modulate the development and activity of immune cells. Histone acetylation is an important remodeling activity that is catalyzed

by a series of enzymes called histone acetyltransferases (HATs). Acetylation is generally considered as a permissive activity that facilitates gene transcription. On the

contrary, histone deacetylases (HDACs) reverse HAT activity and tighten up the folding of DNA around the histones and make them less accessible for transcription

factors (31, 36). The interplay between HATs and HDACs determines the histone acetylation balance and regulates the gene expression (37, 38) and production of

pro-inflammatory (IL-1β, IL-5, IL-6, IL-8, IL-12, and TNFα) and anti-inflammatory mediators (IL-10). Histone methyltransferases (HMTs) and demethylases (HDMs)

serve as controller enzymes for the equilibrium of histone methylation (31). Finally, RNA interference can occur by small noncoding RNAs, most notably miRNAs that

are found in biological fluids as well as in extracellular vesicles (e.g., in milk). MiRNAs represent short noncoding RNA molecules of 18 to 23 nucleotides that control

gene expression by inducing mRNA degradation and/or inhibit post-transcriptional translation. As a result, specific miRNA can silence selective gene expression (32).

For example, milk contains extracellular vesicles or exosomes that contain a wide range of microRNAs, including miR-21, miR-29b, miR-148a, and miR-155 that is

known to influence Foxp3 expression and Treg development (39).

current knowledge on the environmental and dietary effects
on epigenetics and early life immune function comes from
epidemiological findings which indicate that children growing
up on farms have a decreased risk of developing allergies,
especially asthma. For this reason, we will focus this review
on the effects of maternal nutrition during pregnancy, the
effects of bioactive components in human and bovine milk,
and the environmental factors in early life that can contribute
to the epigenetic mechanisms involved in the course of
allergic diseases.

EPIGENETIC REGULATION OF TH2
DEVELOPMENT IN ALLERGIC DISEASE

Epigenetic changes have been strongly associated with allergies
and asthma and might thereby serve as biomarkers. The role of
epigeneticmechanisms, particularly DNAmethylation, in allergic
diseases is at the interface of gene regulation, environmental
stimuli, and developmental processes, thereby determining the
pathogenesis of asthma and allergy. Alterations of the DNA
methylation status in the genes specific for a different subset of T
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helper (Th) cells that are considered to be a good example of how
epigenetic modulation can influence the development of asthma
and other allergic diseases.

The differentiation of naïve CD4+ T cells into Th
subpopulations is strictly regulated, with changes in epigenetic
marks at main lineage-determining loci encoding transcription
factors like GATA3, RORγt, TBX21, and Foxp3 playing a pivotal
role. These changes affect the differentiation into mature Th
subpopulations, such as Th1, Th2 (and Th9), regulatory T
cells (Treg cells), and Th17 (30, 35, 47, 48). In naïve CD4+ T
cells, which express a moderate level of GATA3 mRNA after
receiving signals via the T cell receptors (TCRs) in the presence
of IL-4, activated STAT6 proteins bind to the GATA3 gene
locus, driving Th2 differentiation, which is a characteristic in the
development of allergy. Differentiation of human CD4+ cells
into the Th2 subtype is accompanied by the induction of DNase I
hypersensitive (DHS) sites and CpG demethylation around these
(DHS) regions within the IL-4 and IL-13 promoters. Extensive
studies of the Th2 cytokine locus control region have shown
that specific sites undergo rapid demethylation during Th2
differentiation (49).

In addition to DNA methylation, histone modifications
are also important in guiding T-cell differentiation. T-bet
and GATA3 transcription factors control lineage-specific
histone acetylation of IFN-γ and IL-4 loci during Th1/Th2
differentiation. Rapid methylation of H3K9 and H3K27
residues (repressive marks) at the IFN-γ locus was associated
with differentiating toward Th1 cells, while demethylation of
H3K9 and methylation of H3K27 was associated with Th2
differentiation (49). Epithelial alarmins (IL-25, IL-33, thymic
stromal lymphopoietin [TSLP]) induce an inflammatory
response in the respiratory mucosal membrane. IL-33 binds to
its receptor ST2 on memory Th2 cells and induces epigenetic
changes of the IL-5 gene, resulting in the generation of IL-
5-producing Th2 cells (47). Thus, Th2 differentiation, which
is characteristic of allergy, is triggered by phosphorylation of
STAT6 signal transducers and expression of GATA3 and Th2
cytokines, including IL-4 (47).

Demethylation of the IL-4 promoter leads to allergic
sensitization (48). Th1 differentiation is in turn triggered by
phosphorylation of STAT4 signaling, and expression of the
transcription factor T-bet and cytokine. For a more detailed
description of epigenetics and T cell development, see Box 2.
Asthmatic individuals show a lower histone deacetylase (HDAC):
histone acetylase (HAT) ratio, i.e., a relative decrease of HDAC
enzymes, which is corrected by proper anti-asthma treatment
(50). The DNA methylation status of Foxp3 is regulated within
a highly conserved region within the CpG-rich Treg-specific
demethylated region with a differential Foxp3 demethylation

status in children with an active cows milk allergy (CMA) and

acquisition of immune tolerance (51).

EFFECTS OF EARLY LIFE NUTRITION ON
ALLERGIC DISEASE

The WHO recommends exclusive breastfeeding for infants
during the first 6 months of life, and that it should be given

alongside complementary feeding up until children are 2 years
old (52). If mothers are unable to breastfeed, many children
receive early life nutrition alternatives that are based on bovine
milk. Therefore, this section of the study is focused on breast
milk, bovine milk, and their components.

Effects of Maternal Diet in Pregnancy and
Breastfeeding on Allergic Disease
There is increasing evidence to suggest that the maternal
diet during pregnancy and breastfeeding can have sustained
effects on immunological outcomes in the infant and even have
ramifications for their health later in life. The maternal diet
can modify some immune supporting micronutrients in breast
milk, such as the fat-soluble vitamins A and D, as well as
the water-soluble B vitamins, and polyunsaturated fatty acids
(PUFA), but maternal diet does not influence other components
such as iron and zinc (53). Although there is some conflicting
data, supplementation of maternal diet with vitamins and
micronutrients during pregnancy and breastfeeding does not
seem to prevent infections and allergies in offspring (54, 55).

Supplementation of Maternal Diet With PUFA
Long-chain PUFA (LCPUFA) induce inflammation by
modulating inflammatory mediators like prostaglandins
and immunomodulatory factors like IL-10 and TSLP (56).
Consumption of omega-3 PUFA correlates with the inhibition
of TLR4 signaling and thereby the production of inflammatory
cytokines (IL-1, IL-6, and TNFα), which is reflected by a
lower risk of allergies, whereas consumption of saturated fats
and omega-6 PUFA, a potential trigger for TLR4-induced
inflammation, has been associated with a higher risk of allergies.
In addition, PUFA supplementation during pregnancy was
associated with a reduction in allergic outcomes after birth
(57, 58), but not when it was supplemented to infants (8, 59–61),
suggesting that pregnancy is an important time that influences
the development of the immune system.

Supplementation of Maternal Diet With

Pre-/Probiotics
Probiotics are living microorganisms which, when administered
in adequate amounts, confer a health benefit to the host. They
generally exist of Lactobacillus, Bifidobacterium, or Escherichia
species, which are commonly found in a normal microbiota.
Prebiotics are mostly dietary fibers that are non-digestible
food ingredients and beneficially affect the host’s health by
selectively stimulating the growth and/or activity of some
genera of microorganisms in the colon, generally lactobacilli
and bifidobacteria.

Intestinal microbiota strongly influence the maturation of
the immune system (62) and particularly the development of
immune tolerance, because they affect the Th1/Th2/Th17/Treg
balance. The microbiota composition is modulated by dietary
components that help shaping and timing of the composition
of the early microbiome (63, 64). In addition, microbiota can
be transmitted directly into the uterus during fetal development,
passage through the birth canal or during cesarean-section,
breastfeeding, and when providing care to the offspring (65, 66).
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BOX 2 | Epigenetics and T-cell subset development.

The differentiation of naïve CD4+ T cells upon antigen exposure into effector T helper (Th) subsets (Th1, Th2, and Th17) or induced regulatory T (iTreg) cells relies

on epigenetic regulation and the establishment of cell-fate programs (40, 41). DNA methylation and chromatin modifications at pivotal loci in Th cells such as IFN-γ ,

IL-4 and, Foxp3 contribute to the formation of stable, heritable gene expression patterns. Methylation of CpG dinucleotides specially at promoter or other regulatory

regions of genes is generally considered a repressive feature causing silenced genes what mostly seen in (embryonic) stem cells. Targeted loci DNA demethylation is

required during early or late hematopoietic cell differentiation (41, 42). For instance, DNA demethylation plays a role in the expression of Th2 cell-related cytokine, IL-4

(43) and, Treg cell-related regulators (44, 45). Besides DNA methylation, histone modifications including acetylation and methylation have a role in the development

of Th cell lineage. Histone acetylation, associated with the control of gene expression by condensing or relaxing the chromatin structure to repress or activate

transcription, respectively, regulates the expression of several inflammatory mediators of the immune system. In this regard, modifications of histones occur in the

enhancer and promoter regions of the STAT4 and STAT1 transcription factor binding sites upstream of the IFN-γ and TBX21 (T-bet) gene to direct Th1 differentiation.

In contrast, activation of STAT6 in response to IL-4 occurs leading to the expression of IL-4 and GATA3 transcription factor genes in Th2 differentiating cells. Driving

naïve CD4+ T cells toward Th17 phenotype requires STAT3 activation followed by expression of RORC gene encoding RORγt transcription factor and subsequently

the production of IL-17 cytokines. Alternatively, upon naïve CD4+ T cells exposure to TGF-β, STAT5 transcription factor engages leading to changes in Foxp3 gene

promoter site and commitment of cells into Treg fate. These specific histone modifications lead to engagement of lineage-specific key transcription factors which

ensures Th phenotype stabilization and prevents the cells from skewing toward alternative commitments (35, 42, 46).

Food supplements, which are often termed functional foods,
have been used to alter, modify, and reinstate pre-existing
intestinal microbiota (67). Supplementation of prebiotics,
probiotics, and synbiotics (68–74), as well as PUFA (58, 69, 75–
77) during pregnancy and breastfeeding, may reduce eczema
in infants. This is further supported by preclinical studies,
which indicated that supplementing the maternal diet with
specific pre- or probiotics affects milk composition (78) and
that supplementing non-digestible oligosaccharides diminished
allergic disease in offspring (79–81). This may, in part, be linked
to the production of SCFA by the intestinal microbiota (82–86).
Even though maternal diet during pregnancy and breastfeeding
can modulate the prevalence of allergy in the offspring, the
potential role of breastfeeding in allergy prevention is still under

discussion, as it seems to be linked to variations in breast milk
composition rather than to breastfeeding per se (53, 87).

Effects of Consumption of Raw Milk and
the Farming Environment
Most of our current knowledge on the effects of environment
and diet on epigenetics and early life immune function is based
on epidemiological findings, which indicate that children who
grow up on farms have a decreased risk of developing allergies,
especially asthma. Allergies are multifactorial, Th2-driven
diseases that are triggered by gene-environment interactions.
Environmental factors can interact with genes involved in asthma
and allergy development via epigenetic mechanisms, such as
DNA methylation and histone modifications. These epigenetic
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mechanisms can regulate gene expression by modifying the
accessibility of the DNA to transcription enzymes without
altering the DNA nucleotide sequence (30, 33). In addition to the
consumption of raw cow’s milk (22–29), contact with livestock
and animal feed along with other farm-related exposures
have shown independent protective effects, indicating that a
farm/country lifestyle can contributes to a reduced risk of asthma
and allergies in children (25, 27, 88–90). Interestingly, the timing
of these exposures seems to be crucial, with the strongest effects
observed for exposures that occurred in utero and during the
first year of life (23, 91, 92). Since the protective “farm effect”
was demonstrated to sustain into adult life (25), effects might be
mediated via epigenetic inheritance/regulation.

Several epigenome wide-association studies concerning
allergies have been performed and reviewed (30). These studies
showed that allergic disease is accompanied by changing DNA
methylation patterns in Th2, Th1, Th17, Th9, and Treg subsets in
the affected tissues. DNA methylation changes by demethylation
and increased FoxP3+ regulatory T cell numbers in peripheral
blood mononuclear cells were shown in 4.5-year-old farm
children (93). These regulatory T cell numbers were negatively
associated with doctor-diagnosed asthma. It remains to be seen
if these changes also precede the onset of allergic disease and can
be predictive for allergy development, but questions remain as to
how are these epigenetic changes induced. It has been suggested
that the epigenome is affected by the farm environment. The
first indication for a potential role of epigenetic regulation in
the protective “farm effect” was provided by Slaats et al. who
demonstrated that DNA methylation of the promoter region
of CD14 in placentas of mothers living on farms was lower
compared to mothers not living on a farm (94). These lower
DNA methylation levels were reflected in higher CD14 mRNA
expression levels (95). Interestingly, a higher expression of
the CD14 gene was also observed in farmers’ children (96).
Prenatal farm exposure was also associated with increased gene
expression of other innate immune receptors, such as TLR5,
TLR7, TLR8, and TLR9, at birth (97, 98) and TLR2 and TLR4 in
farm-raised children at school age (95, 96). Maternal exposure
to farm environments increases the number of T regulatory
(Treg) cells in the cord blood of infants, which is associated with
decreased Th2 cytokines and may be linked to demethylation
at the FOXp3 promoter (99). Whether epigenetic inheritance is
underlying these effects requires further investigation. Further
evidence that the farm environment affects the epigenome was
provided by a pilot study which showed hypermethylation of
genes related to IgE regulation and Th2 differentiation in cord
blood from farmers’ as compared to non-farmers’ children (100).
Interestingly, at least part of the protective effect triggered by
those factors has been ascribed to the farm bacteria, for instance,
Acinetobacter lwoffii (101, 102), with a pivotal contribution
of downstream epigenetic mechanisms, specifically histone
modifications (103).

Milk Components
Human milk contains a unique combination of lipids, proteins,
carbohydrates, vitamins, and minerals and thereby provides
an ideal source of nutrition for the healthy growth and

development of a newborn (104). However, human milk is more
than nutrition as it also contains bioactive components that
can modulate the immune system, such as immunoglobulins,
lactoferrin, human milk oligosaccharides (HMO), long-chain
fatty acids, and anti-inflammatory cytokines (18, 105, 106). Most
of the immunologically relevant components in breast milk
are also found in bovine milk (18). Several key components
of breast milk that are not present at high enough levels
in bovine milk are added to infant formula to provide the
crucial nutrients needed. These include prebiotics or even single
HMO like 2’-fucosyllactose (as an alternative to the complex
mixture of HMO in breast milk), lactoferrin, PUFA, vitamins,
and minerals.

Non-digestible Milk Oligosaccharides
One of the major differences between human breast milk and
bovine milk is the amount and diversity of the HMO, i.e.,
complex, non-digestible oligosaccharides (107, 108). The HMO
in breast milk constitutes about 20% of the milk saccharides
next to the major carbohydrate in milk, lactose. Human breast
milk contains ∼5–15 mg/ml of these non-digestible HMO,
consisting of up to 200 or more unique structures. In contrast,
bovine milk only contains a few of these oligosaccharides,
at much lower levels. One injected, HMO survive passage
and digestion through the stomach and small intestine and
reach the colon, where they are fermented into SCFA like
acetate, butyrate, and propionate (107, 108). In addition, they
shape the microbiota by selectively enhancing the growth of
bifidobacteria and lactobacilli. These SCFAs serve as an energy
source for colonic intestinal tissue and shape the interactions
between the host and its gut microbiota. Furthermore, SCFA
reduces intestinal pH, limit outgrowth of Enterobacteriaceae,
and support intestinal barrier function. HMO is the key factor
in shaping the development of immunity and early microbiota
after birth. HMO have effects on microbiota and infections
(107, 108). Of these, 2’-fucosyllactose is the HMO that is
most abundantly present in breast milk and has therefore been
chosen as the first HMO that was introduced in infant nutrition
in 2018.

Prebiotics are non-digestible oligosaccharides like galacto-
oligosaccharides (GOS) and fructo-oligosaccharides (FOS),
and have widely been used in infant nutrition to mimic
the bifidogenic- and SCFA-inducing effect of HMO. There
is some evidence that prebiotic oligosaccharides in infant
nutrition may prevent eczema in infants (109–112). It is not
clear if these effects also extend to the prevention of other
allergic diseases, as only one study to date has reported
the effects of prebiotics on asthma and food allergy (113).
For probiotics, effects are also seen when they are added
in infant nutrition (68). As can be seen in detail in Lomax
and Calder (114), several studies have reported that infant
formula supplemented with prebiotics have a trend toward
or even a significant preventive effect on the occurrence
of gastrointestinal infections. Trends toward decreased fever
episodes, antibiotic use, and upper respiratory tract infections
(URTI) have been described. Two studies, by Bruzzese et al.
and Arslanoglu et al. and performed with scGOS/lcFOS,
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supplemented very young infants from early after birth for
6–12 months (115, 116). Both studies showed a significant
reduction in gastroenteritis (115) and a reduction in the
total number of infections (116). A study from Westerbeek
et al., in which scGOS/lcFOS were combined with acidic
oligosaccharides (pAOS) showed a non-significant tendency
toward fewer serious infections (117). This study was, however,
conducted over a shorter time period, and the infants were
preterm. In two other studies infants were older than 6 months
(118, 119) were supplemented with oligofructose, one did
not show an effect on diarrhea, whilst the latter observed
a protective effect against diarrhea. Since these components
and their effects have been reviewed in detail previously, we
will not address them in detail here, and will instead, only
focus on their potential epigenetic and long-lasting immune
health effects.

Bioactive Components Besides Non-digestible

Oligosaccharides
Both human milk and bovine milk contain many other bioactive
components that can modulate immune function [reviewed in
(18, 19, 105–107)]. The components in human and in bovinemilk
that can be isolated in large quantities have largely been studied
as separate entities, because they are potential infant nutrition
ingredients. Several of these components, such as transforming
growth factor-β (TGF-β) (120), bovine lactoferrin (121–124),
bovine alkaline phosphatase (19, 125), bovine osteopontin (126,
127), and the milk fat globular membrane (MFGM) (128), as
well as milk exosomes (39), have been linked to immunological
outcomes with varying levels of evidence (infection, allergy).
Another milk component that may have more sustained
immunological effects are bovine IgG antibodies. Where IgA
is the predominant immunoglobulin isotype in breast milk,
bovine milk has a larger amount of IgG (129). Bovine milk IgG
(bIgG) has been shown to bind to aeroallergens (130) as well
as to respiratory pathogens such as respiratory syncytial virus
(RSV), and can inhibit infection of human cells with human
RSV (131). Through the formation of immune complexes, bIgG
can enhance RSV-specific T cell responses (132). Similarly,
bovine colostrum, which is a rich source of IgG can prevent
the infection of mice with RSV (133). Different from adaptive
immunity, innate immunity was until recently believed to
lead to immune memory. However, vaccination studies have
shown that after vaccination—that is associated with cross-
protection to other pathogens—the innate immune response is
increased to the vaccine, but also other pathogens (134, 135). The
mechanism of this was elucidated in several mechanistic studies
and was shown to be dependent on epigenetic modification of
monocytes and macrophages (136–139). Even though epigenetic
modification was not directly shown, bovine IgG can induce
trained immunity in monocytes (140). In addition to possibly
preventing some of the epigenetic modifications induced by
infection with respiratory viruses, which would be the result
of the lower prevalence of respiratory tract infections (21),
bovine IgG may also directly modify subsequent innate immune
responses in infants.

(EPIGENETIC) EFFECTS OF HUMAN
BREAST MILK AND BOVINE MILK ON
ALLERGY OUTCOMES LATER IN LIFE

Several epigenome wide-association studies on allergies have
been performed, as reviewed elsewhere (30). These studies
have shown that allergic disease is accompanied by changing
DNA methylation patterns in Th2, Th1, Th17, Th9, and Treg
subsets in affected tissues. The epigenetic mechanism behind
T cell subset differentiation is strongly affected by essential
micronutrients (folate, vitamins B2, B6, and B12, methionine
choline, and betaine) (141), bioactive food components (tea
polyphenols, genistein from soybean, isothiocyanates from plant
foods, curcumin, and curcumin-derived synthetic analogs) (142),
total diet (fiber, protein, fat, and hormones) (143), ethanol,
and carbohydrates (144). Dietary compounds, especially vitamin
D, folate, and zinc, also have the potency to interfere with
DNA methylation and thereby steer the Th1-Th2 balance.
In addition to these effects on DNA methylation, prenatal
supplementation with PUFA or maternal levels of folate, and
microbiota-derived SCFA have been associated with changes in
histone acetylation patterns at important T cell differentiation
regulating genes (Box 2). After birth, these immunomodulatory
dietary components are also transferred to the newborn via
breast milk.

Epigenetic Effects of Breastfeeding, Raw
Milk, and Exposure to the Farming
Environment in Early Life
As already mentioned, the mechanisms underlying the anti-
allergic effects of human milk are most probably complex,
as human milk contains not only nutritional substances but
also functional molecules including polysaccharides, cytokines,
proteins, and other components forming a real biological system
which can modulate and shape the innate and adaptive immune
responses of the infant in very early life (104, 145). If and how
those components affect the epigenetic status of the growing child
and what consequences this has for allergy development need
to be addressed in future studies. Considering the observations
made about farm milk (see below), as well as indications that
breastfeeding may be capable of changing DNA methylation
patterns in the offspring (146), such studies are justified.

Epigenetic modulation of the Foxp3 gene by farm milk was
demonstrated in an animal model. In this study, exposure to raw,
unprocessed, cow’s milk for 8 days, increased histone acetylation
of Foxp3 in splenocyte-derived CD4+ T cells compared to
processed milk exposure (147). In the same study, mice were
subjected to an ovalbumin-induced food allergy model after milk
exposure and, interestingly, histone acetylation of Th2 genes was
lower in raw milk-pretreated mice compared to processed milk-
pretreated mice. These mice also showed a reduction in food
allergic symptoms (147). As for farm exposure, exposure to raw
milk in the first year of life was also associated with changes in
gene expression of the innate immune receptors (98). Moreover,
it was demonstrated that a polymorphism in the CD14 gene
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influenced the protective effect of raw cow milk consumption
on allergic diseases (148). DNA demethylation and increased
Foxp3+ in the regulatory T cell numbers in the peripheral blood
mononuclear cells of 4.5 year-old children were also shown
in farm children (93). These regulatory T cell numbers were
negatively associated with doctor-diagnosed asthma. It remains
to be seen if these changes also precede the onset of allergic
disease and can be predictive of allergy development.

There is evidence that the epigenome is affected by the farming
environment. The first indication for a potential role of epigenetic
regulation in the protective “farm effect” was provided by Slaats
et al. who demonstrated that DNA methylation of the promoter
region of CD14 in placentas of mothers living on a farm was
lower compared to mothers not living on a farm (94). These
lower DNA methylation levels were reflected in higher CD14
mRNA expression levels (95). Interestingly, a higher expression
of the CD14 gene was also observed in the children of farmers
(96). Prenatal farm exposure was also associated with increased
gene expression of other innate immune receptors, such as TLR5,
TLR7, TLR8, and TLR9, at birth (97, 98) and TLR2 and TLR4
in farm-raised children at school age (91, 96). Maternal exposure
to farming environments increased the number of Treg cells in
the cord blood of infants, which is associated with decreased
Th2 cytokines and may be linked to demethylation at the Foxp3
promoter (50). Whether epigenetic inheritance is the underlying
cause of these effects requires further research. Additional
evidence that the farm environment affects the epigenome was
provided by a pilot study that showed DNA hypermethylation of
genes related to IgE regulation and Th2 differentiation in cord
blood from the children of farmers as compared to the children
of non-farmers (100).

Epigenetic Effects of miRNA Containing
Extracellular Vesicles (Exosomes)
Interestingly, both human and cow’s milk contain extracellular
vesicles, or exosomes, that are resistant to the acidic environment
in the stomach and RNAses in the GI tract. These exosomes
contain a variety of especially immune function-related
microRNAs (miRNAs). miRNAs represent short noncoding
RNA molecules that control 40–60% of the total gene expression
by inducing mRNA degradation and/or post-transcriptional
inhibition of translation. As a result, specific miRNA can silence
selective gene expression. The expression of a single gene can
be regulated by several miRNAs, and likewise, a single miRNA
can regulate over 100 genes (32, 149). This activity thereby
constitutes an epigenetic mechanism by which nutritional factors
can influence immune activity or the induction of tolerance
by affecting the Th1-Th2 balance. Bovine milk exosomes
are taken up by human macrophages (150) and epithelial cells
(151, 152), exosomes become systemically available in the body of
laboratory animals upon oral delivery (153), and bovine miRNA
are detectible in the blood after drinking pasteurized milk (154).
However, systemic availability could not be demonstrated for
breast milk derived exosomes (155) or vegetable derived miRNA
(156). Breast milk-derived exosomes were described in 2007
to enhance Treg development in vitro (157). Based on miRNA

content, bovine milk exosomes contain immunoregulatory
miRNAs, like miRNA155, that are involved in the development
of Tregs and are thought to play a role in the effect of raw
milk consumption on asthma (39). In addition to allergy, orally
delivered bovine milk exosomes ameliorated arthritis in a murine
model (158), and recent evidence also links milk exosomes to
the prevention of necrotizing enterocolitis and intestinal damage
in in vitro and in vivo investigations (159, 160). These studies
suggest that miRNAs in human and raw bovine milk exosomes
may have epigenetic effects in infants.

Epigenetic Effects of SCFA
Several studies have implicated the SCFA butyrate, propionate,
and acetate as epigenetic modifiers of early life immunity,
especially in the development of asthma (161). In addition to
regulating Treg differentiation and histone acetylation, SCFAs
can induce effector T cell differentiation in secondary lymphoid
organs by inhibiting endogenous HDAC activity independent
of activation of G-protein-coupled receptor (GPCR). In more
detail, SCFA can modulate diverse cell processes by two
mechanisms, either via interacting with the GPCR (GPR43,
GPR41, GPR109A) on the plasma membrane or following a
receptor-independent entrance to the cells (162). SCFA entry
occurs through passive diffusion or actively by the involvement
of two transporters, namely, monocarboxylate transporter
1 (MCT1/SLa16a1) and sodium-coupled monocarboxylate
transporter 1 (SMCT1/SLc5a8). These receptors and transporter
molecules are widely present in immune and non-immune
cells (162, 163). This effect is highly pronounced for butyrate
and to a lesser extent for propionate and acetate (164–166).
HDAC inhibition allows HATs activity leading to histone
hyperacetylation and subsequently an altered gene expression
(37) which might, for instance, result in the proliferation
of Treg cells (167–169). The significance of this mechanism
is illustrated by the fact that bovine, but not human, milk
triglycerides contain a relatively high concentration of the
SCFA butyrate (18). Altogether, present evidence implies
that HDAC inhibitory activity of SCFA might be cell and
tissue dependent, and the gene expression pattern is related
to the cellular stage and other environmental signals. If
bovine milk consumption is associated with decreased allergy
prevalence, does this also mean that milk components can
affect epigenetic mechanisms? There is no in vivo evidence
that the induction of SCFA by sialyllactose when ingested in
bovine milk, but sialyllactose has been reported to induce
SCFA production in in vitro fecal microbiota cultures (170)
and may thus affect histone acetylation in infants. A high
fiber diet (resulting in SCFA production in the colon) or
direct feeding of SCFA has been shown to prevent airway
inflammation in animal models (84, 85), and SCFA levels in fecal
samples of children associated inversely with sensitization to
aeroallergens (171, 172).

In addition to allergies, intestinal immunity can also be
influenced by microbiota-derived metabolites. For example,
tryptophan metabolites can act as aryl hydrocarbon receptor
(AhR) ligands, inducing IL-22 and antibacterial peptide
production (173), SCFA can directly support the intestinal
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epithelial barrier, and bile acids can also be metabolized by
the microbiota and influence intestinal barrier function and
immunity (174). Two studies reported a decreased risk of
wheezing in infants because of high maternal dairy intake
(175, 176). Taken together, alterations in the local cellular
microenvironment and the microbiome (56) allow milk to
induce epigenetic changes in both maternal and neonatal
nutrition-mediated genes, which can ultimately affect immune
programming in the offspring (177).

CONCLUSIONS

This review summarizes current knowledge on the potential
effects of human and bovine milk on neonatal immunity and
epigenetic programming and its possible consequences on the
development of allergies in early childhood and beyond (see
Figure 1).

Breast milk is the food of choice for newborns and infants.
When breast milk is not sufficiently available, cow’s milk based
formula is the best alternative, and thus cow’s milk has become
an integral part of early life diet.

Several epidemiological studies that have shown that exposure
to a farm environment as well as to raw/unprocessed cow’s milk
in the prenatal period and early childhood is associated with
protection against the development of asthma and other allergies
later in life. Many cow’s milk components have been shown
to have similar effects on human immune cells as their breast
milk counterparts.

Some of the molecular pathways that may explain the
association between the consumption of raw milk asthma and
allergy may be linked to epigenetics. Epigenetic mechanisms

like DNA methylation, but also histone modifications, and non-
classical epigenetics represented by miRNA may all contribute to
the effects induced by raw cow’s milk.

However, milk and dairy products are subject to industrial
processing to ensure microbiological safety. As a result, milk
proteins can be denatured, and lose their functional activity. In
addition, glycation of milk proteins is thought to increase the risk
of developing cow’s milk allergy, illustrating that preserving milk
proteins and preventing glycation may be important innovations
to help prevent allergies.

Based on what is currently known on immunological and
epigenetic effects that can be exerted by human and different
types of bovine milk, future research should focus on enhancing
the functional (immunological as well as epigenetic) activity of
milk components in early life nutrition, and on establishing
epigenetic markers of immunological responses to milk. These
could be especially important for diagnostic purposes and
assessing the risk of developing CMA. Knowledge gathered
during studies on the epigenetic effects of milk can be used
in the future to drive the development of preventive or
therapeutic anti-allergic strategies based on components that
affect epigenetic mechanisms.

Finally, the continuation of epidemiologic and mechanistic
studies on the effects of the components of breast and bovine
milk on human immune function and health will increase our
knowledge and help in finding potential applications that may
help prevent allergies in the neonatal period.
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