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ABSTRACT We report seven chicken megrivirus genome sequences identified in
chicken fecal samples from a broiler farm in The Netherlands. The sequences were
determined using metagenomic sequencing and would expand our understanding
of the genome diversity of megriviruses.

Viruses in the Picornaviridae family possess a positive-sense single-stranded RNA ge-
nome and cause a broad range of diseases in humans and animals (1). Among the

63 genera in this family, at least 15 genera, including Megrivirus, have been identified
from avian sources (2). Megriviruses have been detected in both healthy and diseased
poultry (3, 4) and are suspected to cause transmissible viral proventriculitis in chickens
(5) and hepatitis in turkeys (6). Here, we report 7 nearly complete megrivirus genome
sequences identified from 7 out of 8 pooled chicken fecal samples that we sequenced
as part of a virome profiling study of farm animals. The samples consisted of pooled
fresh fecal droppings from 3 to 4 chicks (Gallus gallus domesticus), collected in the
same flock during weeks 4 and 5 of the production cycle from a broiler farm in June
2019 in The Netherlands (Table 1). No clinical signs in the examined flock were
reported at the time of sampling.

The genome sequences of the virus were generated using metagenomic sequenc-
ing. The fecal suspension (30% [wt/vol] in phosphate-buffered saline) was centrifuged
for 10min at 10,000� g. The supernatant was collected and treated with TURBO
DNase (Invitrogen). Virion-protected nucleic acid was extracted using the QIAamp viral
RNA minikit (Qiagen). Reverse transcription was performed using nonribosomal ran-
dom hexamers (7) and SuperScript III reverse transcriptase (Invitrogen), followed by
second-strand cDNA synthesis using Klenow fragment 39–59 exo- (New England
BioLabs). The resulting DNA was subjected to library preparation using a Nextera XT
DNA library preparation kit (Illumina) following the manufacturer’s instructions. The
library was then purified and size selected using AMPure XP magnetic beads (Beckman
Coulter). The final library was sequenced in paired-end format on the Illumina MiSeq
platform using reagent kit v3 (600 cycles; Illumina). The total number of reads gener-
ated per sample ranged between 2,020,090 and 4,765,832. The raw reads were ana-
lyzed using the automated pipeline Genome Detective Virus Tool v1.126 (8), which uti-
lizes Trimmomatic (9) for adapter and quality trimming, DIAMOND (10) for viral read
identification, and metaSPAdes (11) for de novo assembly of the sorted viral reads. De
novo-assembled genome sequences were inspected and annotated using Geneious
v2020.2.3 (12). The lengths of the 7 nearly complete megrivirus genomes range from
8,993 to 9,592 nucleotides (nt). The depths of coverage range from 34� to 576�.
According to BLAST searches, these strains shared 83% to 84% identity at the nucleo-
tide level with chicken picornavirus 5 isolate 27C from Hong Kong (2008; GenBank
accession number KF979336), chicken megrivirus strain MG9567 from Brazil (2012;
MH806866), and Picornaviridae sp. isolates w3chi090pic1 and w3chi091pic1 from China
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(2018; MT138368 and MT138369, respectively). These reported genome sequences
shared 92% to 93% identity at the amino acid (aa) level when comparing viral polypro-
tein amino acid sequences. The pairwise nucleotide difference of the complete coding
region among the 7 strains ranges from 2 to 18 nt; the pairwise amino acid difference
ranges from 0 to 4 aa.

To conclude, we report 7 megrivirus genome sequences identified in The Netherlands.
The prevalence of these viruses might have been overlooked in the poultry population
thus far. Future studies should investigate the prevalence and diversity of megriviruses
and their potential clinical implications.

Data availability. The genome sequences described in this study have been depos-
ited in GenBank under the accession numbers MW054505 to MW054511. The raw reads
are available in the SRA under the BioProject accession number PRJNA670873.
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TABLE 1 Sequence data for 7 megrivirus strains

Sample
identifier

Production
wk no.

Total no.
of reads

No. of
megrivirus-
specific reads

Depth of
coverage (×)

Sequence
length (nt)

G1C
content (%)

GenBank
accession no.

SRA accession
no.

V_M_013 4 2,595,998 38,347 576 9,590 45.4 MW054505 SRX9349804
V_M_014 4 4,046,054 2,292 33 9,410 45.1 MW054506 SRX9349805
V_M_015 4 4,765,832 33,371 446 9,566 45.3 MW054507 SRX9349806
V_M_016 4 4,172,232 23,041 307 9,592 45.4 MW054508 SRX9349807
V_M_017 5 2,020,090 4,993 86 9,561 45.2 MW054509 SRX9349808
V_M_018 5 3,901,518 2,401 34 8,993 45.4 MW054510 SRX9349809
V_M_019 5 4,286,694 6,302 88 9,294 45.2 MW054511 SRX9349810
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