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By mapping the clinical pathophysiology of the novel coronavirus disease 2019 (COVID-
19) against insights from virology, immunology, genomics, epidemiology and
pharmacology, it is here proposed that the pathogen recognition receptor called toll
like receptor 9 (TLR9) might have a pivotal role in the pathogenesis of COVID-19. Severe
Acute Respiratory Syndrome Coronavirus 2, is causing the greatest global social and
economic disruption since world war II. Lack of a vaccine, lack of successful treatment and
limitations of the healthcare workforce and resources needed to safeguard patients with
severe COVID-19 on the edge of life, demands radical preventive measures. It is urgently
needed to identify biomarkers and drug candidates so that vulnerable individuals can be
recognized early and severe multi-organ complications can be prevented or dampened.
The TLR9 COVID-19 hypothesis describes a mechanism of action that could explain a
wide spectrum of manifestations observed in patients with severe COVID-19. The
introduced hypothesis proposes biomarkers for identification of vulnerable individuals
and positions TLR9 as a promising multifaceted intervention target for prevention and/or
treatment of COVID-19. TLR9 agonists might have value as prophylactic vaccine adjuvants
and therapeutic immune stimulators at the early onset of disease. Additionally, in this
current manuscript it is proposed for the first time that TLR9 could be considered as a
target of “inhibition” aimed to dampen hyperinflammation and thrombotic complications in
vulnerable patients that are at risk of developing late stages of COVID-19. The readily
availability of TLR9 modulating drug candidates that have reached clinical testing for other
disorders could favor a fast track development scenario, an important advantage under the
current high unmet medical need circumstances regarding COVID-19.
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INTRODUCTION

COVID-19 Unmet Need
The COVID-19 (Coronavirus disease 2019) pandemic, caused by the novel Severe Acute Respiratory
Syndrome Coronavirus 2 (SARS-CoV-2) has been declared a public health emergency of
international concern by the WHO Director General (WHO, January 29, 2020). The virus, first
identified inWuhan City, China, has spread worldwide, resulting in more than 65M confirmed cases
and over 1,5M cases (COVID19.who.int, December 6, 2020). At the time of this writing there are no
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validated specific therapies with proven effectiveness available for
prevention of mortality from COVID-19. Remdesivir has been
shown superior to placebo in shortening the time to recovery in
adults who were hospitalized with Covid-19 but no significant
benefit on mortality could be found (Beigel et al., 2020).
Remdesivir is approved in certain countries for treatment of
severe COVID-19, while awaiting further evidence and supply.
Poor treatment options and the exceptional high burden of
COVID-19 on healthcare systems still demands radical
preventive measures including travel restrictions, social
distancing and lockdowns, resulting in the most severe global
social and economic disruption since world war II (Gossling et al.,
2020; Dhama et al., 2020). Time-lines to bring a safe and
efficacious vaccine for SARS-CoV-2 to market has been
proposed to take 12–18 months under ideal circumstances
(Billington et al., 2020). Even if intense collaboration and
resource allocation can speed up vaccine development it
remains a challenge to get the product to the most vulnerable
individuals in time. With daily rising new cases and next waves of
infections ongoing, it is urgently needed to identify and validate
biomarkers and drug candidates so that vulnerable individuals
can be recognized early and severe multi-organ complications can
be prevented or dampened. This will help to reduce mortality
rates andminimize the high pressure on the limited intensive care
capacity and healthcare workforce (Adams and Walls, 2020;
Dhama et al., 2020; Rolim Neto et al., 2020; Rabaan et al.,
2020). Drug candidates and cell-based therapies for
management of COVID-19 are being explored in ongoing
clinical trials and results are eagerly awaiting (Lythgoe and
Middleton, 2020; Khoury et al., 2020; Sanders et al., 2020;
Schijns and Lavelle, 2020). Meanwhile, there are still pieces of
the puzzle missing, which presents acute unmet medical needs.
Patients with severe COVID-19 display a wide array of
complications affecting multiple organs including the lungs,
cardiovascular system, muscles, brains, liver and kidneys.
Further unraveling the mechanisms underlying severe COVID-
19 pathology is essential to uncover biomarkers and therapeutic
concepts while making efficient use of resources available to allow
rapid development.

TLR9 COVID-19 Hypothesis
Toll-like receptors (TLRs) are a family of 13 conserved
transmembrane receptors that are at the forefront of directing
innate and adaptive immune responses against invading bacteria,
fungi, viruses and parasites (Akira, 2003; Takeda and Akira, 2004;
Pasare and Medzhitov, 2005). When TLRs recognize structurally
conserved pathogen-associated molecular patterns (PAMPs) they
recruit intracytoplasmic TIR domains and specific adaptors such as
MyD88, TIRAP andTRIF to control intracellular signaling pathways
leading to the synthesis and secretion of appropriate cytokines and
chemokines by cells of the immune system (Takeda and Akira,
2004). Among the TLR family, TLR3, TLR7, TLR8 and TLR9 are
predominantly localized in intracellular compartments and form the
key gatekeepers in detecting and combating viral infections (Akira
and Hemmi, 2003). TLR3 is activated by viral double stranded RNA
(dsRNA), whereas TLR7 and 8 recognize viral single stranded RNA
(ssRNA) and bacterial RNA. TLR9 recognizes RNA and DNA

motifs that are rich in unmethylated Cytosine-phosphate-
Guanine (CpG) sequences. CpG-motifs are higher expressed in
the bacterial and viral genome compared to the vertebrate
genome (Hemmi et al., 2000). TLRs can also be activated by
endogenous damage-associated molecular patterns (DAMPs)
which is believed to have a function in both immune system
alert and tissue homeostasis (Bianchi, 2007; Kono and Rock,
2008). Human mitochondrial DNA (mtDNA), evolutionary
derived from endosymbiont bacteria, contains unmethylated
CpG-motifs and is an example of a well-known DAMP that
triggers inflammatory responses directly via TLR9 during injury
and/or infection (Zhang et al., 2010). In the setting of COVID-19,
multiple TLRs are likely relevant in viral combat and investigations
of TLRs as therapeutic target are starting to emerge. Control of the
cytokine storm by means of immunomodulators, including TLR7
and TLR8 antagonists and inhibitors of cellular mediators
downstream of TLRs such as recombinant human IL-6
monoclonal antibody have been proposed and are currently
under clinical investigation (Ye et al., 2020; Felsenstein et al.,
2020; Lythgoe and Middleton, 2020; Poulas et al., 2020; Patra
et al., 2020). Moreover, the TLR7 agonist, Imiquimod, is
proposed as candidate to manage early stage COVID-19 patients
(Angelopoulou et al., 2020). The effectiveness of TLR9 agonists for
the use as vaccine adjuvants has also been suggested (Oberemok
et al., 2020).In contrast to the available papers that more broadly
focus on TLR3, 7 and 8, the here presented work, elaborates
specifically on the role of TLR9 in defense against SARS-CoV-2
and introduces the hypothetical positioning of exaggerated TLR9
activation in severe COVID-19 pathology. The hypothesis is in line
with our previously proposed synergistic disease driving effect of
TLR9 agonists in the setting of COPD (Bezemer et al., 2012). TLR9 is
broadly expressed on different cell types including epithelial cells in
the lungs and nasal mucosa, in muscles and brains, on plasmacytoid
dendritic cells and B cells, monocytes, macrophages, neutrophils,
megakaryocytes and platelets, T lymphocytes, and NK cells
(Hornung et al., 2002; Hayashi et al., 2003; Cognasse et al., 2005;
Roda et al., 2005; Fransson et al., 2007; Kabelitz, 2007) A link
between TLR9 activation and disease progression in COVID-19 is
not directly obvious, since clinical investigations regarding safety and
efficacy of inhaled TLR9 agonists in humans reported normal vital
signs and no serious adverse effects although some “subtle” effects
including moderate nature of flue like adverse events such as chills,
fatigue, headache, myalgia and fever have been shown but are
considered acceptable (Jackson et al., 2018). On the other hand,
TLR9 activation in the airways in mice using high dose CpG-motifs,
does lead to inflammation in the airways, ARDS, and sepsis
(Knuefermann et al., 2007; Schwartz et al., 1997). Moreover,
genetic mutations leading to TLR9 gain of function in human is
associated with immune-mediated disease and with a higher
incidence of ICU acquired infection (Chatzi et al., 2018; Ng et al.,
2010). The TLR9 COVID-19 hypothesis proposes that in specific
vulnerable patients, activation of TLR9 could be a silent but driving
force explaining the worsening of hyperinflammation and
thrombotic complications caused by SARS-CoV-2. Positioning
TLR9 in COVID-19 pathology, could explain multi-organ
complications and aligns with the fact that only a relatively small
proportion of patients infected with SARS-CoV-2 develop severe
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symptoms requiring ICU. Figure 1 depicts a set of circumstances
and a mechanism of action of the proposed contribution of TLR9 to
severe COVID-19 pathology in vulnerable patients. It should be
noted that the TLR9 COVID-19 hypothesis does not rule out
relevance of other TLRs in COVID-19 but rather highlights that
disease caused by SARS-CoV-2, could have a worse outcome in
people that are A) less well equipped to clear the virus, B) have to
deal with a lot of available TLR9 stimuli over a longer period of time
and, C) have high expression of functionally active TLR9. This
hypothesis is relevant because it can be translated into amultifaceted
window of opportunity for existing TLR9 modulating drug
candidates that, depending on the disease stage, initially could
stimulate, but later on preferably inhibit the TLR9 pathway in
vulnerable patients. Moreover TLR9 expression levels and
presence of TLR9 ligands are measurable and could potentially
provide biomarkers for better identification of a group of individuals
at risk for developing a more severe outcome of SARS-CoV-2
infection. High TLR9 expression levels can result from either
genetic predisposition, people are simply born with it, or TLR9
expression is upregulated due to underlying health conditions, which

will be explained further in the next sections. Examples of
synergistically acting triggers for TLR9 include CpG-motifs
from co-infecting pathogens, inhaled bioaerosols and organic
dust, and cigarette smoke (Bezemer et al., 2012; Bauer et al.,
2013; Martinez-Colon et al., 2019; Sun and Metzger, 2019). On
top of the previously mentioned mtDNA, released from damaged
host cells, also altered self-ligands, called carboxy-alkyl-pyrrole
protein adducts (CAPs), that are generated during oxidative stress,
are known to aggravate TLR9/MyD88 pathway activation (Zhang
et al., 2010; Panigrahi et al., 2013). CAPs have been shown to
promote platelet activation, granule secretion, and aggregation
in vitro and thrombosis in vivo (Panigrahi et al., 2013). It is
interesting to note that circulating mtDNA levels increase with
age which is a familiar trait contributing to chronic inflammation,
so called “inflamm-aging” in elderly people (Pinti et al., 2014). This
TLR9 axis of inflamm-aging could have relevance in the context of
COVID-19 where older age is associated with greater risk of
development of severe complications of COVID-19. Figure 2
provides a summarizing overview of insight from different
disciplines that reason the hypothesis that TLR9 specifically

FIGURE 1 | TLR9-Covid-19 hypothesis. Set of circumstances suggested to drive COVID-19 poor outcome via TLR9 encompass; (A) viral load and levels of viral
RNA; (B) presence of other TLR9 triggers, and; (C) TLR9 expression levels. (D) Individuals with high accumulated levels of A, B and C are proposed to be at risk for
developing severe COVID-19 pathology. It is suggested that CpG motifs from SARS-CoV-2 reach TLR9 via ACE mediated viral uptake in the cell followed by RNA
translation and transfer of viral CpG-motifs to the endosome. Circulating CpGmotifs from virus and other sources could reach TLR9 via endocytosis or directly bind
to cell surface at an inflamed site. Dashed line indicates that activation of platelets and neutrophils can increase TLR9 expression levels at cell surface which is suggested
to drive a vicious circle of inflammation. Activated TLR9 induces downstream cascades via MyD88, leading to gene transcription, cytokine production and activation of
lymphocytes, neutrophils and platelets. The Uncontrolled prolonged activation of TLR9 is suggested to contribute to severe COVID-19 pathophysiology.
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could have a key role in disease caused by SARS-CoV-2. Further
clarification is provided in the next sections.

MULTIDISCIPLINARY CLUES THAT
REASON THE PROPOSED ROLE FOR
TLR9 IN COVID-19
Virology: Presence of TLR9—Activating
CpG-Motifs
In 2004, TLR9 has been linked to SARS coronavirus induced
disease because of the relatively high numbers of CpG motifs
in corona viral sequences (Ng et al., 2004). A paper by Ng et al.,
showed that human coronavirus 229E and Avian infectious
bronchitis virus both contain 3 copy numbers of the CpG
specific signaling motif GTCGTT, SARS-CoV viral sequence
contains 7 copies number while other viruses involved in
respiratory diseases have zero CpG motif copy numbers
(Human rhinovirus B, Human parainfluenza virus 1,
Human respiratory syncytial virus and human
metapneumovirus) (Ng et al., 2004). Suppression of CpG

motifs is a known mechanism of many mammalian RNA
viruses, including influenza virus for adaptation to human
host (Greenbaum et al., 2008). Evolving CpG suppression can
help the virus to escape from the Zinc Finger Antiviral Protein
(ZAP), which is a host antiviral factor that selectively binds to
CG-dinucleotide-enriched RNA sequences to degrade target
viral RNA (Luo et al., 2020; Gao et al., 2002; Takata et al.,
2017). In the context of SARS-CoV-2, ZAP, expressed in
human lung cells, has been identified as an important
antiviral effector of the IFN response needed to combat
SARS-CoV-2 (Nchioua et al., 2020). The authors showed
that knock-down of ZAP significantly increased SARS-CoV-
2 production in lung cells. The overall CpG composition of
SARS-CoV-2 is lower than for other members of the
betacoronavirus genus (Xia, 2020) but SARS-CoV-2 does
present specific CpG “hotspots” in genomically disparate
regions (Digard et al., 2020). The study of Digard et al.,
showed an over-representation of CpG-motifs within the
Envelope (E) open reading frame (E-ORF) and ORF10 of
SARS-CoV-2 which is well conserved across the sequences
obtained from bat, pangolin and human (Digard et al., 2020).

FIGURE 2 | Clues pointing toward drug target TLR9 for COVID-19. Unravelling the mechanism by which SARS-CoV-2 is causing disease is needed for
identification of vulnerable patients and for drug target identification. Pieces of the complex puzzle are being filled in by insight from various disciplines including virology,
genomics, immunology, clinical pathophysiology, epidemiology and pharmacology. It is proposed that TLR9 could fill in a blank spot worthwhile for further investigation.
The bullet points summarize the wide spectrum of observations that can be explained via the TLR9 COVID-19 hypothesis.
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Of the 4 major structural proteins of coronaviruses, the
enigmatic E protein, is the smallest protein, involved in
several aspects of the virus’ life cycle, such as assembly,
budding and envelope formation has also been implicated
in the pathogenesis of coronaviruses (Schoeman and
Fielding, 2019; Jimenez-Guardeno et al., 2014). During the
replication cycle, E is abundantly expressed inside the infected
cell, but only a small portion is incorporated into the virion
envelope (Venkatagopalan et al., 2015). Across the
Coronaviridae, E genes exhibit remarkably high variation in
CpG composition, with those of SARS and SARS-CoV-2
having much higher CpG content than other coronaviruses
isolated from humans. Moreover, E-ORF displays CpG
suppression in all human-infecting viruses except SARS-
CoV and SARS-CoV-2, suggesting a potential correlation
between CpG presentation and disease severity in human-
infecting coronaviruses (Digard et al., 2020). Notable about
ORF10 is that this tiny gene, located toward the end of the viral
genome, provides a short unknown protein or peptide that is
unique to SARS-CoV-2 and uniformly presented in different
geographical regions around the globe, and potentially a key
protein responsible for SARS-CoV-2 highly contagious nature
(Seema, 2020; Khailany et al., 2020; Koyama et al., 2020). The
high number of CpG-motifs present in the nucleotide
sequence of E-ORF and ORF10 which is unique and specific
to SARS-CoV-2 warrants further investigation of a potential
role of TLR9 activation in the highly severe and unique to
SARS-CoV-2 disease pathogenesis.

Immunology: Inflammatory Mediators and
Cellular Responses
Via the TLR pathways, including TLR9/MyD88, a plethora of
inflammatory mediators and cell types can be triggered such as
type 1 IFNs, TNFa, IL-6, IL-8, IL-10, IL-17 and activation of Th1
and Th17 lymphocytes, B cells, dendritic cells, neutrophils and
platelets (Hemmi et al., 2000; Bezemer et al., 2012; Mortaz et al.,
2010; Schwartz et al., 1997; Knuefermann et al., 2007; Greene
et al., 2005; Takeda and Akira, 2005; Tasaka et al., 2009; Panigrahi
et al., 2013; Hayashi et al., 2003). All these mediators and cell
types have also been identified as potential contributors to the so
called cytokine storm and thrombotic complications underlying
the multi-organ pathological condition in patients with severe
coronavirus infections (Li et al., 2020; Cheung et al., 2005;
Channappanavar and Perlman, 2017; Birra et al., 2020; Huang
et al., 2020; Tay et al., 2020). A clue pointing specifically toward a
role for TLR9 in defense against coronaviruses, arises from a
paper published in 2004 describing that in response to SARS-CoV
infection, TLR9 on human PBMCs from healthy donors was
surprisingly high expressed in comparison to other TLR receptors
(p-value of 0.016) (Ng et al., 2004). The array data from the
authors in vitromodel system showedmonocyte-macrophage cell
activation, coagulation pathway upregulation and cytokine
production together with lung trafficking chemokines such as
IL8 and IL17, which were possibly activated through the TLR9
signaling pathway because of the high TLR9 expression levels and
the Coronaviridae specific lack of CpG suppression in distinct

regions. The TLR9 COVID-19 hypothesis, further elaborates on
the idea that specific health conditions of the host that upregulate
TLR9 expression contribute to TLR9 mediated inflammation
which could potentially explain the differences in severity of
the immune response against SARS-CoV-2 between COVID-19
patients. A pro-inflammatory status of the host for instance can
drive susceptibility for TLR9 pathway activation by altering cell
specific TLR9 expression levels (McKelvey et al., 2011). Life style
factors such as a high fat diet and obesity are known to increase
TLR9 expression in visceral adipose tissue (Nishimoto et al., 2016
MAR; Thomalla et al., 2019 FEB). Exposure to cigarette smoke,
which is also a risk factor for severe COVID-19, causes increased
expression of TLR4 and TLR9 on lung CD8(+) T cells of COPD
patients and causes increased cytokine production (Nadigel et al.,
2011 NOV 9). Upregulation of TLR expression in response to
environmental stimuli has also been demonstrated in neutrophils
and platelets. Study by Lindau et al. showed that primary blood
neutrophils express functional TLR9 on the cell surface, a
pathway that can be triggered when pathogen-derived TLR9
ligands cannot reach the endosome, offering a rescue
mechanism for neutrophil activation (Lindau et al., 2013
AUG). Incubation of resting platelets with CpG motifs,
showed that platelets, when primed, express TLR9 on their
surface prior to signal transduction through TLR9 (Panigrahi
et al., 2013).

Genomics: TLR9 Gain of Function
Polymorphisms
There are many examples of genetic predisposition leading to
TLR9 gain of function. One example is the single nucleotide
polymorphism (SNP) of the C allele of rs5743836 (T-1237C),
which is associated with immune-mediated disease and with a
higher incidence of ICU acquired infection (Chatzi et al., 2018;
Ng et al., 2010). T-1237C creates a loop of TLR9/IL-6 signaling
amplification, leading to a deregulation in B-cell activation and
proliferation upon CpG stimuli (Carvalho et al., 2011 NOV 23).
Interestingly TLR9-1237T/C polymorphism is a risk factor for
progression of infection to severe sepsis in patients with a male
sex predisposition, which was investigated in a pediatric intensive
care unit (p 0.014) (Elsherif et al., 2019). Also the SNP rs187084
(T-1486C) of the TLR9 promoter previously being associated
with rheumatic disease (Hegazy et al., 2019), cancers and
pulmonary tuberculosis (Bharthi et al., 2014) has been
suggested to provide relevant risk estimates for the
development of sepsis and multiple organ dysfunction in
critically ill patients (Chen et al., 2011). A study performed
among workers in swine operations furthermore showed that
male workers, with polymorphisms of rs187084 in the TLR9 gene,
displayed significantly lower lung function than those with wild-
type (Gao et al., 2018). Sex differences in TLR9 expression has
also been reported in mice, where male mice showed higher
expression of TLR9 and higher activation of innate immune
system with higher numbers of infiltrating neutrophils upon
MCMV viral infection but similar viral load between male and
female (Traub et al., 2012). Research performed in HIV patients
furthermore showed that TLR9 stimulation by viral CpG DNA
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contributes to HIV immunopathogenesis and the TLR9
polymorphisms 1635A/G and 1486C/T being associated with
disease progression (Joshi et al., 2019). Differences in adverse
outcome of Covid-19 between ethnic groups may also in part
result from genetic predisposition. Recently Yuval Tal et al.
analyzed immune factors influencing racial disparity in Covid-
19 mortality rates, which revealed presence of inherent
differences in the immune system, which may increase the
predisposition of black Americans to a severe cytokine storm
(Tal et al., 2020). The authors detected elevated expression of
markers of innate immunity, including TLR7 and TLR9, and
concluded therefor that black individuals would be more prone to
develop a rapid and more aggressive cytokine storm.

COVID-19 Clinical Pathophysiology
Pulmonary Pathology
The airways as principal site of entry and target of SARS-CoV-2
can become severely affected in patients with COVID-19. In
vulnerable patients, COVID-19 leads to the development of
severe pneumonia with enhanced neutrophilia and
complications including ARDS requiring mechanical
ventilation (Guan et al., 2020). Postmortem examination of
COVID-19 patients reveals diffuse alveolar damage with severe
capillary congestion and variegated findings in lungs (Menter
et al., 2020; Chen et al., 2020). Patients with preexisting lung
diseases, including COPD and current smokers might be at
greater risk of developing severe complications from Covid-19
(Alqahtani et al., 2020). A role for TLR9 activation in non-allergic
neutrophilic airway inflammation and airway disease including
COPD has been proposed previously (Greene et al., 2005; Mortaz
et al., 2009; Mortaz et al., 2010; Knuefermann et al., 2007;
Schwartz et al., 1997; Tasaka et al., 2009; Faust et al., 2020).
Moreover, there is evidence that TLR9 can contribute to the
development and worsening of ARDS and ALI (Tasaka et al.,
2009; Faust et al., 2020; Huang et al., 2020). A study performed in
224 critically ill trauma patients showed that high levels of the
TLR9 activator, mtDNA, are associated with ARDS and mortality
which is stronger in patients with polymorphisms associated with
increased expression of TLR9 (Faust et al., 2020). The prognostic
value of plasmamtDNA in ARDS has also been shown in a single-
center observational study in China, where higher plasma
mtDNA levels at day 7 after admission indicated poor
outcome of ARDS patients (Huang et al., 2020). In the
airways, however the exact role of TLR9 in disease remains
controversial (Bezemer et al., 2012). There is also mounting
evidence for a protective role of TLR9 activation in the case of
allergic asthma and rhinitis (Iwamura andNakayama, 2008; Kline
and Krieg, 2008; Gupta and Agrawal, 2010). This aligns with the
interesting finding that, against odds, asthmatics, seems to be
underrepresented among patients suffering from severe COVID-
19 of which the current understanding is still in its early stages
(Liu et al., 2020). Medication use such as inhaled corticosteroids
(ICS) could potentially modify the risk of developing COVID-19
or the clinical course of COVID-19, but at present time there is no
robust evidence of such conclusion (Demircan et al., 2000;
Celebioglu, 2020; Maes et al., 2020). Reduced expression of
ACE2 and transmembrane protease serine 2 (TMPRS2)

resulting from ICS use is a potential explanation that has been
put forward for understanding the individual difference in
susceptibility of severe disease outcome from COVID-19
between asthma patients (Demircan et al., 2000). By other
groups of researchers the question arises whether asthma is
actually protective against COVID-19 and “work in progress”
suggests that a Th2-skewed immunity may be protective against
severe COVID-19 disease (Carli et al., 2020). Allergic asthma is a
lung disease with a typical Th2 mediated eosinic inflammation
whereas COVID-19 presents low level of eosinophils and it is
even reported that blood eosinophils decrease during SARS-CoV-
2 infections (Lu and Wang, 2020; Sun et al., 2020 Aug). Based on
the TLR9 COVID-19 hypothesis, it is proposed that TLR9
mediated combat against COVID-19, as an accompanying
effect could result in the sequestration of eosinophils. There is
a large body of work showing that TLR9 agonists reduce
eosinophilic inflammation and this approach has reached
phase 2 clinical testing in human (Iwamura and Nakayama,
2008; Kline and Krieg, 2008; Gupta and Agrawal, 2010). CpG-
ODNs effectiveness in the control of allergic responses can be
explained by the TLR9 induced T helper 1 (Th1) response that in
turn can prevent or reprogram the typical allergic Th2
polarization of the immune system (Chu et al., 1997; Krieg,
2002; Krieg, 2002; Kline et al., 2002). In this context TLR9 has
been shown to induce regulatory T cells (Tregs) as well which
could potentially contribute to beneficial immunosuppression in
allergic asthmatic patients (Ehrlich et al., 2017; Moseman et al.,
2004; Kim et al., 2016;), but also provide immune escape
opportunity for SARS-CoV-2. Recent data presented by
Grifoni et al. show a predominant representation of a classic
Th1 response to SARS-CoV-2 with little to no Th2 cytokines
(Grifoni et al., 2020).

Thrombotic Complications
Evidence is accumulating for a correlation between severe
outcome of SARS-CoV-2 infection and abnormal thrombotic
complications, vascular damage, dangerous blood clots, and
stroke, (Tang et al., 2020; Arachchillage and Laffan, 2020;
Guan et al., 2020; Menter et al., 2020; Oudkerk et al., 2020;
Spiezia et al., 2020;Wang et al., 2020a; Zhou et al., 2020). COVID-
19 ARDS patients compared to non-COVID-19 ARDS patients
develop significantly more thrombotic complications mainly
pulmonary embolisms with significantly different coagulation
parameters (Helms et al., 2020). Thrombocytopenia, decreased
blood platelet count, at early stage of disease is associated with
poor prognosis in COVID-19 patients (Zhao et al., 2020, Yang
et al., 2020). The lung-specific entry of SARS-CoV-2 could drive
platelets to the lungs as one of the first lines of defense and also
explains the presence of megakaryocytes in the lungs of COVID-
19 patients (Thachil 2020; Lefrancais et al., 2017; Salamanna,
2020). Platelet activation can occur via multiple signaling
pathways of which platelet-TLR9 has been positioned as a
connector between oxidative stress, infection and platelet
activation (Panigrahi et al., 2013).Of all TLRs, TLR9 is most
highly expressed on platelets as analyzed in the Framingham
Heart Study sample population (n � 1625) (Koupenova et al.,
2015). Moreover this study showed that a high mean BMI, which
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is also a major risk factor for COVID-19, is consistently
associated with higher TLR expression on platelets. A
statistically significant (p < 0.05) association with
cardiovascular disease measure and TLR9 gene expression was
observed in patients that receive lipid treatment (Koupenova
et al., 2015). TLR9 can shift the balance of a key initiator of
coagulation, called tissue factor and tissue factor pathway
inhibitor toward the procoagulant phenotype in human
coronary artery endothelial cells and activated blood
coagulation in mice (El Kebir et al., 2015). Also functional
TLR9 signaling in neutrophils is a mechanism in early stasis
experimental venous thrombogenesis (El- Sayed et al., 2016).
Neutrophil extracellular traps (NETs) are part of the innate
immune response to infections, can form a scaffold and
stimulus for platelet adhesion and thrombus formation (Fuchs
et al., 2010). NETs have been proposed to contribute to organ
damage and mortality in COVID-19 (Barnes et al., 2020).
mtDNA is a potent inducer of NETs that activates PMN via
TLR9 and formation of mtDNA-induced NETs can completely be
blocked by a TLR9 antagonist (Itagaki et al., 2015).

Multi-Organ Dysfunction
Besides lung pathology and thrombotic complications, post
mortum case-series show COVID-19-related pathological
changes in various organs including liver, kidney, spleen,
muscles and brain (Tabary et al., 2020). SARS-CoV-2 can
reach from brain to toes and uncertainty over whether it is

the virus itself or the response by a person’s immune system
makes it hard for doctors to decide on appropriate treatment
(Ledford, 2020). The hazard of inhaled substances is influenced
by regional deposition sites within the respiratory tract; the
effectiveness of the hosts clearance capability and translocation
routes to other organs (Bezemer, 2009). The airways as primary
site of SARS-CoV-2 infection, facilitates the virus and viral
residue components to translocate to multiple organs within
the body, which could in part explain the multi-organ
complications that are seen in COVID-19 patients (figure 3).
Translocation of intact SARS-CoV-2 to other body
compartments could give rise to localized increase of viral load
because ACE2, identified as key point of entrance of SARS-CoV-2
into the host cell, is widely expressed in tissues including oral and
nasal mucosa, nasopharynx, lung, stomach, small intestine, colon,
skin, lymph nodes, thymus, bone marrow, spleen, liver, kidney,
and brain (Hamming et al., 2004). High expression of ACE2 in
the human olfactory epithelium relative to upper airway epithelial
cells may explain why COVID-19 is associated with loss of smell
and suggest a potential entry point of SARS-CoV-2 into the
central nervous system causing neurological symptoms in
COVID-19 patients (Chen et al., 2020; Mao et al., 2020). The
potential contribution of the nose-brain-barrier and blood-brain-
barrier, to brain pathology caused by inhaled hazardous
compounds has been described previously (Bezemer, 2009;
Oberdörster and Utell, 2002; Tjalve et al., 1996). Dating back
1941, Bodian and Howe showed that a virus is able to move along

FIGURE 3 | SARS-CoV-2 respiratory deposition and multi-organ complications. Health effects of inhaled substances, including inhaled viruses are influenced by
the effectiveness of clearance capability and the routes of elimination. Depicted is a flow chart (adapted fromBezemer, 2009) of body compartments that can be reached
via the airways. SARS-CoV-2 is not hazardous for people that are able to avoid exposure or that are able to effectively eliminate the virus from their system. However
people that are not able to eliminate the virus or that are vulnerable may develop complications. Organs for which TLR9mediated pathology is described in literature
in non-COVID-19 settings are indicated in red. Regional build-up of SARS-CoV-2 and/or viral RNA, due to inefficient clearance capability in those organs, is proposed to
contribute to the typical multi-organ pathology in patients susceptible for TLR9 pathway activation.
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the axons of neurons (Bodian and Howe, 1941).When they
instilled the virus of poliomyelitis in the nose of monkeys,
paralytic poliomyelitis resulted only when the olfactory
connections were intact. Bovine herpesvirus 5 infection,
associated with fatal neurological disease in cattle, invades the
CNS mainly via the olfactory pathway and has been associated
with overexpression of TLR3, 7 and 9. Mann et al. found a
significant increase in the expression of TLRs 3 and 7–9 in the
anterior cerebral cortex during acute infection and viral
reactivation. In the trigeminal ganglia, only TLR9 expression
was significantly affected (Mann et al., 2014). Butchi et al. show
that TLRs have differing effects in modulating viral pathogenesis
and in direct toxicity in the central nervous system (Butchi et al.,
2011). They show that intracerebroventricular inoculation of a
TLR9 stimulant induces a more robust neuroinflammation with
higher levels of proinflammatory cytokines and chemokines
produced by plexus cells that did stimulation of TLR7. The
TLR9 mediated increase in cytokines and chemokines
correlated with breakdown of the blood-cerebrospinal fluid
barrier and recruitment of peripheral cells to the CNS(Butchi
et al., 2011). Based on the TLR9-COVID-19 hypothesis it is
speculated that if SARS-CoV-2 and/or viral RNA could indeed
translocate and accumulate in the CNS it may provoke localized
immune responses via TLR9 potentially controllable via TLR9
immune modulators. TLRs, owing presence and having an
immune-regulatory role within the brain are identified as
attractive therapeutic target for numerous CNS disorders and
infectious diseases (Hanke and Kielian, 2011). Similar to the high
TLR9 expression in the brain, TLR9 is also highly expressed in
skeletal muscle tissue (Nishimura and Naito, 2005). Based on the
TLR9 COVID-19 hypothesis it is proposed that TLR9 could also
play a role in the observed muscle weakness in COVID-19
patients. TLRs, including TLR9 also play an important role in
many if not all types of renal inflammation (Anders et al., 2004).
TLR9 via expression on renal infiltrating antigen presenting cells
during immune injury have been reported to be involved in
antigen-induced immune complex glomerulonephritis, renal
vasculitis and lupus nephritis (Anders et al., 2004). Studies
performed in experimental models for polymicrobial sepsis
show that circulating mtDNA via activation of TLR9,
contributes to cytokine production, kidney injury during and
splenic apoptosis (Tsuji et al., 2016). Other experimental studies
furthermore show that TLR9 is an important mediator of hepatic
injury secondary to ischemic acute kidney injury (Bakker et al.,
2015). Inhibition of TLR9 in mice attenuates sepsis induced
mortality and provides dampening of dysregulated
inflammatory markers in spleen, lung and liver (Hu et al., 2015).

Epidemiology: Riskfactors/Comorbidities
Associated with Overweight and Obesity
Early epidemiological data revealed that SARS-CoV-2 is more
likely to affect older males with comorbidities, and can result in
severe and even fatal respiratory diseases such as ARDS and
multiple organ failure (Chen et al., 2020). Reported comorbidities
in infected patients that require hospital admission include
cardiovascular disease/heart disease, diabetis mellitus, chronic

respiratory disease, hypertension and cancer (Butchi et al., 2011;
Arumugam et al.,; Huang et al., 2020; Wu and McGoogan, 2020
APR 7). Obesity, has been positioned as common denominator of
impaired metabolic health, respiratory dysfunction,
cardiovascular disease and diabetes mellitus in the severe
course of COVID-19 (Stefan et al., 2020). Preliminary
investigations show that people with obesity are at increased
risk of severe COVID-19 (Goyal et al., 2020; Halasz et al., 2020;
Stefan et al., 2020). The exact mechanisms through which obesity
exacerbates COVID-19 infection are not fully clarified. The
association of obesity with immune and metabolic
derangement is one explaining suggestion for the link to
adverse clinical outcomes in COVID-19 (Korakas et al., 2020).
Studies in mice show that obesity induced by high fat diet or
leptin deficiency result in overexpression of TLRs and related
proinflammatory signaling molecules in enlarged adipose tissues,
which may play an important role in the obesity-associated
phenomenon of meta-inflammation (Kim et al., 2012). A high
fat diet increases TLR9 expression in visceral adipose tissue in
mice (Nishimoto et al., 2016 MAR). TLR9 expression is also
significantly increased in visceral compared to subcutaneous
adipose tissue depots in obese patients (Thomalla et al., 2019).
The function of TLR9 in adipose tissue inflammation remains
controversial. On the one hand it has been suggested that TLR9
may protect against obesity and the metabolic syndrome having
an anti-inflammatory effect (Hong et al., 2015; Thomalla et al.,
2019). On the other hand it has also been shown that obesity
induced single stranded DNA (ssDNA), released from adipocytes
stimulate chronic adipose tissue inflammation and insulin
resistance via TLR9 (Nishimoto et al., 2016 MAR).
Additionally the study from Nishimoto showed that plasma
concentration of ssDNA was significantly higher in patients
with visceral obesity compared to patients without visceral
obesity and ssDNA was positively correlated with visceral fat
area (Nishimoto et al., 2016 MAR). Ghosh et al. proposed a role
for TLR9 in the activation of plasmacytoid dendritic cell fueling
obesity induced chronic low-grade inflammation, so called meta-
inflammation (Ghosh et al., 2016). Revelo et al. provided data on
TLR9 pathway involvement in promoting obesity related
inflammation of metabolic tissues including visceral adipose
tissue and liver. In mice a high fat (HFD) diet induces excess
of nucleic acids and related protein antigens which worsens
metabolic inflammation through activation of VAT
macrophages and expansion of plasmacytoid dendritic cells
(pDCs) in the liver (Revelo et al., 2016). The study of Revelo
furthermore confirmed that HFD-fed mice lacking TLR9, show
reduced metabolic inflammation and treatment of HFD-fed mice
with a TLR7/9 antagonist improved metabolic disease. A more
recent study from Yuzefovych et al., showed that plasma mtDNA
is elevated in obese type 2 diabetes mellitus patients and is
associated with oxidative stress in skeletal muscle and
correlates with insulin resistance (Yuzefovych et al., 2019).
TLR9 message and protein expression levels which are higher
in diabetic wounds compared to control wounds have been linked
to impaired wound healing in type 2 diabetes mellitus (T2DM)
cases via the induction of pro-inflammatory S100A8 and IL-8
(Singh et al, 2016). The TLR9-1237 T/C gene polymorphism is
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considered as a molecular risk for diabetic foot among patients
with T2DM (Wifi et al., 2017).

Investigational Treatment Approaches of
COVID-19
Chloroquine and Hydroxychloroquine
Chloroquine and Hydroxychloroquine are medications approved
for prevention and treatment of malaria with a reputation of
being effective and relatively safe for treatment of systemic lupus
erythematosus and mild to moderate rheumatoid arthritis
because of immune suppressive properties (Rainsford et al.,
2015). Chloroquine is a well-known, however not specific,
inhibitor of endosomal TLRs, including TLR9 (Kuznik et al.,
2011). Chloroquine and Hydroxychloroquine have been shown
to inhibit SARS-CoV-2 in vitro and it is speculated to be effective
for patients with COVID-19, although until now no single study
shows any validated and proven clinical benefit (Sanders et al.,
2020; Wang et al., 2020b). Also, the exact mechanism by which
(Hydroxy)Chloroquine is believed to relief infection by a
coronavirus remains unclear. Suggestions for (Hydroxy)
Chloroquine mechanism of action include alteration of the
acidic environment inside lysosomes and late endosomes,
preventing endocytosis, exosome release and phagolysosomal
fusion, and inhibition of the host cytokine storm (Tripathy
et al., 2020). Concerns exist about using off-Label drugs for
COVID-19 including Chloroquine and Hydroxychloroquine,
because of the recognized side effects: QT prolongation,
torsades de pointes, hepatitis, acute pancreatitis, neutropenia,
anaphylaxis and increased risk of cardiac death (Kalil, 2020).
Applying reverse thinking moving back from bedside to bench, it
could be speculated that the TLR route, including TLR9, could
have contributed to reducing overstimulation of the immune-
system in the individual COVID-19 patients that experienced
benefit from investigational off-label treatment with (hydroxy)
chloroquine. In experimental models, TLR9 signaling is
recognized as a major target for the protective actions of
Chloroquine in the case of sepsis induced acute kidney injury
(Yasuda et al., 2008). From this viewpoint, The specific blocking
the TLR9 pathway in vulnerable critically ill COVID-19 patients,
might even be a more targeted approach with potentially less side
effects than investigational broad-spectrum (hydroxy)
chloroquine. But keep in mind that at this point TLR9
modulation is not a treatment recommendation since more
(pre)clinical research is needed to investigate the proposed
hypothesis.

Mycobacterium w
Early clinical findings pointing toward a role for TLRs including
TLR9 in COVID-19 disease pathology arise from a study
performed with heat-killed Mycobacterium w (Mw) (Sehgal et
al., 2020). Mw is a cost-effective immunomodulator approved in
India for treatment of leprosy, and is investigated for use as
vaccine and treatment option for tuberculosis and for use in
autoimmune conditions such as psoriasis and optic neuritis
(Sudhalkar et al., 2012). Mw received attention in drug
discovery for having both TLR2 and 4 activating as well as

TLR inhibiting properties, including inhibition of TLR9
(Belani et al., 2011; Sudhalkar et al., 2012; Anwar et al., 2019).
A small scale study in which 4 severely ill COVID-19 patients
were treated with heat-killedMycobacterium w (Mw), resulted in
successful management, not causing adverse events (Sehgal et al.,
2015). A previously performed randomized trial in fifty patients
with severe sepsis, showed that the use of Mw was associated with
significant reduction in days on mechanical ventilation, ICU and
hospital length of stay, lower incidence of nosocomial infection,
and delta SOFA score (sequential organ failure assessment)
(Sehgal et al., 2015). A randomized clinical trial to further
evaluate the safety and efficacy of Mw in critically ill patients
suffering from COVID-19 is currently ongoing (clinicaltrials.gov:
NCT04347174). The exact mechanism by which Mw acts in
sepsis remains unknown. In addition to the previously
reported TLR antagonistic capability it is also suggested that
Mw could enhance TLR activity, which might overcome the
immune paralysis in severe sepsis (Sehgal et al., 2015).

Vitamin D
During the first wave of Covid-19, low Vitamin D levels have been
found in the vulnerable aging population in Spain, Italy and
Switzerland which pointed towards the potential of vitamin D in
prevention of COVID-19 infection and mortality (Ilie et al., 2020).
Vitamin D deficiency has indeed been found to contribute to ARDS
and a narrative review on vitamin D shows accumulation of evidence
that vitamin D supplementation could reduce risk of COVID-19
infections and deaths (Grant et al., 2020). Vitamin D is known to
promote innate immune response against viral infection and a role for
TLRs has been proposed in explaining the underlying mechanism.
Martinez-Moreno et al showed that innate immune response against
the dengue virus (DENV) infection, a public health problem
worldwide, can be improved by vitamin D supplementation. Their
study showed that an oral supplement of 4000 IU/day of vitamin D3
significantly decreased TLR9 protein levels and themRNA abundance
of TLR3, TLR7, and TLR9 in human. The lower dose of, 1000 IU/day
of vitamin D only decreased the TLR9 protein level in human
monocte-derived DCs infected with DENV. The finding is
especially interesting because TLR9 activation, through mtDNA,
contributes to DENV-induced immune activation (Martinez
Moreno et al., 2020). A study performed in 2010 also showed that
intracellular TLRs are differentially regulated by vitamin D3, with
TLR9 being down-regulated by vitamin D3 exposure whereas TLR3
was unaffected (Dickie et al., 2010). The study by Dickie et al showed
that vitamin D3 decreased TLR9 expression in monocytes and had a
downstream functional effect as these cells subsequently secreted less
IL-6 in response to TLR9 challenge.

MULTIFACETED POTENTIAL OF DRUG
TARGET TLR9 FOR COVID-19

The novel hypothesis that TLR9 could be associated with
COVID-19 pathology in vulnerable patients, positions TLR9 as
a multifaceted drug target worth considering for preventing and/
or treatment of critical conditions of SARS-CoV-2 infected
patients. Both TLR9 activation- and inhibition could be
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relevant to produce opposing therapeutic effects at the different
stages of disease (Figure 4). Prophylactic potential of TLR9
activation as vaccine adjuvant to shape adaptive immunity
against SARS-Cov-2 is currently being investigated in clinical
trials (Oberemok et al., 2020). This would ideally result in
immunological memory to aid fast viral clearance thereby
preventing severe symptomatic infection and virus induced
damage. Also in the early infection stage, prior to
complications it could be imagined that activation of TLR
pathways including TLR9 could aid in fast and effective viral
clearance especially in immunocompromised patients. In
COVID-19 it seems that viral burden typically peaks early in
illness, potentially even before symptoms of pneumonia and then
declines as antibodies develop and antibody titers rise over the
subsequent 2 to 3 weeks (Kim et al., 2020; To et al., 2020; Woelfel
et al., 2020; Zou et al., 2020). Activation of TLR9 in this early
window of disease would ideally result in improved viral combat
thereby preventing or shortening of symptomatic infection and
prevention of overwhelming viral illness and tissue damaging
inflammation. The FDA approved an investigation into the
efficacy of an inhalational broad acting TLR2/6/9 agonist,
PUL-042 to reduce the severity of COVID-19 in adults

positive for SARS-CoV-2 infection (Schijns and Lavelle, 2020).
It should be noted that stimulation of other TLRs in this early
window of infection could have similar therapeutic value in
immunocompromised patients. Imiquimod, for instance is an
activator of TLR7 and has been proposed to enhance the innate
and adaptive immunity in early stage COVID-19 patients
(Angelopoulou et al., 2020). Also other non-viral specific TLRs
such as TLR5 which is activated by bacterial Flagellin has been
proposed for vaccine or adjuvant development to generate
protective innate immunity against SARS-CoV-2 (Chakraborty
et al., 2020). In contrast to the numerous potential valuable TLR
agonists, it is proposed that TLR9 could be considered as
particular interesting target of inhibition because of the lack of
CpG suppression in unique to SARS-CoV-2 regions which could
be of specific concern in vulnerable patients that experience
difficulties to clear the virus and that have more than normal
TLR9 expression and/or more than normal synergistically TLR9
triggers present. TLR9 inhibition could thus be a strategy worth
considering for treatment of the specific COVID-19 patients that
are at risk for developing severe symptomatic infection and
further complicated clinical course due to underlying TLR9
skewing vulnerabilities. Risk factors mentioned in this

FIGURE 4 | therapeutic implications of the TLR9 COVID-19 hypothesis: Patients that develop severe symptoms of COVID-19 are tend to go through different
stages of disease with different characteristics. Graph (A) depicts a simplified fictional scenario explaining how an inefficient viral specific immune response at start of
infection (stage 1) can result in a high peak of viral load and eventually an exaggerated inflammatory response causing symptomatic infection (stage 2). When the virus
remains active and/or the host immune system remains active over prolonged period of time severe complications can occur requiring ICU (stage 3) and in worst
case result in death. Based on the TLR9 COVID-19 hypothesis, 3 therapeutic strategies are worthwhile investigating for following desired actions: (B) shape adaptive
immunity against SARS-Cov-2 so that viral load remains low; (C)Provide a short targeted immune boost to help clearing the virus efficiently, and (D) Inhibit TLR9 pathway
in vulnerable patients to prevent or dampen hyperinflammation and multi-organ complications.
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hypothesis paper include (pre)existing thrombotic activation,
chronic neutrophilic lung disease, presence of coinfections,
high levels of visceral fat, high levels of circulating mtDNA
levels, TLR7 loss of function gene polymorphisms and TLR9
gain of function gene polymorphisms. Taken together, the
relatively high numbers of CpG-motifs in SARS-CoV2 and the
upstream position of TLR9 in the inflammatory cascades and the
broad expression of TLR9 on different cell types that play crucial
roles in clinical COVID-19 presentation (Th1 cells, Th17 cells,
B cells, neutrophils, platelets), TLR9 is positioned be a promising
systemic therapeutic target to dampen or perhaps even prevent
the thrombotic complications and so called cytokine storm or
hyperinflammatory syndrome in certain specific patients that are
suffering from severe COVID-19. Dampening of cytokine storm
has evident potential for preventing the onset or worsening of
ARDS and multisystem organ failure and ideally aid improved
and shortened time for recovery, prevention of death and
reducing post-ICU complications (Ragab et al., 2020; Ye et al.,
2020). For any immunomodulating treatment concept it is
however important to determine proper alignment with
individual qualitative and quantitative factors of pathogen and
host immune interactions. For instance immunosuppressive
approaches to reduce hyperinflammation in COVID-19 may
lead to unwanted impairment of anti-microbial immunity
(Ritchie and Singanayagam, 2020). Moreover TLR inhibition
may drive compensatory changes in other TLRs. For instance
blocking of TLR7 and TLR8 which is currently being invested in a
phase II trial could potentially pose risk to the specific patients
that are already skewed toward TLR9 activation. Likewise
blocking of TLR9 in patients that do not experience
overstimulation of TLR9 may result in loss of an important
innate immune signaling pathway that is needed to combat
the virus. To prevent risk of viral flare up due toTLR9
antagonistic activity, the antagonist could be tested in
combination with Remdesivir and other investigational
antivirals. Vice versa excessive activation of a specific immune
response for purposes of viral clearance via activation of TLRs,
including TLR9 could contribute to hyperinflammation and
thrombotic complications in susceptible patients and could
therefore be followed up by immunosuppressants in patients
that experience complications. This impediment thus asks for a
good understanding of individual characteristics that relate to the
TLR drug targets.

PREDICTIVE MARKERS FOR INDIVIDUALS
VULNERABLE FOR SEVERE COVID-19

Viral load and viral RNA levels are relevant predictive parameters
for disease. Viral load of SARS-CoV-2 detected from the
respiratory tract of COVID-19 patients seems positively linked
to biochemical indexes and disease severity (Liu et al., 2020).
Studies have indicated that the highest viral load in throat swabs
can be detected at the time of symptom onset (He et al., 2020).
Upon resolution of symptoms, viral RNA levels may remain
positive for more than 2 weeks in upper respiratory tract
specimens (nasopharyngeal swab and/or an oropharyngeal

swab) which is however not necessarily associated with
disease severity but may result from a weaker immune
response instead (Carmo et al., 2020). The underlying
individual factors influencing viral combat capability and
viral clearance are likely diverse, therefore challenging to
encompass for early predictive purposes. An example of poor
viral clearance capability due to a less robust immune response
can be found in the association between older age and greater
risk of development of ARDS and death from COVID-19 (Wu
et al., 2020). Also very specific individual characteristics may
contribute to poor viral defense. An example arises from a
recent preliminary communication, in which a case series study
presented that genetic variants leading to TLR7 loss of function
were present in 4 young male COVID-19 patients, all previously
healthy with unsuspected severe complications of COVID-19 of
which 1 patients died. Besides older age and poor TLR7
function, there could be many more dysfunctional steps in
the immune response that could drive high viral load, which
goes beyond the scope of this hypothesis paper. Literature
covering a more broad perspective of immunological aspects
of COVID-19 is available (Felsenstein et al., 2020; Jensen and
Thomsen, 2012; Li et al., 2020; Tay et al., 2020; Birra et al., 2020;
Ragab et al., 2020). The TLR9 COVID-19 hypothesis proposes
that combining measures of viral load and viral RNA with
markers for TLR9 susceptibility, would provide a more
precise identification of some people at risk, feed into better
prevention strategies for those patients and give rationale for
more targeted treatment options via modulation of TLR9. In
this theory paper we discussed genetic markers including: ZAP,
C allele of rs5743836 (T-1237C) in TLR9, -1486 T/C (SNP)
rs187084 (T-1486C), 1635A/G and 1486C/T. Mentioned were
also life style factors such as high fat diet and cigarette smoke
exposure, that can increase TLR9 expression levels. Moreover
we discussed the presence of measurable synergistically acting
TLR9 triggers originating from other pathogen and from the
host. The TLR9 COVID-19 hypothesis proposes to investigate
increased levels of mtDNA and ssDN as biomarkers for
COVID-19 vulnerability.

Recommendations
The TLR9 COVID-19 hypothesis is testable within the
framework of current knowledge. TLR9 expression levels in
response to SARS-CoV-2 can be analyzed in an in vitro model
system such as used by Ng et al. for investigating genome-wide
host response to SARS coronavirus (Ng et al., 2004). Another
appropriate approach is to analyze variations in TLR9 expression
levels in relevant patient samples such as sputum and/or lung
lavage samples from patients with COVID-19 and in affected
tissue biopsies from patients that died from severe COVID-19.
Animal knockout models could give further insight in the
requirement of TLR9 for SARS-Cov-2 induced pulmonary and
thrombotic complications, cytokine storm and multi-organ
dysfunction. An advantage under the current global emergency
circumstances related to COVID-19 is that research groups and
pharmaceutical companies showed long lasting interest in
immunomodulating agents that engage the TLR9 pathway.
There is a large body of preclinical data and early human
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clinical trial results showing the safety and therapeutic
potential of TLR9 modulating compounds to improve
vaccines and treat cancer, infectious disease, allergy/asthma,
autoimmune disorders (Anwar et al., 2019; Krieg, 2006;
Bezemer et al., 2012; Gupta and Cooper, 2008). Prior art
that covers safety profiles, dosing, pharmacokinetics,
pharmacodynamics could help the repurposing of drug-
leads and speed up the drug development process of TLR9
targeting drug candidates for COVID-19. Model systems,
including TLR reporter assays and other cell- and tissue-
based systems could allow fast screening of available TLR9
modulating lead compounds having the biological effects that
are desired in COVID-19 as mentioned in Figure 4. For
successful translation from bench to bedside, also a deeper
understanding of the spatiotemporal kinetics of viral load and
specific host factors is a recommended approach for
identification of patients at risk that are most likely to
benefit from treatment at defined stages of disease.
Conclusions on the relevance of TLR9 as drug target and as
predictive marker for identification of people at risk could be
drawn from large scale, real world screening of COVID-19
disease severity in relation to the combined measures of A)
viral load and SARS-CoV-2 RNA, B) Endogenous and
exogenous cell free DNA including mtDNA and ssDNA
from visceral fat and DNA from other pathogens, and C)

TLR9 polymorphisms and TLR9 expression levels. If the
TLR9 COVID-19 hypothesis can be further justified, well-
controlled clinical trials to study safety and efficacy of TLR9
modulating drug leads for treatment and/or prevention of
disease caused by a coronavirus are warranted. It would
also be recommended to evaluate the effect of TLR9
antagonists in combination with Remdesivir or other
investigational antivirals on recovery time and mortality rates
in adults that are hospitalized with COVID-19.
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