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Abstract: The poor pharmacokinetics and selectivity of low-molecular-weight anticancer drugs
contribute to the relatively low effectiveness of chemotherapy treatments. To improve the
pharmacokinetics and selectivity of these treatments, the combination of a doxorubicin-glucuronide
prodrug (DOX-propGA3) nanogel formulation and the liberation of endogenous β-glucuronidase
from cells exposed to high-intensity focused ultrasound (HIFU) were investigated in vitro.
First, a DOX-propGA3-polymer was synthesized. Subsequently, DOX-propGA3-nanogels were
formed from this polymer dissolved in water using inverse mini-emulsion photopolymerization.
In the presence of bovine β-glucuronidase, the DOX-propGA3 in the nanogels was quantitatively
converted into the chemotherapeutic drug doxorubicin. Exposure of cells to HIFU efficiently
induced liberation of endogenous β-glucuronidase, which in turn converted the prodrug released
from the DOX-propGA3-nanogels into doxorubicin. β-glucuronidase liberated from cells exposed
to HIFU increased the cytotoxicity of DOX-propGA3-nanogels to a similar extend as bovine
β-glucuronidase, whereas in the absence of either bovine β-glucuronidase or β-glucuronidase
liberated from cells exposed to HIFU, the DOX-propGA3-nanogels hardly showed cytotoxicity.
Overall, DOX-propGA3-nanogels systems might help to further improve the outcome of HIFU-related
anticancer therapy.

Keywords: nanogel; prodrug; high-intensity focused ultrasound; local drug delivery; enzyme
prodrug therapy

1. Introduction

Chemotherapy is one of the most commonly used treatment modalities in cancer, either as
a monotherapy or in combination with another treatment modalities, such as radiotherapy and
surgery [1]. The agents used in chemotherapy treatment are often not tumor-cell-specific. Hence, these
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agents also cause damage to normal tissue, which could ultimately cause severe dose-limiting side
effects and reduce the efficacy of chemotherapy treatment [2–4].

These chemotherapy-related side effects can potentially be reduced by using prodrug
therapy. Prodrugs are noncytotoxic drug precursors that ideally are only activated in the tumor
microenvironment into the pharmacologically active cytotoxic drug [5,6]. The activation of the prodrug
can be caused by many triggers, like hypoxia, radiation, pH, tumor-specific antigens, and enzymes [6].

In cancer treatment most prodrugs are activated by enzymes, i.e., enzyme prodrug therapy [7,8].
A previously synthesized prodrug for enzyme prodrug therapy is DOX-GA3 [9], which is converted
into the cytotoxic agent doxorubicin (DOX) by the enzyme β-glucuronidase (β-gus) [9,10]. β-Gus is
a lysosomal enzyme that is limitedly present in the blood [11] and is only extracellularly present
in necrotic tumor microenvironment [12,13]. Therefore, there is only conversion of DOX-GA3 into
DOX in the necrotic tumor [9]. As a single treatment, DOX-GA3 is 12 times less cytotoxic than
DOX, in vitro [10]. The low cytotoxicity of DOX-GA3 is mainly caused by the fact that DOX-GA3 is
hydrophilic and therefore not able to cross the cell membrane [14], whereas treatment with DOX-GA3
in combination with β-gus results in vitro has similar efficacy to DOX treatment [9,10]. In addition,
in vitro the efficacy of DOX-GA3 is higher than DOX, since DOX-GA3 has a larger maximum tolerated
injected dose [9,10]. The therapeutic effectiveness of DOX-GA3, however, can be further increased by
increasing its circulation half-life [15].

To improve the pharmacokinetics of DOX-GA3, this prodrug can be loaded into a drug delivery
system such as liposomes and nanogels [16–21]. Nanogels are nano-sized hydrogel particles consisting
of crosslinked hydrophilic polymer chains that can be physically loaded with drugs and biotherapeutics
or chemically conjugated with pharmacologically active agents [22]. As shown before, nanogels are able
to improve the half-life of small drugs in the circulation [23–25]. In addition, nanogels passively target
the tumor by the loosely vascular aligning and the lack of lymphatic drainage in tumors, also known
as the enhanced permeability and retention (EPR) effect [26,27]. Therefore, nanogels are promising
delivery systems for small molecular prodrugs.

Besides the pharmacokinetics, the site selective activation of the prodrug is also an important factor
for effective prodrug therapy [28,29]. To achieve effective prodrug therapy treatment, the enzymes
that are able to convert the inactive prodrug into its active constituent should be highly expressed in
the tumor [30]. Since the β-gus concentrations are only sufficient in large necrotic tumors, in small
tumors the efficacy of doxorubicin-glucuronide prodrugs is hampered [31]. Many strategies have
been investigated to increase the β-gus concentration available for prodrug conversion in the tumor,
like transfecting tumor cells with the gene encoding for β-gus (gene-directed enzyme prodrug therapy
(GDEPT)) [32,33] and administration of antibody-enzyme conjugates (antibody-directed enzyme
prodrug therapy (ADEPT)) [34]. Currently, these therapies are not used in the clinic, due to insertional
mutagenesis in GDEPT, and costs and immunogenicity of ADEPT constructs [30,33,35]. Recently, the
concept of ultrasound-directed enzyme prodrug therapy (UDEPT) was introduced by Besse et al. [36].
In this concept, endogenous β-gus is liberated from tumor cells by exposing them to high-intensity
focused ultrasound (HIFU). Subsequently, the liberated β-gus from the cells is able to convert the
prodrug into the cytotoxic agent. Since HIFU is a local and noninvasive technique [37], this enables the
possibility of increasing the β-gus concentration available for prodrug conversion locally in the tumor
by a noninvasive treatment, without damaging the normal tissue.

As mentioned, both the pharmacokinetics and tumor side selective activation of the prodrug
are important factors for effective prodrug therapy treatment [28,29]. Here, we investigated the
combination of prodrug-nanogel formulation and UDEPT to address the shortcomings of small
molecular prodrugs and increase the enzyme concentration available for prodrug conversion, in vitro.
To this end, doxorubicin-glucuronide prodrug (DOX-propGA3) (structure shown in Figure 1A) was
coupled to the polymer hydroxyethyl methacrylamide-oligoglycolates-derivatized poly(hydroxyethyl
methacrylamide-co-N-(2-azidoethyl)methacrylamide (p(HEMAm-co-AzEMAm)-Gly-HEMAm) via
click chemistry (DOX-propGA3-polymer). The formed conjugate was further used for the preparation
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of nanogels (DOX-propGA3-nanogels), Figure 1B. Subsequently, the conversion of DOX from the
DOX-propGA3-nanogel in the presence of bovine β-gus was investigated. Finally, it was confirmed
in vitro that β-gus liberated from cells exposed to HIFU was able to increase the cytotoxicity
of DOX-propGA3-nanogels.
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Figure 1. Schematic representation of the synthesis of the doxorubicin-glucuronide prodrug
(DOX-propGA3)-polymer and DOX-propGA3-nanogels. (A) Synthesis of DOX-propGA3-polymer
conjugate using click-chemistry and (B) preparation of prodrug-loaded nanogels from
DOX-propGA3-polymer conjugates using inverse mini-emulsion photopolymerization.

2. Materials and Methods

2.1. Materials

DOX.HCl was purchased from Guanyu bio-technology Co., LTD (Xi’an, China). Bovine β-gus
(G0376, Type B-3, 2000 units/mg solid) and 4-methylumbelliferyl β-d-glucuronide (M9130, 4-MUG)
were purchased from Sigma-Aldrich (Zwijndrecht, The Netherlands). Irgacure 2959 was obtained
from Ciba Specialty Chemicals Inc. (Bazel, Switzerland). ABIL EM 90 was provided from Evonik
Industries AG (Essen, Germany). Acetonitrile (ACN), dichloromethane (DCM), dimethylformamide
(DMF), ethyl acetate, methanol, hexane, and dimethyl sulfoxide (DMSO) were obtained from Biosolve
(Valkenswaard, The Netherlands). RPMI 1640 (R8758) and fetal bovine serum (FBS) were purchased
from ThermoFisher (Bleiswijk, The Netherlands). CellTiter 96®AQueous One Solution Cell Proliferation
Assay (G3580, MTS reagent) was obtained by Promega (Leiden, The Netherlands). All other chemicals
and reagents were obtained from Sigma-Aldrich (Zwijndrecht, The Netherlands).

2.2. Cell Culture

Mouse mamma carcinoma 4T1 cells (ATCC, ATCC CRL-2539, Rockville, MD, USA) were cultured
in RPMI 1640 supplemented with 10% FBS at a temperature of 37 ◦C in a humidified atmosphere
containing 5% CO2. Cells were regularly tested mycoplasma negative.
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2.3. Synthesis of DOX-propGA3-Polymer

DOX-propGA3-polymer conjugate was synthesized as shown in Figure 1A. First, the synthesis
of the polymer p(HEMAm-co-AzEMAm)-Gly-HEMAm (further referred to as ‘polymer’) (20 mol%
AzEMAm, degree of substitution 10, Mn 15 kDa, PDI 3.0) [38] and DOX-propGA3 [39] was performed
as previously described. The polymer (100 mg) and DOX-propGA3 (8.9 mg, 0.1 mol prodrug/mol azide)
were dissolved in 1.8 mL DMF. Then, a mixture of 1.45 mg CuSO4 (1 eq to DOX-propGA3) and 1.8 mg
sodium ascorbate (1 eq to DOX-propGA3) dissolved in 200 µL ammonium acetate buffer (100 mM,
pH 5) was added. The resulting solution was stirred at room temperature for 24 h under a nitrogen
atmosphere. Next, the obtained product was purified by three times precipitation in diethyl ether and
dissolving in methanol. Subsequently, the precipitate was dissolved in water and dialyzed (membrane
cut-off 3.5 kDa) against ammonium acetate buffer (20 mM, pH 5, containing 10 mM EDTA) for 2 days,
followed by dialysis against water for 24 h. The ammonium acetate buffer and water were changed at
least six times. Ratios between ammonium acetate buffer and sample and between water and sample
were larger than 500. Finally, DOX-propGA3-polymer conjugate was recovered by freeze drying.

2.4. Characterization of the DOX-propGA3-Polymer Conjugate

The synthesized DOX-propGA3-polymer conjugate was analyzed by gel permeation
chromatography (GPC) using a Waters System (Waters Associates Inc., Milford, MA, USA) with
refractive index (RI) and UV detection using two PLgel 5 µm MIXED-D columns (Agilent, Pal Alto,
CA, USA) and DMF containing 10 mM LiCl as eluent, with an injection volume of 100 µL, and flow
rate of 1 mL/min at a temperature of 60 ◦C. UV detection of DOX was performed at 480 nm.

The conjugation efficacy of DOX-propGA3-polymer conjugate was determined at a concentration
of 0.5 mg/mL in phosphate-buffered saline (PBS). Calibration was done using DOX (10 to 100 µg/mL in
PBS). DOX concentration was determined by ultraviolet-visible (UV-vis) spectrophotometry (BMG
Labtech, Offenburg, Germany) at an absorbance of 480 nm. The conjugation efficiency and loading
capacity were calculated according to Equations (1) and (2), respectively.

conjugation e f f iciency =
amount of DOX− propGA3conjugated to polymer

amount of DOX− propGA3 feed
× 100% (1)

loading capacity =
amount of DOX− propGA3 conjugated to polymer
amount of DOX− propGA3− polymer conjugate

× 100% (2)

2.5. Preparation of DOX-propGA3-Nanogels

DOX-propGA3-nanogels were prepared by inverse mini-emulsion photo polymerization as
previously described [40], Figure 1B. Briefly, 37.5 mg DOX-propGA3-polymer was dissolved in 412.5 µL
DMSO, and subsequently 150 µL Irgacure 2959 (10 mg/mL in water) was added. This mixture was
added to 5 mL mineral oil (containing 10% v/v ABIL EM 90) and thoroughly vortexed. The primary
emulsion was ultra-sonicated (Bandelin Sonopuls, pulse on/off 0.5 s, and amplitude 10%) for 15 min
and irradiated under UV (60% amplitude, 940 mW/cm2, 300–650 nm, Bluepoint UVC source, Hönle
UV technology, Gräfelfing, Germany) for 15 min. Subsequently, the mineral oil, surfactant, and DMSO
were removed by washing the formed DOX-propGA3-nanogels once with acetone (40 mL) and four
times with acetone/hexane (40 mL, 1:1, v/v). Finally, the DOX-propGA3-nanogels were recovered by
re-dispersion in water and freeze drying.

The size of DOX-propGA3-nanogels was measured by dynamic light scattering (DLS) on an
ALV CGS-3 system (Malvern Instruments, Malvern, UK) with a JDS Uniphase 22 mW He-Ne laser
operating at 632.8 nm, an optical fiber-based detector, digital LV/LSE-5003 correlator at 25 ◦C, expressed
on intensity. The ζ potential of DOX-propGA3-nanogels was measured with Malvern Zetasizer
Nano-Z (Malvern, UK) at 25 ◦C. Measurements were performed in 20 mM HEPES buffer (pH 7.4) at a
DOX-propGA3-nanogel concentration of 0.5 mg/mL.
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2.6. Prodrug Conversion

Both DOX-propGA3-polymer and DOX-propGA3-nanogels were dispersed in phosphate buffered
saline (PBS, pH 7.4, containing 0.049 M NaH2PO4, 0.099 M Na2HPO4 and 0.006 M NaCl) containing
0.1% (w/v) bovine serum albumin (BSA) [39] to a final concentration of 100 µg/mL. This corresponds
to a concentration of 7 µg/mL DOX. Next, 50 µL of a stock solution of bovine β-gus (2 mg/mL in
PBS) was added to yield a final enzyme activity of 100 units/mL in a total volume of 2 mL. As a
negative control, the DOX-propGA3-polymer and DOX-propGA3-nanogels were dispersed in the
same buffer without bovine β-gus. Samples were incubated in a water bath at 37 ◦C. After incubation
times ranging from of 0 to 48 h, 200 µL samples were taken at different time points and centrifuged
(20,000× g for 60 min) at 4 ◦C. Subsequently, DOX concentration in the supernatant was determined
using UPLC analysis (Waters ACQUITY UPLC system (Waters Associates Inc., Milford, MA, USA))
using an Acquity BEH C18 column 1.7 µm (2.1 × 50 mm); eluent A and B were potassium phosphate
buffer (20 mM, pH 3)/acetonitrile (95/5, v/v) and 100% ACN, respectively. The injection volume was
5 µL, and fluorescence was detected at a wavelength of 560 nm (excitation wavelength of 480 nm).
After an isocratic flow of 75% eluent A for 1 min, a gradient was run from 75 to 60% eluent A in 3 min
with a flow rate of 0.5 mL/min. The retention time of DOX was 0.78 min. The calibration curve of DOX
was linear between 0.01 and 10 µg/mL. Finally, chromatograms were analyzed by Empower Software,
Version 1154.

2.7. Induction of β-Gus Liberated from 4T1 Cells by HIFU

Endogenous β-gus was liberated from cells by exposing them to HIFU by an in-house developed
HIFU system. HIFU was performed by a single-element transducer (external radius of aperture 120 mm,
focal length 80 mm and focal point 1 × 1 × 3 mm3 (at −3dB)). Sine-shaped waves were generated by an
AG Series Amplifier (AG 1006, T&C Power Conversion Inc. Rochester, NY, USA) at a frequency of
1.3 MHz, a pulse repetition time of 50 ms, a duty cycle of 1% (corresponding to 650 cycles per pulse),
and a peak negative pressure of 41 MPa; a schematic representation of the setup is present in Figure S1.
Acoustic pressures in the focal point were measured as a function of input voltage using a fiber optic
hydrophone in a tank filled with degassed water, see [41] for details. Cells (2 × 106 cells in 170 µL PBS)
in a PCR tube (200 µL, Bio rad, California, CA, USA) were exposed to HIFU by positioning this tube
in the focus of the HIFU beam for 10 min. Immediately after exposure of the cells to HIFU, samples
were placed on ice and either analyzed by microscopy or centrifuged at 16,000× g for 15 min at 4 ◦C.
The supernatant after centrifugation was further used to measure the β-gus activity, conversion of
DOX-propGA3-nanogels into DOX, and cytotoxicity in combination with DOX-propGA3-polymer and
DOX-propGA3-nanogels, as described below.

2.8. Microscopy of Cells Exposed to HIFU

Samples of 10 µL from cells exposed to HIFU and untreated cells (negative control) were taken
and added to 240 µL cell culture medium in an ibidi chamber of 1µ-Slide 8 Well ibiTreat (Ibidi GmbH,
Munich, Germany). Subsequently, samples were 1 h incubated under normal culturing conditions,
to allow attachment of the cells to the plate. Finally, samples were imaged by inverted microscopy
(ULWCD 0.30, Olympus CK2, Tokyo, Japan) with a digital camera (Moticam 5-5.0 MP, Hong Kong,
China) using a 10× objective.

2.9. Determination of the β-Gus Activity

β-Gus activity in the supernatant of cells exposed to HIFU and untreated cells (negative control)
was measured by a MUG assay adapted from Jefferson et al. [42]. Briefly, 20 µL sample was added to
180 µL 4-methylumbelliferyl β-d-glucuronide solution (1 mg/mL in 0.1 M sodium acetate (pH 4.5))
and incubated for 1 h in a water bath of 37 ◦C. Subsequently, 950 µL of 0.2 M sodium carbonate
(i.e., stopping buffer) was added to 50 µL of all samples. Finally, the fluorescence intensity was
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measured using a spectrofluorometer (Jasco FP8300, Tokyo, Japan), excitation of 380 nm, and emission
of 454 ± 5 nm. The enzyme activity was calculated based on the enzyme activity of commercial
bovine β-gus.

2.10. Conversion of DOX-propGA3-Nanogels into DOX by β-Gus Liberated from HIFU Treated Cells

Freeze-dried DOX-propGA3-nanogels were dispersed in 0.95 mL PBS containing 0.1% (w/v) BSA
at a DOX concentration of 5 µg/mL. Next, 50 µL of the supernatant of cells exposed to HIFU was added
and mixed carefully. After incubation in a water bath at 37 ◦C for 48 h, the solution was analyzed for
DOX concentration by UPLC as described in section “prodrug conversion”.

2.11. In Vitro Cytotoxicity

In a 96 well plate, 4T1 cells were seeded at a density of 2,500 cells/well. After 24 h, the cell
culture medium was removed and 200 µL of DOX, DOX-propGA3, DOX-propGA3-polymer, and
DOX-propGA3-nanogels, in cell culture medium with PBS (10 µL in 190 µL cell culture medium);
bovine β-gus (50 µg/mL, enzyme activity of 100 units/mL in cell culture medium); or supernatant of
4T1 cells exposed to HIFU (10 µL in 190 µL cell culture medium) was added to the wells at equivalent
DOX concentrations ranging from 2 to 100,000 nM. After 24 h incubation, cells were washed three times
with 200 µL PBS and 100 µL fresh cell culture medium was added. Subsequently, MTS assay was
performed according to manufacturer’s protocol. Briefly, 20 µL of MTS reagent was added to each well
and incubated for 3 h under normal culturing conditions. Finally, the optical density of the different
samples was recorded by an EZ Read 400 microplate reader (Biochrom Ltd., Cambridge, UK) at an
absorbance of 492 nm; an absorbance of 690 nm was used as background.

2.12. Statistical Analysis

All data is presented as mean, with error bars representing the standard deviation of at least three
independent experiments. To determine differences in cytotoxicity, a two-tailed student’s t-test was
used to determine significance between the IC50 value of the different groups. Significant differences
were considered as p < 0.05.

3. Results and Discussion

3.1. Synthesis of DOX-propGA3-Polymer Conjugate and DOX-propGA3-Nanogels

P(HEMAm-co-AzEMAm) was synthesized by free radical polymerization using HEMAm and
AzEMAm as monomers and ABCPA as initiator as described in detail in our previous publication [38].
The characteristics and 1H-NMR spectrum of the obtained polymer are given in Table S1 and Figure S2
(from ref. [38]). In the next step, the obtained p(HEMAm-co-AzEMAm) was further modified with
HEMAm-Gly (a polymerizable group) to yield p(HEMAm-co-AzEMAm)-Gly-HEMAm [38].

The DOX-propGA3-polymer was synthesized from DOX-propGA3 prodrug, as shown in Figure 1A.
The conjugation of DOX-propGA3 to the p(HEMAm-co-AzEMAm)-Gly-HEMAm was performed by
Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC). In this conjugation, step sodium ascorbate was
added as reducing agent to generate Cu(I) from the Cu(II) salt (CuSO4) instead of directly adding
active Cu(I) to the reaction since conjugation does not occur by using active Cu(I) in the reaction of this
sterically hindered doxorubicin molecule with the bulky polymer [39]. After the reaction, the sample
was dialyzed against an EDTA solution to remove Cu ions and to avoid possible toxicity caused by
this heavy metal, as mentioned before [43,44]. The conjugation efficiency was rather high, 80.4%, as
reported before by Hein and Fokin [45]. The synthesized DOX-propGA3-polymer conjugate contained
7 wt% DOX.

The DOX-propGA3-polymer conjugate was further characterized using GPC with dual UV
(480 nm to detect DOX) and RI detection (Figure 2). The chromatogram of the physical mixture of
p(HEMAm-co-AzEMAm)-Gly-HEMAm and DOX-propGA3 displayed a RI peak of the polymer with
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retention time of 12.4 min and a UV peak of the prodrug with retention time of 16.5 min (Figure 2A).
After the click chemistry reaction, the obtained product eluted at 12.4 min (RI detection) and the
UV peak shifted from 16.5 min to 12.4 min (Figure 2B), which demonstrates that DOX was indeed
successfully conjugated to the polymer. A small peak was observed at the retention time of free
DOX-propGA3. Calculation of the area under the curve of conjugated and free DOX-propGA3 prodrug
shows that there was approximately 5% of free prodrug DOX-propGA3 present in the final product.
This trace amount of free propGA3-DOX was most likely washed away during the nanogel preparation
procedure and therefore not present in the final formulation added to the cells.
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(B) DOX-propGa3-polymer conjugate.

The DOX-propGA3-polymer was subsequently used in the preparation of nanogels via
mini-emulsion photopolymerization, Figure 1B. The methacrylamide groups at the side chain of
the conjugate were crosslinked under UV. The size and ζ-potential of DOX-propGA3-nanogels were
164 nm (PDI 0.14) and −2.7 ± 0.1 mV, respectively, which was similar to empty nanogels (size 172 nm,
PDI 0.16 and ζ-potential −2.5 ± 0.2 mV). This indicated that conjugation of DOX-propGA3 to the
polymer did not affect the size and ζ-potential of the formed nanogels.

3.2. Conversion of Prodrug into DOX by Bovine β-Gus

Figure 3A shows the percentage converted DOX from the DOX-propGA3-polymers and
DOX-propGA3-nanogels in the presence and absence of bovine β-gus over time, in PBS supplemented
with 0.1% BSA. Only in the presence of bovine β-gus were the DOX-propGA3-polymer and
DOX-propGA3-nanogel converted into DOX. This indicates that there was no chemical conversion
of DOX-propGA3 into DOX, which is in line with other prodrugs with similar structures [10,15].
Complete conversion of DOX-propGA3-polymer and DOX-propGA3-nanogel into DOX was obtained
after 24 and 48 h, respectively. The complete conversion of DOX-propGA3-nanogel into DOX was
slower than DOX-propGA3-polymer. This difference was most likely related to the difference in
structure between DOX-propGA3-polymer and DOX-propGA3-nanogels. Since β-gus has a rather
high molecular weight (>300 kDa) [46], the β-gus is not able to enter the nanogels. Therefore, the
DOX-GA3 (a substrate of β-gus) first needs to be released from the nanogels. The release of DOX-GA3
from the nanogel most likely takes place by either diffusion of DOX-GA3 out of the nanogels after
hydrolysis of the ester between the triazole and DOX-GA3 or by nanogel degradation leading to (free)
polymer chains, Figure 3B. Subsequently, the β-gus is able to convert the DOX-GA3 into DOX, whereas
for the DOX-propGA3-polymer only the ester group between the triazole and prodrug needs to be
hydrolyzed before DOX-GA3 is released, that is, subsequently quickly converted into DOX by β-gus.
As a consequence, DOX formation from the nanogels was slower than from the polymer conjugate.
In contrast, the conversion rate of DOX-propGA3-nanogel into DOX is much faster than previously
designed micelles containing DOX-propGA3, viz. 100% conversion after 2 days incubation compared
to 25–35% conversion after 4 days incubation [32,39], respectively. This could be due to the lower
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water activity in the hydrophobic core of micelles, compared to the nanogels, resulting in a slower
hydrolysis of the ester bond connecting the prodrug and the polymer backbone.Pharmaceutics 2020, 12, x 8 of 12 
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Figure 3. Conversion of DOX-propGA3-nanogels and DOX-propGA3-polymer into DOX.
(A) Conversion profile of DOX from DOX-propGA3-polymer and DOX-propGA3-nanogels with
or without bovine β-gus at a concentration of 100 units/mL (n = 3). (B) Schematic representation of
prodrug conversion form the nanogel into DOX.

3.3. Exposure of 4T1 Cells to HIFU and Conversion of Prodrug by HIFU Treated Cells

Figure 4 shows the microscopic images of untreated cells (A) and cells exposed to HIFU (B) at
a magnification of 10×. Untreated cells were round and had a smooth surface, representing normal
physiology of the cells 1 h after plating. In the sample of cells exposed to HIFU, only cell debris was
present and no viable cells were observed. The supernatant of cells exposed to HIFU contained a β-gus
enzyme activity of 7.3 ± 0.7 units/1 × 106 cells, whereas the supernatant of untreated cells contained a
β-gus enzyme activity of only 0.31 ± 0.1 units/1 × 106 cells. The supernatant of cells exposed to HIFU
was able to convert the DOX-propGA3-nanogels completely into DOX within 48 h. These results were
in line with the DOX release results from DOX-propGA3-nanogels with bovine β-gus.
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Figure 4. Bright field microscopy images with a magnification of 10× of (A) untreated cells and (B) cells
after exposure to HIFU for 10 min with a peak negative pressure of 41 MPa; bar represents 500 µm.

3.4. In Vitro Cytotoxicity

Figure 5 shows cell viability of cells treated with different concentrations of DOX, DOX-propGA3,
DOX-propGA3-polymer, and DOX-propGA3-nanogels, in complete cell culture medium, supplemented
with (A) PBS (negative control), (B) bovine β-gus, and (C) supernatant of 4T1 cells exposed to
HIFU. Treatment of cells with DOX-propGA3, DOX-propGA3-polymer, and DOX-propGA3-nanogels
in complete cell culture medium supplemented with 5% PBS (Figure 5A) did not result
in cytotoxicity, except for cells treated with DOX-propGA3-nanogels at a concentration of
1 mM, the highest concentration investigated. These results are in line with previous studies
with comparable prodrugs [15,39]. Cells treated with DOX-propGA3, DOX-propGA3-polymer,
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and DOX-propGA3-nanogel, in combination with bovine β-gus at a concentration of 50 µg/mL
(Figure 5B) and supernatant of cells exposed to HIFU (Figure 5C), experienced at an increase in
concentration, a decrease in cell viability. Both bovine β-gus and supernatant of cells exposed to
HIFU significantly increased the cytotoxicity of the different prodrug formulations to a similar extent.
In all conditions, cells treated with DOX showed the largest cytotoxicity (IC50 of 2,000 nM), Table 1.
Lysate of cells exposed to HIFU caused limited cytotoxicity, and cell viability of 93.6 ± 3.9%. In addition,
empty nanogels have good cytocompatibility at the used concentrations [40]. This indicates that the
cytotoxicity of the nanogels in combination with liberated β-gus from cells exposed to HIFU was
caused by the converted prodrug, released from the nanogels. The cytotoxicity of DOX was not
influenced by the β-gus or supernatant of cells exposed to HIFU. Therefore, DOX-propGA3-nanogel is
a promising formulation since it only converts into DOX in the presence of β-gus and it does not result
in cytotoxicity in the absence of this enzyme.
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Figure 5. Viability of 4T1 cells incubated with doxorubicin (DOX), DOX-propGA3,
DOX-propGA3-polymer, and DOX-propGA3-nanogels with PBS (A), bovine β-gus (B), and supernatant
of HIFU-treated cells (C) cells (n = 3). Dashed lines represent the IC50 of each treatment.

Table 1. IC50 (nM) of 4T1 cells incubated with DOX, DOX-propGA3, DOX-propGA3-polymer, and
DOX-propGA3-nanogels, with PBS, bovine β-gus, and supernatant of cells, exposed to HIFU. * p < 0.05
between PBS and bovine β-gus or supernatant of cells exposed to HIFU.

IC50 with PBS (nM) IC50 with Bovine
β-Gus (nM)

IC50 with Supernatant of Cells
Exposed to HIFU (nM)

DOX 2000 ± 300 1700 ± 200 1600 ± 300
DOX-propGA3 >100,000 5500 ± 1100 * 5600 ± 1400 *

DOX-propGA3-polymer >100,000 24,100 ± 4700 * 2100 ± 1800 *
DOX-propGA3 nanogels >100,000 10,300 ± 1800 * 9900 ± 1100 *

It has been observed before that nanogels can be internalized by cells by endocytosis
and end in endosomes and lysosomes [25]. These lysosomes contain the β-gus enzyme [47].
Therefore, specific activation of the prodrug into the cytotoxic drug could occur. However, the
pH in these lysosomes is rather low (pH between 4.5 and 5 [48]). Since the hydrolysis rate of ester
bonds is at a low pH [49], the hydrolysis of DOX-propGA3 into DOX-GA3 is hampered in these
lysosomes. Therefore, DOX-propGA3-nanogels will not cause cytotoxicity in the normal cells when
DOX-propGA3-nanogels are endocytosed in these cells.

These results motivate further in vitro testing of this proof of principle. In vitro experiments are
required to optimize the tumor volume that is exposed to HIFU in order to liberate their β-gus for
prodrug conversion, released from nanogels, into the chemotherapeutic agent doxorubicin in order to
kill the remaining tumor cells in the tumor margin.

4. Conclusions

A DOX-glucuronide prodrug (DOX-propGA3) was conjugated to the polymer
p(HEMAm-co-AzEMAm)-Gly-HEMAm by click chemistry (to yield DOX-propGA3-polymer).
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Subsequently, this DOX-propGA3-polymer was used to prepare DOX-propGA3-nanogels.
The glucuronide spacer was selectively cleaved by liberated β-gus from cells exposed to
HIFU. Furthermore, the supernatant of cells exposed to HIFU increased the cytotoxicity of
DOX-propGA3-polymer and DOX-propGA3-nanogels due to liberated β-gus from 4T1 cells. Therefore,
DOX-propGA3-nanogels in combination with HIFU treatment of the tumor could be a novel and
attractive therapeutic modality for anticancer therapy.

Supplementary Materials: The following are available online at http://www.mdpi.com/1999-4923/12/6/536/s1.
Figure S1: Schematic representation of the in-house-build HIFU setup, consisting of a transducer, an amplifier, an
oscilloscope, a wave generator, a hydrophone, and a sample holder. HIFU was performed by a single element
focused ultrasound transducer (Imasonic, Besançon, France). During HIFU treatment, a PCR tube (Bio rad,
California, USA), containing the sample, was positioned in the sample holder in the focus of the ultrasound beam;
Figure S2: 1H-NMR spectrum of p(HEAm-co-AzEMAm), from [38], reprinted with permission from Royal Society
of Chemistry, 2020; Table S1: Characteristics of p(HEMAm-co-AzEMAm) as determined by 1H-NMR, UPLC and
GPC, from [38], reprinted with permission from Royal Society of Chemistry, 2020
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