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Priming of CD8+ T cells by dendritic cells (DCs) is crucial for the
generation of effective antitumor immune responses. Here, we
describe a liposomal vaccine carrier that delivers tumor antigens
to human CD169/Siglec-1+ antigen-presenting cells using ganglio-
sides as targeting ligands. Ganglioside-liposomes specifically
bound to CD169 and were internalized by in vitro-generated
monocyte-derived DCs (moDCs) and macrophages and by ex
vivo-isolated splenic macrophages in a CD169-dependent manner.
In blood, high-dimensional reduction analysis revealed that
ganglioside-liposomes specifically targeted CD14+ CD169+ mono-
cytes and Axl+ CD169+ DCs. Liposomal codelivery of tumor antigen
and Toll-like receptor ligand to CD169+ moDCs and Axl+ CD169+

DCs led to cytokine production and robust cross-presentation and
activation of tumor antigen-specific CD8+ T cells. Finally, Axl+

CD169+ DCs were present in cancer patients and efficiently cap-
tured ganglioside-liposomes. Our findings demonstrate a nanovac-
cine platform targeting CD169+ DCs to drive antitumor T cell
responses.
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The major breakthrough of immune-checkpoint inhibitors,
such as anti-CTLA4 and anti–PD-L1, in cancer therapy is still

limited to a minority of patients who respond to this treatment
(1). Patients with pancreatic cancer, for example, failed to re-
spond to monotherapies of checkpoint inhibitors in multiple
trials (2, 3). Factors such as poor tumor immunogenicity, tumor-
immunosuppressive microenvironment, and the lack of an
existing tumor-specific immune response are thought to con-
tribute to patients’ lack of response to these immune-checkpoint
inhibitors (2, 4, 5). Nevertheless, the abundance of intratumoral
CD8+ T cells is associated with longer survival of pancreatic
cancer patients, suggesting these patients may benefit from a
better antitumor immunity (6–8). Therefore, new strategies
aiming to boost patients’ antitumor CD8+ T cell responses
should be explored to improve current therapies.
Dendritic cells (DCs) play a crucial role in eliciting immune

responses against tumor-specific antigens and have therefore
generated significant interest as a therapeutic target in the
context of cancer immunotherapy (9). The most commonly used
DC-based immunotherapy utilizes monocyte-derived DCs
(moDCs) due to the large numbers that can be generated ex vivo.
In general, moDC-based vaccines have shown some survival
benefit and appear to be well-tolerated; however, the objective
response rate in most studies is still relatively low (9, 10).
Moreover, since generating DCs ex vivo is a laborious, time-

consuming, and costly process, research is shifting toward tar-
geting tumor antigens to naturally circulating or tissue-resident
DCs in vivo as a vaccine strategy to induce immune responses
(11). Both in mice and humans, DCs can be divided into several
subsets, of which the conventional DCs (CD141+ cDC1 and
CD1c+ cDC2) have been shown to be responsible for T cell
priming (12, 13).
In vivo DC targeting can be achieved by using antibodies or

ligands that bind to DC-specific receptors and are directly con-
jugated to tumor antigen or to nanoparticles harboring tumor
antigen. Targeting C-type lectin receptors in particular, such as
DEC-205, Clec-9A, and DC-SIGN, has been demonstrated to
induce antigen-specific and antitumor responses in mouse and
human models (14–17). Recently, we compared two vaccination
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strategies of antigen–antibody conjugates directed to either
DEC-205+ DCs or to CD169+ macrophages, a type of macro-
phage that acts as sentinel in secondary lymphoid organs (18).
Remarkably, we observed that antigen targeting toward CD169+

macrophages led to a significant antigen-specific CD8+ T cell
response that was as efficient as DEC-205 targeting and capable
of suppressing tumor cell outgrowth (18–20). Stimulation of
antigen-specific immune responses by targeting to CD169 has
also been demonstrated using HLA-A2.1 transgenic mice and
human CD169-expressing moDCs (21), indicating the immuno-
therapy potential of antigen targeting to CD169.
In a resting state, CD169/Siglec-1 is highly expressed by a

specific subtype of macrophages that are located bordering the
marginal zone in the spleen and the subcapsular sinus of lymph
nodes (22, 23). Their strategic location allows them to be among
the first cells to encounter and to capture blood and lymph-borne
pathogens, and, in conjunction with DCs, to initiate the appro-
priate immune responses (18, 19, 24, 25). In addition to com-
bating infection, CD169+ macrophages have been implicated in
antitumor immunity. They have been shown to capture tumor-
derived materials in mouse and human (26, 27), and their fre-
quency in tumor-draining lymph nodes is clearly associated with
better clinical outcomes in several types of cancer (28–30). Al-
though the exact mechanism is unclear, these observations sug-
gest that lymphoid-resident CD169+ macrophages can positively
contribute to antitumor immunity. Next to lymphoid tissue-
resident macrophages, CD169 is also constitutively expressed
by a recently described Axl+ Siglec6+ DC subset (Axl+ DCs, AS
DCs, or pre-DCs) present in peripheral blood and lymphoid
tissues (31–34). Axl+ DCs have been proposed as a distinct DC
subset that has the capacity to produce inflammatory cytokines
and to stimulate CD4+ and CD8+ T cells (31–33). In addition to
these constitutively CD169-expressing macrophages and DCs,
during inflammatory conditions, monocytes can up-regulate
CD169 in response to type I interferons (IFN-Is) (35, 36).
CD169 is a member of the sialic acid-binding Ig-like lectin

(Siglec) receptor family that recognizes sialic acids present on
glycoproteins or glycolipids on the cell surface and mediates
cell–cell interactions and adhesion (37). Sialic acid-containing
glycosphingolipids, such as GM3, GT1b, and GD1a ganglio-
sides, are known to be endogenous ligands for CD169 molecules
(38, 39). However, the CD169–sialic acid axis can be hijacked as
a receptor entry molecule by viral pathogens, including murine
leukemia virus (MLV), HIV, and Ebola virus to infect DCs or
macrophages (40–43). The CD169-mediated entry and tran-
sinfection is dependent on gangliosides, including GM3, that are
present on the viral lipid membrane (40, 44, 45). Interestingly,
Axl+ DCs have been recently demonstrated to be the predomi-
nant DC subset to capture HIV in a CD169-dependent manner.
In this study, we aimed to exploit ganglioside–CD169 inter-

actions to develop a novel tumor antigen vaccination strategy
that directs tumor antigens to human CD169+ antigen-presenting
cells (APCs) using liposomes containing gangliosides. We gener-
ated liposomes with different types of gangliosides and assessed the
binding and uptake by different types of human CD169+ APCs,
including monocytes and primary and monocyte-derived macro-
phages and DCs. High-dimensionality mapping revealed the spec-
ificity of ganglioside-liposome targeting exclusively to circulating
CD169+ monocytes and Axl+ DCs. To determine the efficacy of
ganglioside-liposomes for antigen presentation, we encapsulated
peptides derived from the pancreatic cancer-associated tumor an-
tigen Wilms tumor 1 (WT1) or melanoma-associated gp100 antigen
into the ganglioside-liposomes. CD169+ moDCs and Axl+ DCs
loaded with these ganglioside-liposomes efficiently activated CD8+

T cells specific for these epitopes. Moreover, Axl+ DCs were
present in patients with four different cancers and could be
targeted by ganglioside-liposomes. Our data demonstrate that
ganglioside-liposomes can be used as nanovaccine carriers that

efficiently target CD169+ DCs for cross-presentation and
antigen-specific T cell activation. In conclusion, our studies
support the concept that cancer vaccines targeting to CD169 can
be applied to boost CD8+ T cell responses in cancer patients.

Results
Ganglioside-Liposomes Bind to Recombinant Human CD169 and
CD169-Overexpressing THP1 Cells. To generate nanovaccines tar-
geting CD169, we formulated five different EPC/EPG/choles-
terol-based liposomes, each containing 3% of one of five
gangliosides, GM3, GD3, GM1, GT1b, or GD1a (Fig. 1A and SI
Appendix, Table S1 and Fig. S1), with a diameter of ∼200 nm and
negatively charged. These gangliosides are known to bind to
CD169 with different affinities (39, 46). To assess binding to
CD169, we performed an ELISA-based assay in which the
binding of human recombinant CD169 to plate-bound liposomes
was tested. We observed significant binding of all ganglioside-
liposomes to CD169, and GD1a-liposome was the strongest
binder (Fig. 1B). In contrast, control liposomes, with no gangli-
oside incorporated, did not bind to recombinant CD169.
We incorporated lipophilic fluorescent tracer DiD into the

ganglioside-liposomes to evaluate the binding and uptake by
CD169-overexpressing cells (SI Appendix, Fig. S1). Using the
human monocytic cell line THP-1 overexpressing CD169 (TSn),
we determined the cellular binding of ganglioside-liposomes at
4 °C. We observed that, while all ganglioside-liposomes showed
clear binding to TSn cells, GD1a- and GT1b-liposomes showed
the most binding (Fig. 1 C and D). All ganglioside-liposomes
were taken up in a dose-dependent manner at 37 °C (Fig. 1E).
Ganglioside-liposome binding and uptake was CD169-dependent,
as it was absent in CD169-negative THP-1 cells (SI Appendix, Fig.
S1), and preincubation with anti-CD169 antibody (clone 7–239)
prevented binding and uptake of ganglioside-liposomes by TSn
(Fig. 1 F and G). Collectively, these results indicate that
ganglioside-liposomes specifically bind to CD169 and CD169-
overexpressing TSn cells.

Ganglioside-Liposomes Target Human Monocyte-Derived Macrophages
and Primary Splenic Macrophages. We have previously demon-
strated an efficient vaccination strategy by antigen targeting to
CD169+ macrophages using antibodies in mouse models (18,
19). To determine whether ganglioside-liposomes could poten-
tially target antigens to human CD169+ macrophages, we tested
the expression of CD169 on human monocyte-derived macro-
phages (moMacs). CD169 was already highly expressed by
moMacs, and this expression was further elevated by IFNα
treatment (SI Appendix, Fig. S2). Similar to TSn, moMacs bound
and internalized ganglioside-liposomes in a CD169-dependent
manner (Fig. 2 A–C). Addition of IFNα further boosted bind-
ing and uptake of ganglioside-liposome by moMacs (SI Appendix,
Fig. S2).
To determine whether human primary macrophages can bind

and take up ganglioside-containing liposomes, a liposome uptake
assay was performed with human splenocytes. Human splenic red
pulp macrophages were defined by high autofluorescence and
expression of HLA-DR and CD163 and were found to also ex-
press CD169 (Fig. 2 D and E) (47). Upon addition of ganglioside-
liposomes, the primary macrophages took up ganglioside-
liposomes, and this process was mediated by CD169 (Fig. 2 F
and G). This indicates that ganglioside-incorporated liposomes
are able to target both human in vitro-derived and ex vivo primary
splenic macrophages.

Ganglioside-Liposomes Are Bound and Internalized by Human moDCs
in a CD169-Dependent Manner. Human moDCs express low levels
of CD169 that can be up-regulated by addition of IFNα to the
culture; thus, we next determined whether ganglioside-liposomes
could target CD169+ moDCs. Indeed, treatment of moDCs with
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IFNα increased the expression of CD169 on moDCs and resulted
in enhanced ganglioside-liposome binding and uptake (SI Ap-
pendix, Fig. S2). The binding and uptake of ganglioside-
containing liposomes by moDCs was blocked by anti-CD169
antibody (Fig. 3 B and C). This indicates that the binding and
uptake of ganglioside-liposomes on moDCs was exclusively me-
diated by CD169 despite the expression of other Siglecs by
moDCs (48). Furthermore, using imaging flow cytometry, we
confirmed the internalization of ganglioside-liposomes within 1
to 2 h (Fig. 3 D and E). All ganglioside-liposomes were inter-
nalized efficiently by moDCs without noticeable differences.
Thus, ganglioside-liposomes specifically bind to and are inter-
nalized by CD169-expressing moDCs.

Ganglioside-Liposomes Harboring Toll-Like Receptor Ligand Activate
CD169+ moDCs and Are Cross-Presented to T Cells. To determine
whether ganglioside-liposomes could be used as a nanovaccine
to target tumor antigen and adjuvant to CD169+ APCs, we used
CD169+ moDCs and formulated ganglioside-liposomes con-
taining Toll-like receptor (TLR) 4 ligand MPLA and tumor-
associated WT1 antigen (Fig. 4A). MPLA-containing liposomes
have been previously shown to activate moDCs, and its incor-
poration did not interfere with ganglioside-liposome binding to

moDCs (SI Appendix, Fig. S3) (49). Uptake of MPLA-containing
ganglioside-liposomes stimulated IL-6 production by the
moDCs, which indicates specific activation of the moDCs (Fig.
4B). To assess antigen presentation, we incubated moDCs with
ganglioside-liposomes containing MPLA and WT1 peptide for
45 min, washed the cells, and cocultured them with WT1-specific
CD8+ T cells for 16 to 24 h. moDCs loaded with ganglioside/
WT1/MPLA-liposomes, but not control liposomes, stimulated
IFNγ secretion by CD8+ T cells (Fig. 4 C and D). Interestingly,
all ganglioside-liposomes were able to induce similar levels of
IFNγ despite differences in binding and uptake to moDCs.
Second, we assessed the capacity of ganglioside-liposomes to

stimulate cross-presentation using melanoma-associated gp100
antigen. For these studies, we used GM3-containing liposomes,
as GM3 has been shown to be the ganglioside responsible for
binding of multiple viruses to CD169 (40). We incorporated
gp100 long peptide into GM3-liposomes, and, as an additional
comparison, we used DC-SIGN-targeting Lewis Y-containing
liposomes, for which cross-presentation was previously demon-
strated (50). After uptake of gp100-containing liposomes, we
cocultured moDCs with gp100-specific T cells and assessed IFNγ
secretion. We observed that GM3/gp100-liposomes induced
IFNγ secretion by the gp100-specific T cells, and the level was
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comparable to Lewis Y-liposomes (Fig. 4 E and F). This indi-
cates that ganglioside-liposome can be used to deliver antigen for
cross-presentation to T cells.

Ganglioside-Liposomes Target Primary Human CD14+ CD169+ Monocytes
and Axl+ DCs. CD169-expressing immune cells can be identified in
blood, and their frequency is increased under various inflam-
matory conditions (35, 36). To investigate which circulating im-
mune cells can bind ganglioside-liposomes, we isolated PBMCs
from healthy donors and assessed liposome uptake ex vivo. We
performed unsupervised high-dimensionality reduction viSNE
analysis of HLA-DR+ CD3/CD19/CD56− APCs using the
monocyte and DC lineage markers CD14, CD16, CD123, CD11c,
CD1c, CD141, Axl, Siglec-6, and CD169 (Fig. 5A). We were able
to identify distinct populations of monocytes, including classical
(CD14+ CD16−), intermediate (CD14+ CD16+), and nonclassical
(CD14−CD16+) monocytes, as well as DC subsets, when overlaid
with conventional sequential gating strategy (Fig. 5 B and C).
Within the monocyte clusters, we observed CD169+ cells within
the CD14+ monocyte population that represented 5 to 15% of all

CD14+ monocytes (Fig. 5 C and E). After incubation of PBMCs
with ganglioside-liposomes, DiD+ cells were restricted to CD169-
expressing cells, most notably those found in CD14+ population
(Fig. 5D). Furthermore, CD14+ CD169+ monocytes, but not
CD14+ CD169− monocytes, efficiently took up all ganglioside-
liposomes, in particular those containing GD1a and GT1b
(Fig. 5 F and G and SI Appendix, Fig. S4).
Since we observed DiD+ cells in nonmonocytic clusters

(Fig. 5D), we further assessed ganglioside-liposome targeting in
DC populations by excluding CD14+ and CD16+ cells prior to
viSNE analysis. When we overlaid manually gated DC populations
onto the tSNE map, we were able to identify clusters of CD123+

pDC, CD1c+ cDC2, CD141+ cDC1, and the recently described
Axl+ Siglec-6+ DCs (31) (Fig. 6 A and B). The expression of
CD169 was specifically restricted to Axl+ DCs (Fig. 6 A and C), and
these cells were present at similar frequency as CD141+ cDC1 in
the circulation (Fig. 6D). Interestingly, ganglioside-liposomes were
exclusively taken up by Axl+ DCs, but not other DC subsets
(Fig. 6 E–G and SI Appendix, Fig. S4). Notably, the ganglioside-
liposome uptake by the Axl+ DCs was CD169-dependent (Fig. 6G).
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splenic macrophages as (F) representative dot plot and (G) quantification (n = 4 to 5) is shown. When indicated, macrophages were preincubated with anti-
CD169 blocking antibody to block ganglioside-liposome binding. Data are mean ± SEM from n = 4 to 5 donors.
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Moreover, no ganglioside-liposome uptake by CD169-negative
lymphoid cells or granulocytes was observed (SI Appendix, Fig. S5).

Ganglioside-Liposomes Induce T Cell Activation by Blood-Derived Axl+

DCs. To determine whether ganglioside-liposomes can deliver
antigen to Axl+ DCs for presentation to CD8+ T cells, we
enriched for total DCs from PBMCs by depleting monocytes,
T cells, B cells, and NK cells and added GM3-liposomes con-
taining WT1 tumor antigen and R848 as adjuvant (Fig. 6H). We
selected R848 as adjuvant since Axl+ DCs express TLR7 but not
TLR4, and we were able to detect TNFα production by Axl+

DCs treated with GM3/R848 liposome (SI Appendix, Fig. S6 A
and B). Importantly, DCs incubated with GM3/WT1/R848 li-
posomes were able to stimulate IFNγ production of WT1-
specific CD8+ T cells that was significantly higher than the
amount obtained by Ctrl/WT1/R848 liposomes (Fig. 6I). None of
the other ganglioside-liposomes we tested were able to induce
IFNγ production by WT-1–specific CD8+ T cells (SI Appendix,
Fig. S6 C and D). Additionally, GM3/R848 liposomes devoid of
WT1 antigen did not induce IFNγ production (SI Appendix, Fig.
S6D). Since GM3 only binds to Axl+ DCs and not to other DC
subsets, this indicates that GM3-liposomes specifically target and
deliver antigen to circulating Axl+ DCs for antigen presentation
to CD8+ T cells.

Axl+ DCs Are Present in Cancer Patients and Can Be Targeted by
Ganglioside-Liposomes. To determine the feasibility of ganglioside-
liposome as nanovaccine in cancer patients, we next investigated
the presence of Axl+ DCs in patients with gastrointestinal malig-
nancies, pancreatic ductal adenocarcinoma (PDAC), hepatocellular
carcinoma (HCC), colorectal liver metastasis (CRLM), and

melanoma. Using flow cytometry, we were able to detect Axl+ DCs
in all cancer patients tested (Fig. 7A). We also observed high ex-
pression of CD169 in Axl+ DCs as compared to other DC subsets
(Fig. 7B). Furthermore, ganglioside-liposomes were significantly
taken up by Axl+ DCs of these patients (Fig. 7C).
In conclusion, ganglioside-liposomes specifically target CD169+

APCs, including Axl+ DCs in cancer patients, and incorporation of
adjuvant and tumor antigens can activate CD169+ DCs and fa-
cilitate cross-presentation of tumor antigens to CD8+ T cells.

Discussion
Liposomes have emerged as an attractive type of nanocarrier
for vaccines owing to their high payloads and customizable
properties (51). The addition of molecules that enable the
binding to specific cell type receptors on APCs can enhance
antigen uptake and subsequent T cell activation. Here, we
demonstrate proof-of-concept data of a liposome-based nano-
vaccine carrier that targets human CD169-expressing APCs
with high specificity by using gangliosides as the endogenous
CD169-targeting ligands. Using an ex vivo binding/uptake ap-
proach, we demonstrate that ganglioside-liposomes bind effi-
ciently to CD169-expressing APCs, including moDCs, CD14+

CD169+ monocytes, and the recently described Axl+ DCs.
Although other sialic acid-binding receptors such as Siglec-3,
-7, and -9 and Siglec-2 and -6 are expressed by moDCs and
Axl+ DCs, respectively, the binding and uptake of ganglioside-
liposomes was exclusively mediated by the CD169 receptor
(48). Other cells lacking CD169 expression, including T cells,
B cells, and NK cells, and other DC subsets, were not targeted
by ganglioside-liposomes. Moreover, we demonstrate that uptake
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of tumor antigen-containing ganglioside-liposomes by moDCs and
Axl+ DCs results in cross-presentation to CD8+ T cells. These
data together indicate that ganglioside-containing liposomes can
be utilized as vaccine nanocarriers to specifically target human
CD169+ APCs for an effective antigen delivery and antigen-
specific T cell activation (Fig. 7D).
While we show very specific binding of liposomes containing

endogenously expressed gangliosides to CD169/Siglec-1, a re-
cent study employed liposomes containing the synthetic glycan
3′BPCNeuAc as a vaccination strategy in mice. The 3′BPCNeuAc-
liposomes were able to target mouse CD169+ macrophages
in vitro and in vivo, and stimulated antigen-specific T cell
and NKT cell activation in mice (52, 53). The synthetic glycan
3′BPCNeuAc binds to CD169 with high affinity, whereas the en-
dogenous ligands have much lower affinity (54). Nevertheless,
our results clearly demonstrate that incorporation of the low
endogenous affinity ligands in liposomes is sufficient for efficient
targeting to ex vivo human APCs that express CD169 and also
leads to the activation of T cell responses. One potential disad-
vantage of using a synthetic ligand for CD169 is the possibility of
inducing a neutralizing immune response against the synthetic
ligand itself. This has been shown for the addition of PEG to the

surface of liposomes and is known as the accelerated blood
clearance phenomenon that interferes with repeated adminis-
trations (55–57). In contrast, the use of an endogenous broadly
expressed ganglioside such as GM3 would not be expected to
result in antibody responses, allowing for repeated booster vac-
cination, and would thus be preferable to synthetic analogs.
Human CD169 is highly expressed by macrophages in the peri-

follicular zone of the spleen and subcapsular sinus of lymph nodes
and at a lower level by splenic red pulp macrophages, which is very
similar to the expression observed in mice (21, 47, 58). Higher
frequencies of CD169+ macrophages in tumor-draining lymph
nodes have been associated with favorable prognosis in multiple
cancer types (28–30). We and others have shown that antigen tar-
geting to CD169+ macrophages results in strong CD8+ T cell re-
sponses in mouse in vivo models due to efficient transfer of antigens
from splenic CD169+ macrophages to cDC1 for CD8+ T cell ac-
tivation (18–21). Although still unknown, it is possible that a similar
antigen transfer process between CD169+ macrophages and DCs
exists in humans, as has been shown between human cDC2 and
cDC1 (59).
Next to macrophages, human Axl+ DCs were recently iden-

tified in PBMCs as a separate DC subset that constitutively
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expressed CD169 (31–33). These cells are present in conven-
tional CD123+ pDC preparation and show cDC-like properties.
Axl+ DCs also have the plasticity to differentiate into cDCs or
pDCs and were shown to have potent capacity to activate CD4+

and CD8+ T cells in allogeneic assays. In addition, “pure” pDCs
devoid of Axl+ DCs have been shown to differentiate into three
distinct populations with differential CD80/PD-L1 expression
after microbial stimulation. One of these populations shows
cDC-like features reminiscent of Axl+ DCs, producing low IFNα
and showing the capability of activating T cells (60). Interest-
ingly, both the Axl+ DCs as well as the pDC-derived cells express
CD169 and can potentially be targeted by ganglioside-liposome.

Our studies show that ganglioside-liposomes can simultaneously
induce TNFα production and specifically deliver tumor antigens
to Axl+ DCs, which stimulate CD8+ T cell responses. We also
provide evidence that Axl+ DCs are present and can be targeted
by our nanovaccine in the circulation of patients with multiple
types of cancers. These results support our hypothesis that cancer
vaccines targeting human CD169+ APCs are expected to boost
anticancer immune responses in patients and that ganglioside-
liposomes constitute an effective nanovaccine platform for tumor
antigens and adjuvant.
CD169/Siglec-1 was first described as a receptor that mediates

cell–cell adhesion through recognition of sialic acid-containing
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glycolipid or glycoproteins (17, 37, 61). In the context of infec-
tion, CD169 functions as a binding receptor for sialylated bac-
teria, promoting phagocytosis while limiting dissemination (62).
CD169 also captures viral pathogens, although it plays dual roles
in host defense against viruses by triggering antiviral immune
responses and permitting transinfection. By incorporating host-
derived sialic acid-containing molecules on the membrane,
viruses are able to bind to CD169 receptor expressed on APCs.
After initial capture by CD169+ macrophages or DCs, they can
further transinfect other myeloid or lymphoid cells, as has been
clearly demonstrated for MLV and HIV (41, 43, 45, 63). The
incorporation of host-derived ganglioside GM3, in particular,
has been shown to be crucial for HIV entry to human moDCs,
and ganglioside-containing nanoparticles have been used as a
model to study viral infection of DCs (22, 64, 65). Due to the
high CD169 expression by Axl+ DCs, HIV was shown to pref-
erentially infect Axl+ DC as compared to the other DC subsets
(66). The ganglioside-liposomes investigated in this study mimic
viral entry to CD169+ APCs and specifically target human blood
Axl+ DCs, but not cDCs and pDCs. Since Axl+ DCs express viral
nucleic acid sensors such as TLR7 and TLR9, but not other
TLRs, we further incorporated the TLR7 ligand R848 in the
GM3-liposomes. Our data show that the combination of both
components results in a virus-like nanovaccine capable to target
Axl+ DCs and to stimulate T cells.
In addition to CD169/Siglec-1, DC-SIGN is a well-known re-

ceptor for HIV expressed on moDCs that also functions as a
target molecule for cancer vaccines (17, 67). Interestingly, many
similarities exist between CD169 and DC-SIGN. Both molecules
are expressed by perifollicular macrophages in the human spleen
and by IFN-I–treated moDCs (21, 58, 68). They function as a
receptor for a variety of pathogens, but are also adhesion mol-
ecules for immune cells and can mediate transinfection of viruses
(67, 69). As such, human CD169+ DC-SIGN+ perifollicular
macrophages function similarly as mouse CD169+ metallophilic
marginal-zone macrophages, that is, they both capture and
transfer antigen to other immune cells, such as DCs and B cells,
to initiate antigen-specific adaptive immune responses (22). This
is crucial in the context of vaccine delivery and T cell activation

for cancer immunotherapy. Indeed, we and others have previ-
ously shown that antigen targeting toward DC-SIGN using an-
tibodies induces efficient antigen-specific T cell responses in
in vitro and in vivo models (15, 70, 71). Using fucose-containing
glycans as ligands to target DC-SIGN, we previously generated
liposome or dendrimers to codeliver antigen and adjuvant to
DC-SIGN+ DCs. These nanoparticles could efficiently target
moDCs for activation of antigen-specific T cells (50, 72, 73). In
this paper, we show that ganglioside-liposomal antigen targeting
to CD169 on moDCs results in a comparable T cell activation as
that observed by antigen targeting toward DC-SIGN using Lewis
Y-liposome. Additionally, we have previously demonstrated that
antibody-mediated tumor antigen targeting to CD169 and DC-
SIGN provided comparable T cell activation by moDCs (21).
However, DC-SIGN is not expressed by circulating DCs, whereas
CD169 is expressed by Axl+ DCs, thus underlining the potential
advantage of CD169 targeting.
Finally, the optimal route of administration of DC targeting

using nanoparticles is dependent on their formulation (74).
Recent studies indicate that i.v. delivery of vaccines for malaria
and Mycobacterium tuberculosis is superior to peripheral delivery
(75–77), and this route has also been utilized for cancer vaccines
that consist of RNA- or DNA-lipoplexes (78–80). Importantly,
i.v. systemic delivery of liposomal-based vaccines was shown to
be more potent in inducing strong antitumor T cell responses
than the peripheral injection routes (78, 80). Hence, we predict
that i.v. delivery of vaccines that target antigen to CD169 will
enable uptake by perifollicular macrophages in the spleen and
Axl+ DCs in the circulation, leading to an efficient antitumor
CD8+ T cell induction.
Taken together, our study reveals proof-of-concept data for

ganglioside-liposomes as nanovaccine carriers targeting human
CD169+ APCs in a highly specific manner. Targeting CD169+

APCs using nanoparticles is expected to function as an effective
antigen delivery platform to drive CD8+ T cell responses. Future
research assessing different type of TLR ligands and tumor
(neo-)epitopes, in combination with checkpoint inhibition, will
further optimize this vaccination strategy.
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Materials and Methods
Human Primary Cells and Patients. Human peripheral blood mononuclear cells
(PBMCs) from heparinized blood were isolated by density gradient centri-
fugation (Lymphoprep; Axis-Shield). PBMCs were collected from patients
with gastrointestinal malignancies or metastatic melanoma in accordance
with the Helsinki Declaration of 1975 and with approval by the institutional
review board of the Amsterdam UMC. All subjects provided informed con-
sent. Samples were deidentified prior to use in the study. PDAC, HCC, and
CRLM patients were enrolled in the HPB biobank at the VU University
Medical Center (Medical Ethical Committee approval 2016.510). Melanoma
patients were enrolled in a clinical study of autologous whole-cell vaccina-
tion at the VU University Medical Center between 1987 and 1998 (81).
Leftover human spleen tissue was obtained anonymously from the VUmc
Biobank (BUP 2015–074); therefore, approval by the medical ethical com-
mittee was not required. Human spleen was mechanically and enzymatically
digested with Liberase and DNase I (Roche) at 37 °C for 30 min. Cells were
then depleted of red blood cells using ammonium chloride lysing buffer.
Following PBS washes, cells were further processed for liposome binding or
uptake or flow cytometry staining as described below.

Monocyte-Derived DCs and Macrophages and Primary DC Preparation. Mono-
cytes isolated using Percoll gradient or CD14-magnetic beads (Miltenyi Bio-
tec) were cultured for 5 to 6 d in RPMI 1640 complete medium (Thermo
Fisher Scientific) containing 10% fetal calf serum (Biowest), 50 U/mL peni-
cillin, 50 μg/mL streptomycin, and 2 mM glutamine (all from Thermo Fisher
Scientific). For generation of moDCs, monocytes were cultured in the pres-
ence of recombinant human IL-4 (500 U/mL) and GM-CSF (800 U/mL; both
from Immunotools). For generation of moMacs, recombinant human M-CSF
(50 ng/mL; Miltenyi Biotec) was used. To increase CD169 expression, cells
were treated with recombinant human IFNα (1,000 U/mL; Miltenyi Biotec)
during the last 2 d of culture. For enrichment of primary DCs, PBMCs were
depleted from non-DC populations using biotinylated antibodies against
CD3, CD14, CD19, CD56 (10 μg/mL; all produced and validated in-house), and
CD16 (5 μg/mL; Biolegend) and streptavidin nanobeads (Biolegend) using an
LD Column (Miltenyi).

Cell Lines. THP-1 cells overexpressing CD169/Sialoadhesin/Sn (TSn) were
maintained in RPMI complete medium (35). WT1126–134 or gp100280–288 ret-
roviral TCRαβ-transduced HLA-A2.1 restricted T cell lines were maintained in
Yssel’s medium: IMDM (Thermo Fisher Scientific), 20 μg/mL human trans-
ferrin (Boehringer Ingelheim), 2 μg/mL linoleic acid, 2 μg/mL palmitic acid (all
from Calbiochem), 5 μg/mL insulin, 0.25% BSA, 1.8 μg/mL 20-amino ethanol,
1% human serum (all from Sigma-Aldrich), penicillin, streptomycin, gluta-
mine, and IL-2 (100 IU/mL; Peprotech) as previously described (73, 82, 83).

Liposome Preparation. Liposomes were prepared from a mixture of phos-
pholipids and cholesterol utilizing the film extrusion method as described
previously and depicted in SI Appendix, Fig. S1 (49, 72). In brief, egg phos-
phatidylcholine (EPC)-35 (Lipoid), egg phosphatidylglycerol (EPG)-Na (Li-
poid), and cholesterol (Sigma-Aldrich) were mixed at a molar ratio of
3.8:1:2.5. Ganglioside (3 mol%; GM3, GD3, GM1; Avanti Polar Lipids; GD1a,
GT1b; Matreya) and 0.1 mol% of lipophilic fluorescent tracer DiD (1,1′-dio-
ctadecyl-3,3,3′,3′-tetramethylindodicarbocyanine; Thermo Fisher Scientific)
were added to the mixture. Where specified, TLR-ligand MPLA (2 mol%;
Invivogen) or R848 (4 mol%; Invivogen) was included. The solvent was
evaporated under vacuum on a rotavapor to generate a lipid film, and the
residual organic solvent was removed by nitrogen flush. The lipid film was
then hydrated in Hepes-buffered saline (10 mM Hepes buffer, pH 7.4, 0.8%
NaCl) with mechanical agitation by hand-shaking or rotary mixing for 20 min
until the lipid film was completely resuspended. For antigen-presentation
assay, the pancreatic cancer-associated antigen Wilms’ Tumor 1 short pep-
tide (RMFPNAPYL) and melanoma-associated antigen gp100 long peptide
(VTHTYLEPGPVTANRQLYPEWTEAQRLD; both 3 mg/mL) were encapsulated
into the liposomes during the hydration step. Peptides were produced by
solid-phase peptide synthesis using Fmoc-chemistry with a Symphony pep-
tide synthesizer (Protein Technologies). The liposomes were sized by se-
quential extrusion through two stacked polycarbonate filters (400 and
200 nm) with a Lipex high-pressure extrusion device (Northern Lipids).
Nonincorporated materials were removed by sedimentation of the lipo-
somes by ultracentrifugation at 200,000 × g twice. The final resuspension of
the liposomes was performed in Hepes buffer at pH 7.4. The mean particle
size, polydispersity index, and zeta potential were measured using Malvern
Zetasizer (Malvern Instruments). Phospholipid concentrations were deter-
mined by a colorimetric phosphate assay. Briefly, liposome dispersions were

dried in glass test tubes for 30 min at 180 °C and degraded by the addition of
0.3 mL 70% perchloric acid, followed by another 30-min incubation at 180 °C.
After cooling, 1 mL of water, 0.5 mL of 1.2% hexa-ammoniummolybdate so-
lution, and 0.5 mL of 5% (wt/vol) ascorbic acid were added, mixed, and heated
in boiling water for 5 min. Absorbance values were measured at 797 nm
against a calibration curve prepared with sodium phosphate (NaH2PO4). Phys-
ical properties of liposomes are shown in SI Appendix, Table S1.

Recombinant CD169 ELISA. Liposomes (25 nM) were coated and fixed in 100%
ethanol on a Nunc MaxiSorp ELISA plate (Thermo Fisher Scientific) and air-
dried overnight. This was followed by blocking with 1% BSA (BSA, fraction
V, fatty acid-free; Calbiochem)/phosphate-buffered saline (PBS), washes with
PBS, and incubation with 1 μg/mL recombinant human CD169 with
C-terminal 6-His tag (R&D Systems) for 1 h at RT. For detection, incubation
with HRP-conjugated anti-His (Biolegend) in 1% BSA/PBS for 30 min at RT
was performed, followed by PBS washes and the addition of TMB as sub-
strate (Sigma-Aldrich). Absorbance was measured at 450 nm using a
microplate spectrophotometer (Bio-Rad).

Cell-Based Liposome Binding and Uptake. Cells were incubated with
ganglioside-liposomes (100 nM unless indicated otherwise) for 45 min at 4 °C
or 37 °C to evaluate liposome binding or uptake, respectively. Specific
binding or uptake of ganglioside-liposomes mediated by CD169 was deter-
mined by preincubation of cells for at least 15 min at 4 °C with 2 μg/mL
neutralizing antibody against CD169, clone 7–239.

Flow Cytometry. Cells were incubated with Fc block (BD Biosciences, cat. no.
564219) and viability dye (fixable viability dye eFluor 780, FVD; eBioscience)
prior to cell surface staining with fluorescence-conjugated antibodies in 0.5%
BSA/PBS for 20 min at 4 °C. After thorough washes, cells were fixed with 2%
paraformaldehyde for 10 min at RT. For intracellular staining, cells were
additionally incubated with antibodies in 0.5% BSA/PBS with 0.5% saponin
for 20 min at 4 °C. Cells were acquired on a Fortessa (BD Biosciences) or
Aurora spectral flow cytometer (Cytek) and analyzed with FlowJo software
(Tree Star). High-dimensionality reduction analysis viSNE was performed
using Cytobank software. Antibodies clones and dilutions used are listed in
SI Appendix, Table S2.

Imaging Cytometry. To investigate liposome uptake, moDCs were incubated
with liposomes for 45 min at 4 °C, washed, and placed at 37 °C for the
indicated time points. moDCs were stained for cell surface CD11b for
20 min at 4 °C, washed, and fixed as mentioned above. Cells were ac-
quired at Amnis Imagestream instrument and analyzed by Amnis
IDEAS software.

DC Activation and Antigen Presentation. IFNα-treated HLA-A2+ moDCs were
seeded at a concentration of 2 × 104 cells per well in U-bottom 96-well plates.
MPLA-incorporated ganglioside-liposomes were added to moDCs (45 min,
4 °C), and IL-6 secretion by DCs in the supernatant was measured after 24 h
using ELISA (Thermo Fisher Scientific). For Axl+ DC cytokine measurement,
PBMCs were incubated with ganglioside-liposomes at 37 °C for 45 min,
washed, and cultured for 4 h in RPMI complete medium, with the addition of
Brefeldin A (BD GolgiPlug) for the final 3 h. TNFα production was measured by
intracellular flow cytometry. For antigen presentation, moDCs or enriched DCs
were incubated with ganglioside-liposomes encapsulating WT1 short peptide
(45 min, 4 °C for moDCs, 37 °C for enriched DCs) or gp100 long peptide (3 h,
37 °C), followed bymediumwashes. LPS (100 ng/mL; Sigma-Aldrich) was added
for gp100 presentation. Antigen-loaded DCs were then cocultured overnight
with WT1126–134 or gp100280–288 TCR-transduced HLA-A2.1 restricted T cell lines
(4 to 5 × 104 cells per well) at a ratio of moDC:T cells of 1:5 or enriched
DC:T cells of 1:1. After 24 h, production of IFNγ in the supernatants of the
cocultures was determined by ELISA (eBioscience).

Statistics. Statistical analysis of Kruskal–Wallis multiple two-tailed t tests;
Friedman test corrected using a two-stage linear step-up procedure of
Benjamini, Krieger, and Yekutieli; or paired t test were performed using
GraphPad Prism 8 (GraphPad Software).

Data Availability. All study data are included in the article and supporting
information.
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