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When investigating wind-induced steady circulation, the effect of the acceleration due to Earth’s rotation
is often neglected in narrow lakes, but the argument behind this assumption is blurred. Commonly, when
the horizontal dimension is smaller than the Rossby radius, the Coriolis force is considered unimportant,
but this is correct only for inertial currents and barotropic and baroclinic waves. In this work, we revisit
the classical Ekman transport solution for wind stress acting along the main axis of an elongated lake in
steady-state conditions. We demonstrate that a secondary circulation develops and that the resulting
crosswise volume transport, constrained in the closed domain, produces downwelling and upwelling that
cannot be predicted by the standard Ekman formulas. We claim that the Rossby radius does not play any
role in this process, which on the contrary is governed by the ratio between the actual depth and the
thickness of the Ekman layer. The theoretical analysis is supported by numerical experiments to show

Numerical modeling
Narrow lakes

the dependence on latitude, width, depth and turbulence closure.
© 2019 International Association for Great Lakes Research. Published by Elsevier B.V. All rights reserved.

Introduction

The role of Earth’s rotation on three-dimensional circulation in
an ocean is a rather classical subject after the seminal contribution
by Vagn Walfrid Ekman at the beginning of the twentieth century
(Ekman, 1905). Assuming steady and uniform conditions in a hor-
izontally infinite water body, he derived an analytical solution for
the vertical distribution of the horizontal velocity induced by the
wind stress at the surface. Ekman found that the resulting volume
transport is oriented perpendicular to the wind stress, a simple
observation with profound consequences. His solution was further
extended to more complex conditions by the oceanographic com-
munity (see Appendix A for an exhaustive literature review), but
few contributions focused on the quantification of the transport
in closed water bodies such as lakes.

When investigating the circulation in enclosed or semi-
enclosed basins, the inclusion/exclusion of the Earth’s rotation as
a relevant process often produces some ambiguity. It is a common
assumption in limnological studies that Earth’s rotation is relevant
only in ‘large’ water bodies, while it can be neglected in relatively
‘small’ ones. The origin of this assumption is twofold: first, it comes
from the literature on gravity waves and density-driven currents in
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rotating water bodies, where the horizontal extent of the basin is
compared to the Rossby radius. Secondly, it comes from the fact
that the Ekman problem was initially designed for the case of infi-
nitely wide ocean, far enough from boundaries.

On the first point, there are a number of situations where the
relevance of Earth’s rotation can be assessed referring to the
Rossby number,

R
Ro = I’ (1)
with R being the Rossby radius and L the characteristic horizontal
size. The Rossby radius is often computed as R = U/f, where U is
a typical scale of flow velocity and f = 2Qsin ¢ the Coriolis param-
eter, with Q the angular frequency and ¢ the latitude on Earth. A
different definition of Ro is based on the so-called Rossby radius

of deformation, R = c/f, where ¢ = ./gH is the celerity of the
barotropic wave, with g the gravitational acceleration and H the
depth (Rossby, 1937). If baroclinic waves are considered,
¢ = /g HiH,/H, with g’ the reduced gravity in stratified conditions
and H; and H, the thicknesses of a two-layer stratification, such
that H = H; + H, (Rossby, 1938). Based on the traditional scaling
analysis, water bodies smaller than R (i.e., Ro > 1) are not signifi-
cantly affected by rotation, and the Coriolis acceleration is consid-
ered important only if Ro < 1 (Gill, 1982). Such a scaling, which
was formulated for oscillatory motions induced by the Earth’s
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rotation, was next extended to basin-scale circulation and vertical
current structure in lakes (Hutter et al., 1991; Rueda and Vidal,
2009). In this respect, we note that the existence of different defini-
tions of the Rossby number, which depend on the phenomenon
under investigation, may generate some confusion.

Concerning the second point, i.e. the legacy of the original for-
mulation of the Ekman problem in an infinite domain (Ekman,
1905), several generalizations of the theory have been proposed
to describe the effect of Earth’s rotation on steady circulation in
enclosed or semi-enclosed basins, with relevant contributions in
the field of estuarine and coastal oceanography (see Appendix A).
In several of these contributions, the so-called Ekman depth

De =% 2)

is introduced as the relevant scale, with v, a reference value of the
vertical viscosity, and the Ekman number, i.e. the ratio Ek = H/Dg,
enters into several analytical solutions. It is argued (Kasai et al.,
2000) that, when Ek is small (i.e., H < Dg), the whole water column
is inside the Ekman layer and the flow is governed by viscosity;
when Ek is large (H > Dg), the effect of Coriolis force becomes
important.

Hence, two different dimensional parameters seem to describe
the role of Earth’s rotation on steady circulation in closed domains.
One of them (Ro) depends on the horizontal scales and the other
one (Ek) on the vertical scales. The question arises as to what
makes a lake ‘large’, such that we should include the Coriolis accel-
eration when investigating steady circulation? The answer to this
relevant question is not clear-cut. In this paper, we tackle this
question by deriving a simple analytical solution to interpret lake
steady circulation dynamics for all latitudes and a wide range of
lake sizes. The analytical solution is compared with numerical
results to demonstrate its consistency and to investigate the role
of some specific aspects such as the horizontal and vertical size
of the basin, the bottom boundary condition, the turbulence model
and the turbulence anisotropy on the resulting steady circulation.

Analytical solution
Mathematical formulation

In our analytical solution we assume an idealized rectangular
domain of elongated shape characterized by length L along the
main longitudinal axis (y), width B along the crosswise axis (x),
and depth H along the vertical axis (z). The Cartesian reference sys-
tem is centered in the middle of the lake surface (Fig. 1), with the z-
axis pointing upward.
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Fig. 1. Sketch of the simplified domain and wind forcing directed along the
longitudinal axis of the lake.

We describe the flow with the Reynolds-averaged Navier Stokes
equations in hydrostatic approximation (3)-(6), for a fluid of uni-
form density,
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where u, v and w are the three components of the velocity vector, t
is time, p is pressure, and g is the acceleration due to gravity. The
Reynolds stresses were closed using the Boussinesq formulation,
where the eddy viscosity tensor is assumed anisotropic, with the
vertical v, smaller than the horizontal v,. Following the standard
derivation originally proposed by Ekman (1905), we consider a
steady state with constant in time and uniform in space eddy vis-
cosities. While Ekman neglected the pressure gradient, we retain
it following more elaborate solutions that take into account the
effect of geostrophic gradients (e.g., Welander, 1957). In the original
formulation of the Ekman problem for an unbounded domain, hor-
izontal gradients of velocity were neglected and all the non-linear
advection terms, as well as horizontal diffusion terms, vanished giv-
ing a linearized version of the RANS. Following this simplification,
standard solutions extended the linearized equations of motion also
to the case of closed domains (Hutter et al., 2011; Simons, 1980).
However, we note that in presence of lateral boundaries, the
assumption of horizontal uniformity is not necessarily valid and
must be verified. Toffolon and Rizzi (2009) demonstrated via a
dimensional scaling that longitudinal gradients can be neglected
in the central trunk of non-rotating elongated lakes, while
Toffolon (2013) showed that in the rotating case also the crosswise
gradients are negligible as a first approximation on condition that
we focus on the central part of the cross section. Under such an
approximation we simplify Egs. (3), (4) and (6) removing the non-
linear advective and diffusive terms depending on horizontal gradi-
ents of velocity. As a consequence, in the central part of the domain
the continuity equation reduces to 2 = 0, which gives w = 0 under a
rigid lid approximation. As a result of these assumptions, also the
non-linear advective terms and w2 disappear and the problem to
be solved reduces to a system of two linear equations depending
only on the vertical direction and on the two components of the
slope of the free surface z:

o*u 0z
Vzﬁ+f1/*ga7 (7)
v@ffuf oz (8)
o =85,

The originally three-dimensional problem is simplified into a one-
dimensional (1D) problem of momentum transfer along the vertical
direction z from the surface to the bottom (left-hand side of the
equations), with the barotropic pressure gradients on the right-
hand side to be determined. The first problem alone is nothing
but the traditional vertical Ekman problem, where friction determi-
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nes the vertical distribution of momentum to balance the Coriolis
acceleration and is independent of the lateral walls. The second
problem interacts with the horizontal boundaries of the domain,
whose presence provides the relations needed to determine the
value of barotropic pressure gradients.

The two second-order differential equations are complemented
with suitable boundary conditions. Referring again to standard
solutions, here we assume uniform wind stress at the surface
(z=2z),

ou Tx ov Ty

&‘z:zt - pvzv

a, - )
0|,y PV2

9)

and no-slip condition at the bottom (z = z,),
0, y‘z:zb =0. (10)

u |z:zL7 =

In Eq. (9), T« and T, are the two components of wind tangential
stress T = (Ty, Ty), where T = p,C4|Uw|Uw, p, is the air density, C4 the
drag coefficient, and U,y is the wind velocity vector at 10 m above
the water surface. An alternative solution can be obtained by
changing the bottom boundary condition: the case of free-slip
(vanishing shear stress) at the bottom is discussed in Appendix B.

The differential problem composed by (7), (8) with boundary
conditions (9) and (10) is mathematically closed if the surface
slope (9z:/0x,0z,;/9y) is provided. The original solution neglected
it due to the assumption of infinite domain (Ekman, 1905), while
following contributions imposed it in the form of external
geostrophic pressure gradients (Welander, 1957).

In our approach, we do not assume any external value of the
surface slope, but we compute the value that satisfies the condition
of vanishing volume transport across any surface separating the
closed domain in two parts in the steady state. A similar condition
was applied by Simons (1980) solely along the crosswise direction
for the case of narrow and elongated basins, by Heaps and Hutter
(1984) along the longitudinal in the non-rotating case and by
Kasai et al. (2000) in both directions by assuming a net volume
transport (m3 s-!) along or across a cross section in a semi-
enclosed basin. Here we assume that such net volume is zero
(i.e., a limit case of the solution proposed by Kasai et al. (2000)),
as a direct consequence of the presence of closed boundaries when
the free surface does not change in time: the volume of any region
of the domain cannot change and the incoming transport must be
balanced by the outgoing one (Toffolon and Rizzi, 2009). Focusing
again on the central part of the domain, we simplify this condition
by assuming a local integral condition:

/ludz:O, /lvdz:O. (11)
z) zp

Derivation of the solution

Introducing the complex variable W =u+iv, the problem
composed by Egs. (7)-(11) can be cast in a more compact form:
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where T = 1, +iT, and S = 9z;/9x + 10z;/Dy.
To formulate the problem (12)-(14) in dimensionless form, we
introduce:

T w S
TfT—O, 0)7U—0, 0'7%, (15)
with the scales
ToH To
_ /2 2 _ _ 10
To = Ty + Ty, Uy = 0V, s So = ng (16)
Finally, we introduce a boundary-fitted vertical coordinate
L, Zi—Z
(=22 (17)

where H =z, — z,. We note that the axis { is directed downward
(while z is pointing upwards), with { = 0 at the surface and { =1
at the bottom, following a common notation (e.g., Hutter et al,,
2011).

As a result, the dimensionless form of the problem (12)-(14)
becomes

2w

8—8—i82w:a7 (18)
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1
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where the single dimensionless parameter

8:\/ﬂ?:\/§Ek (21)

governs the problem (7 indicates the wind direction only, so that
[T]=1).

The two complex numbers obtained as integration constants
from the integration of (18) can be determined using the two
boundary conditions (19) if the value of ¢ is prescribed. This is
the case of the traditional Ekman solution, whereby ¢ = 0, or when
the surface slope is determined from a geostrophic balance
(Simons, 1980). For a flow determined solely by wind set-up of
the water level (excluding any rotational effect) and no-slip condi-
tions at the bottom, ¢ = 3/27 and the free surface is tilted in the
direction of the wind (e.g., Heaps and Hutter, 1984; Toffolon,
2013).

The general solution to the dimensionless problem (18,19) can
be written as a function of ¢ (whatever prescribed or solved) and
¢ as follows:

o SIN[OC-1)]
©= ®cs® {

cos @ o (22)

1 — cos (@g’)} o
e’

where © = ‘/778(1 — i) and, hence, &2 = i®?. As it is clear from Eq.
(22), the solution is explicitly dependent on the free surface inclina-
tion expressed by the parameter .

In the case of closed lakes in steady conditions, Eq. (20) applies
and forces the value of ¢ to respect the requirement of vanishing
volume transport as

1-cos®
G_Te)sin@f@cos@' (23)

From now on, the proposed solution, characterized by the inte-
gral condition valid for a closed boundary case, will be referred to
as A2019. Hereafter, we refer to a wind aligned with the main axis
of the lake (7" = i), such that the longitudinal y direction is also the
along-wind direction and the imaginary part of the complex vari-
ables, while the crosswise x is the across-wind direction and the
real part of the complex variables.
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The behavior of the real (o) and imaginary (a,) part of ¢ is rep-
resented in Fig. 2 as a function of . It immediately appears that the
longitudinal components o, (Fig. 2a) ranges from 1 to 3/2 with a
trend that is consistent with Simons (1980) in the case of narrow
and elongated basins. In the crosswise direction, the surface slope
oy (Fig. 2b) vanishes at the extremes of the ¢ range and has a bell
shape suggesting that rotation plays a role on the crosswise com-
ponent only in an intermediate range of H, f and v,.

The behavior of the surface velocity obtained from Eq. (22) by
imposing { = 0 is plotted in Fig. 3 and compared with the Ekman
solution (E1905) in the finite-depth version. The longitudinal
velocity w, (i.e. the imaginary part of the complex dimensionless
velocity w) is not affected by the Coriolis force for ¢ < 1 (Fig. 3a),
while it starts being decelerated in favor of the crosswise flow wy
for higher values of ¢ (Fig. 3b). In the range of ¢ where w, increases,
wy decreases until the same magnitude is reached and the surface
water moves at 45° to the right of the wind (Fig. 3c) as in the
Ekman spiral theory. It is easily understood that the classical
Ekman approach correctly describes the motion for large values
of ¢ (deep lakes, high latitudes and/or weak mixing regimes), but
it overestimates the velocity in both directions within the range
of lower &.

Limiting cases

Two limiting cases can be conveniently analyzed depending on
the value of ¢. First, we consider the case of very shallow lakes,
where the shallowness is defined with respect to the Ekman depth
(H < Dg). Note that D can become very large for vanishing values
of f, for instance close to the equator where the influence of Coriolis
acceleration disappears. For ¢ — 0 (hence, ® — 0), the solution
(22) tends to

w(C):T(l—éH%(éz—l), (24)

and the slope ¢ =3/27 can be obtained from Eq. (23), revealing
that the tilt of the free surface is exactly oriented as the wind forc-
ing (see also Fig. 2 for low ¢&). Combining the two results, it is
straightforward to obtain the well-known velocity profile induced
by wind stress in a non-rotating system (e.g., Heaps and Hutter,
1984):
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Fig. 2. Surface slope rescaled with the reference values S, from A2019 analytical
solution: (a) longitudinal component a,, and (b) crosswise component . Wind
aligned with the y axis, no-slip bottom boundary condition.
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Fig. 3. Dimensionless surface velocity obtained from the analytical solutions A2019
and E1905: (a) longitudinal component w, , (b) crosswise component wy, and (c)
direction. Wind aligned with the y axis, no-slip bottom boundary condition.
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It is interesting to analyze how the solution in the shallow case
is modified by the Coriolis acceleration and how the correction
depends on &. By developing the solution (22) and (23) in Taylor
series for ¢ < 1, we obtain that

(25)

73 Lo, (26)

i

2 ~5a0(1 - 02420250 +15) 62+ 0(e*).

(27)

Eq. (26) shows that the longitudinal slope is not modified up to
O(e*), and that Coriolis acceleration produces a crosswise tilt at
O(¢?). This is reflected in the velocity distribution of Eq. (27), where
a secondary circulation develops without interfering with the pri-
mary flow, as already proposed by Toffolon (2013).

The second case is that of infinite depth (¢ — co). In this case, it
is possible to demonstrate that ¢ — 7 (see Fig. 2 for high ¢). From a
physical point of view, the consequence is that the actual slope,
S = So 0, vanishes because Sy — 0 for H — oo (see Eqs. (15) and
(16)). Such a consideration suggests that the infinite-depth case
tends to the traditional Ekman solution. In fact, the difference
between the solution (22)-(23) and that obtained for ¢ =0
becomes negligible for large values of &.

Crosswise transport

We have seen that the A2019 solution (22,23) describes a flow
field that is affected by the action of Coriolis acceleration (Fig. 3).



M. Amadori et al./Journal of Great Lakes Research 46 (2020) 703-717 707

For small values of ¢, a secondary motion is established without
significantly altering the main flow (Toffolon, 2013). When ¢
grows, the longitudinal primary circulation is progressively modi-
fied and the crosswise velocity is enhanced until a state is reached
where w, and w, are of the same magnitude (Ekman spiral).

In a closed water body, the crosswise transport produces a
downwelling at the coast on the right of the wind (in the northern
hemisphere) and upwelling at the leftward coast. It is therefore
important to compute the crosswise flux by integrating the cross-
wise velocity profile from the surface to the depth where the veloc-
ity changes sign. Defining this point as z, for the velocity u, and z,
for v (the two values are different, in general), we introduce the
fluxes per unit length

Zt Zt
Fy— / udz, F, = / vdz, (28)
Zx zy
Given the integral condition (11), it is also valid that F, = — fzsz udz
and F, = — Zzby vdz, as the circulation is closed in both directions. In

dimensionless terms and using the complex notation, we can
rewrite the Eq. (28) as

_ FX _ " v _ F}’ _ o o
(D*_UOH_./O wydr, <Dy_m_/0 wy L. (29)

Unfortunately, it is not possible to derive a solution for {; (with
j=x,y) in closed form satisfying the condition w; =0 for the
solution (22), (23). However, a numerical algorithm can be easily
implemented to perform this computation and obtain the corre-
sponding fluxes. With the same algorithm, we can also compute
the crosswise transport predicted by all the classical solutions.

In order to quantify the relevance of Earth’s rotation on the
development of the secondary circulation, we introduce the ratio

r=—* (30)

between the cross-wind and the longitudinal surface transport. In
Fig. 4 the transport in the longitudinal and crosswise directions is
shown as a function of ¢. As previously seen in the surface velocity
plots (Fig. 3), the longitudinal transport ®, (Fig. 4a) is not sensitive
to rotational effects for ¢ < 1 and decreases for higher values of ¢ as
the crosswise transport @, grows (Fig. 4b). The classical Ekman
approach greatly overestimates the transport along both the x and
y direction because it does not take into account the counterbalanc-
ing effect of the surface tilt between the lateral boundaries. As for
the ratio r computed from (30), Fig. 4c shows that the threshold
value of 1 (®, = @) is exceeded when the crosswise transport @,
reaches its maximum: for increasing values of ¢, the crosswise
transport induced by rotation is larger than the longitudinal one,
and approaches the asymptotic ratio coincident with the classical
Ekman solution for & > 102. Both ®, and ®, tend to zero for large
¢, while the ratio r does not. In fact, at an intermediate latitude
(with ffixed, i.e. ~ 10~* at 45°), values of & > 107 are achieved either
for low turbulent regimes or very deep lakes. In both cases the
dimensionless transport goes to zero because transport is scaled

by the term UOH:L;;",’—: (see Eq. (16)), which goes to infinity if
H — oo or v, — 0. Conversely, the ratio r is not affected by the scal-
ing term, thus providing a good estimation of the relative impor-
tance of Earth’s rotation. High values of r correspond to cases
where the Coriolis force is relevant, while r = 0 is obtained for the

non-rotating case.
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Fig. 4. Dimensionless transport obtained from the analytical solutions A2019 and
E1905: (a) longitudinal component ®,, (b) crosswise component @y, and (c) ratio r
between crosswise and longitudinal transport. Wind aligned with the y axis, no-slip
bottom boundary condition. Note: for a better visualization, y axis is plotted with
two different scales, separated by the gray dotted line.

Numerical simulations

Analytical solutions provide an exceptional way to understand
the fundamental mechanisms governing the phenomena under
investigation. However, they are typically based on assumptions
that can restrict their application, so their validity has to be
demonstrated by comparing them with observations and/or
numerical simulations. Here, we used a well-known three-
dimensional numerical model to test our one-dimensional analytic
solution.

The hydrodynamic model Delft3D-FLOW (Lesser et al., 2004)
was used for numerical experiments in the idealized domain. We
defined a reference test case and a number of variations which
were setup by changing the main parameters of the model
(Table 1). For the reference simulation RO, we assumed a domain
of width B = 5 km (along x), length L = 50 km along y, and depth
H =50 m (along z), with a total number of 50x500 horizontal cells
(resolution of 100 m) and 50 vertical layers of 1 m each. Four
groups of simulations were designed, exploring the influence of
depth (D1 to D5), width (B1 to B8), vertical turbulence model (v1
to v4 with constant values of v,), and horizontal turbulence model
(h1 to h7 with constant values of v,; h8 with v, computed via the
default parametrization of Delft3D Horizontal Large Eddy Simula-
tion - HLES). For each case, 14 simulations were run with different
values of background latitude, from 0° to 90°N with uneven spac-
ing to effectively capture the variability of the results over the full
range of latitudes. From now on, all latitudes will be refereed to the
northern emisphere N. Adiabatic (no thermal fluxes considered)
simulations were performed with constant water density. The
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Table 1
Setup of numerical experiments.
Depth H [m] Vert. turb. v, [m?/s]
DO 50 v0 0.0373
D1 10 vl 0.01
D2 30 v2 0.05
D3x 100 v3 0.1
D4« 300 v4 0.5
D5 « 500
Width B [m] Hor. turb. vy [m?[s]
BO 5000 ho 1
B1xx 50 hi 0
B2 s 100 h2 0.01
B3 xx 200 h3 0.1
B4 s« 500 h4 2
B5 1000 h5 5
B6 2000 h6 10
B7 10000 h7 20
B8 25000 h8 HLES

Reference simulation RO =B0 +DO0 +v0 +ho0
¢ [°]1=0,0.05 05,1,2,3,5, 10, 15, 30, 45, 60, 75, 90

«coarser vertical discretization.
«+ finer horizontal discretization.

external forcing was prescribed as a constant wind blowing along
the main axis of the box, with speed U, = 10 m/s, using a drag
coefficient C4 = 1.7 x 10~ (Wiiest and Lorke, 2003).

For the reference simulation RO the value of the vertical viscos-
ity (vO) was estimated from the numerical results of a k-€ free-slip
simulation at the intermediate latitude of 45°. The analysis pro-

vided the value 7; = 3.73 x 1072 m?/s as a vertical average over
the water column. Differently, the reference horizontal eddy vis-
cosity (h0), vy = 1 m?/s, was chosen on the basis of the horizontal
resolution of the grid, as suggested by the growth of the oceanic
horizontal diffusion with cloud size observed by Okubo (1971).
For any additional detail about the implementation of the numer-
ical model we refer to the Electronic Supplementary Material
(ESM) Appendix S1.

Results
Analytical solutions vs numerical results

In this section the proposed solution A2019 (22) and (23) is val-
idated against numerical results and compared with three analyt-
ical solutions available in the literature: the classic Ekman spiral
with finite depth (E1905), the solution provided by Simons
(1980) (S1980) assuming the value ¢ = (3/2)7 as in Heaps and
Hutter (1984), and the central profile of the two-dimensional solu-
tion derived by Toffolon (2013) (T2013).

As a first analysis, we examine how Earth’s rotation affects the
vertical profiles of the horizontal velocities u and v, considering the
reference conditions (RO) and three different latitudes in the
numerical simulations (Fig. 5): ¢ =0° (at the equator, ¢ =0),
¢ =45° (¢ = 2.63), ¢ = 90° (north pole, ¢ = 3.13). The A2019 solu-
tion perfectly fits the numerical results for both the crosswise and
the longitudinal velocity, and at all latitudes. At the equator
(Fig. 5a,b), all solutions for u collapse to zero, as the Coriolis accel-
eration is absent and wind drives the flow along the longitudinal
axis. Moreover, all solutions for v, except for the classic finite depth
Ekman solution, have the same vertical structure (25). The omis-
sion of the geostrophic term in the classic formulation of the
Ekman solution, with the consequent absence of the surface tilt
(0 =0), determines a linear profile v/Uy=1-{ At mid-
latitudes, the S1980 solution is still a reasonable approximation
for u (Fig. 5¢), while it deviates from the numerical result and from
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ical simulation RO at: a, b) ¢ ~ 0° (equator); ¢, d) ¢ = 45°; e, f) ¢ = 90° (north pole).
Wind aligned with the y axis, no-slip bottom boundary condition.

the correct A2019 profile for », providing smaller velocities. On the
contrary, the T2013 solution slightly overestimates the velocities
(the reason will be examined in the next paragraph). The mismatch
between these solutions (S1980 and T2013) and the numerical
results (which coincide with A2019) increases at higher latitudes
(Fig. 5e, f).

A more general overview of the different solutions is provided
in Fig. 6, where the dimensionless transport ®, calculated from
numerical simulations is plotted against the parameter ¢, and com-
pared with the continuous curves of the analytical solutions. Mark-
ers denote numerical outputs whose ID is summarized in Table 1.
For each case (same marker), the values of ®, are computed for 14
different values of latitude, thus each set includes 14 points.

As a first result, we note that all numerical points lay on the
bell-shaped curve provided by the A2019 solution. In the low ¢
range (< 1, i.e., shallow basins or low latitudes), the A2019 and
T2013 solution overlap, while the S1980 and E1905 solutions tend
to overestimate the crosswise transport. In fact, both A2019 and
T2013 account for the free surface tilt along x, which counterbal-
ances the effect of Coriolis force. Compared to the reference simu-
lation RO, the solution T2013 performs correctly at the lower
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latitudes, where D is large and ¢ is sufficiently small. Beyond its
range of validity (say for ¢ > 1), the T2013 solution diverges from
A2019 and overestimates the transport (as already seen for the
velocity profiles, Fig. 5c), although behaving reasonably well up
to ¢ ~ 2. In this range of ¢, the largest deviation is found for the
E1905 and S1980 solutions, with the latter undergoing a transition
from an overestimation to an underestimation of ®,. For deeper
basins, (from D3 to D5, H >100 m) the T2013 solution is not valid
anymore and veers away from the correct bell-shaped behavior by
following an increasing monotonic trend. On the contrary, the
S$1980 approach resembles the correct solution along its down-
slope, for higher latitudes or depths.

For all existing solutions, the error in the crosswise transport
becomes large in the intermediate ¢ range, where only the A2019
solution behaves correctly, as it does in the whole range of e.

Effects of the depth

As originally observed by Ekman (1905), the existence of a bot-
tom boundary modifies the shape of the velocity profile and, as a
result, the amount of water that is transported orthogonally to
the wind forcing. In this section, we analyze the effect of the lake
depth on the dimensionless values of velocity and transport.

In Fig. 7a, the dimensionless Ekman spiral is plotted from the
simulations performed with different lake depths (colored mark-
ered lines) and for the corresponding analytical solution (grey dot-
ted lines), at the reference latitude of 45°. The crosswise velocity
u/Up is small in shallow basins (D1, D2 and RO simulations, with
H =10, 30 and 50 m respectively). Its importance relative to the
longitudinal component v/U, grows with depth until a maximum.
The increase of u/U, with depth is related to the decreasing effect
of bottom friction, which limits the dissipation of the energy com-
ing from the wind to the water column. The maximum extension of
the dimensionless Ekman spirals is reached near H ~ 100 m (D3
simulation): for larger depths (D4 and D5 simulations, H = 300
and 500 m respectively), the bottom friction becomes negligible
and the spiral shrinks because the effect of Earth’s rotation does
not change the dimensional velocity anymore, while the scale Uy
in Eq. (16) continuously increases with H.

The overall trend is illustrated in Fig. 7b, where the importance
of Earth’s rotation on the circulation, expressed using the ratio r
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Fig. 7. Effect of the depth reconstructed from numerical simulations and the
analytical A2019 solution: a) dimensionless Ekman spirals for all simulations with
varying depths at the reference latitude ¢ = 45°N (colored marked lines) and
analytical solution (dotted grey lines); b) ratio r of dimensionless transport plotted
as a function of latitude and depth from numerical simulations (colored squares)
and from the analytical solution (contour plot). (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this
article.)

from Eq. (30), is shown as a function of depth at different latitudes
for simulations (squares) and the analytical solution A2019 (con-
tour plot). The ratio r grows with both depth and latitude in a con-
tinuous way, asymptotically approaching to the infinite depth case
(see Fig. 3 and 4). The A2019 solution provides a good estimation of
the crosswise transport, but the perfect matching between the ana-
lytical solution and the numerical results is lost for the two deepest
cases (D4, D5), where some of the assumptions of the analytical
solution are not satisfied as will be discussed in Section “Limits
of the analysis”. However, these results show that for a given value
of eddy viscosity, latitude and depth play together a fundamental
role: lakes located at low latitudes have to be very deep to experi-
ence the maximum effect of Earth’s rotation, which conversely is
more easily achieved in shallower lakes at mid and high latitudes.
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Effects of the width

The analytical solution A2019 suggests that the width of the
basin does not affect the velocity profile. In fact, the A2019 solution
relies on the assumption that the crosswise transfer of momentum
is unimportant, a condition that is not valid for narrow lakes where
the horizontal viscosity is high, as extensively discussed by
Toffolon (2013) in the case of small €. In this section, we examine
how the width affects the circulation pattern due to the presence
of lateral boundary layers.

Analogous to the previous analysis on the role of the depth
(Fig. 7a), Fig. 8a shows the behaviour of the dimensionless spiral
as the width changes, considering the reference latitude (45°)
and different widths, from 50 m (B1) to 25 km (B8) and including
RO (5 km). For the range of widths B > 1 km (B6, B7, B8 and R0), the
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crosswise transport is independent of the horizontal extent of the
basin, and only increases with latitude. This trend is clear from
Fig. 8b, where the ratio r is plotted as a function of width at differ-
ent latitudes. The A2019 solution well captures the magnitude of
crosswise transport for these relatively wide cases.

However, simulations with a narrower domain (width <1 km,
B1 to B5) show weaker crosswise transport (Fig. 8a). This is illus-
trated in Fig. 8b which shows a mismatch between the numerical
and analytical solutions, in the first case the ratio r being smaller
than in the latter. In the numerical solution, the crosswise trans-
port decreases for narrower lakes, as a result of the increased inter-
nal friction due to the horizontal velocity gradients. In the next
section, the reasons behind this mismatch are addressed by taking
into account the role of the lateral boundary layers.

Effect of eddy viscosity and boundary layers

As we have seen before, the results obtained from the numerical
model and from the analytical solution A2019 clearly diverge for
the case of narrow lakes. Building on previous studies (Toffolon,
2013), we can associate this discrepancy to the combined effect
of the cross-section’s aspect ratio and of turbulence anisotropy
on the development of the secondary circulation. This issue is
tightly connected with the estimate of the eddy viscosity (a param-
eter of difficult estimation, especially along the horizontal dimen-
sion, see e.g. Toffolon and Rizzi, 2009). Here we examine the direct
effect of the value of the eddy viscosity (both vertical and horizon-
tal) on velocity and transport.

The traditional approach for estimating the vertical eddy viscos-
ity (v,) is through the evaluation of the depth of the wind-induced
motion (Madsen, 1977; Csanady, 1982; Heaps and Hutter, 1984),
which is commonly represented by the Ekman depth when rota-
tional effects are taken into account. Therefore v,, in unstratified
conditions, can vary according to the latitude, depth and wind
stress. A reference value can be determined as a function of the

Coriolis parameter f and the surface friction velocity u, = \/To/p as

u?
v, =K 7 (31)
where the dimensionless coefficient K is 0.008 in Heaps and Hutter
(1984), 0.005 in Csanady (1976) and 0.026 in Svensson (1979).
According to Eq. (31), v, increases as latitude decreases, leading to
Vv, ~5-107" m?/s at ¢ ~ 45° (assuming u, ~ 1072 m/s), a large value
that is not commonly encountered in real lakes. Hence, we per-
formed a sensitivity analysis to understand the influence of this
parameter.

The effect of changing v, on the vertical profile of the crosswise
velocity is illustrated in Fig. 9a for the deep D4 domain at the ref-
erence latitude ¢ = 45°, considering both numerical simulations
and the A2019 solution. By increasing v, (cases v3 and v4, 0.1
and 0.5 m?/s respectively) the dimensionless crosswise velocity
increases together with the thickness of the surface layer set in
motion by the wind. Conversely, for lower v, (cases v0 to v2, order
of magnitude 1072 m?/s) the circulation is limited to the top layer
and the u/U, is smaller because the scale Uy increases with
decreasing v,. The A2019 solution captures well the shape of the
velocity profile, hence the amount of water transported.

Then, we examined the effect of changing the value of the hor-
izontal eddy viscosity. We recall that all simulations presented so
far were performed with the same value of v, =1 m?/s. In
Fig. 9b, the profiles of crosswise velocity u/U, are plotted for sim-
ulations h1 to h8, where the value of the horizontal eddy viscosity
was changed for the narrow domain B4 (i.e., B= 500 m). The cross-
wise velocity decreases when increasing v;,, as mixing is enhanced
at the expense of horizontal gradients. Therefore, the momentum
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transfer from the lateral boundaries to the center of the lake is
more effective and velocity is reduced along the water column
due to the decelerating effect of the down-welling and up-
welling regions. For small values of v, the lateral boundary layers
are very thin and the central profile of u/U, approaches the one
predicted by the A2019 solution.

In order to have a guideline in the interpretation of the results,
we refer to the complete solution proposed by Toffolon (2013),
which accounts for the role of v, by means of a combined
geometry-anisotropy parameter (Toffolon and Rizzi, 2009),

a
“B\v,

Such a parameter represents the ratio of the vertical (H?/v,) and the
horizontal (B?/v,) temporal scales of the diffusion of momentum,
and subsumes the effect of the boundary layers at the surface/bot-
tom and at the lateral walls of the domain.

(32)

Fig. 9c analyzes the variation of the crosswise transport @, ver-
sus o, by changing B and v, at the reference latitude 45°. The pla-

teau at the left-hand-side part of the graph (o < 107') applies to
scenarios B6 to B8, including the reference simulation RO, where
the width is larger than 1 km and the numerical transport follows
the behavior of the A2019 solution. In this range of widths and for
the reference values of v, and v,, the transport is independent of
width and of the effect of the horizontal/vertical boundaries. Dif-
ferently, the transport decreases exponentially for smaller widths
or larger v, as the parameter o increases, in good accordance with
the complete analytical solution proposed by Toffolon (2013).

Discussion
The governing scales

The aim of this work was to analyze the parameters that pri-
marily affect the secondary flow resulting from the interaction of
wind forcing and the Coriolis force. As seen in the previous sec-
tions, the proposed A2019 solution correctly reproduces the
numerical results in most cases, with the exception of narrow lakes
with large horizontal viscosity where boundary layer effects
become important. Neglecting these particular cases, the general
validity of the A2019 solution suggests that for a wide range of
depths and widths it is possible to predict how much water is
likely to be moved by the Coriolis force, and whether Earth’s rota-
tion will affect the flow field or not, as a function of the Ekman
number Ek = H/Dg, or the equivalent parameter ¢, solely.

In Fig. 10a, the ratio r is plotted as a function of the actual depth
H and the Ekman depth Dg, showing in which range of these two
variables the Coriolis acceleration is expected to be important.
For a lake at a given latitude and specified turbulent regime, the
Ekman depth can be easily computed. Then, the magnitude of
the crosswise transport (and consequently of the up-/down-
welling) can be determined based on the depth of the lake. The
range where the crosswise transport due to Earth’s rotation is rel-
evant grows with the depth of the basin and with the Ekman depth.
We note that the value assumed for the vertical eddy viscosity is
particularly important, as D is proportional to v}/2.

When analyzing the effect of the horizontal extent of the basin
on the flow regime, the importance of the horizontal eddy viscosity
was stressed. In fact, the crosswise transport in narrow lakes
decreases due the horizontal friction and the presence of lateral
boundaries in the same way as it is limited by the bottom friction
in shallow lakes. In this process the lake width affects the horizon-
tal momentum transfer, and should be taken as an important
length scale. However, as we demonstrate in Fig. 9c, the reason
to consider the role of the width B in this phenomenon is not the
one usually perceived as important.

Indeed, a criterion often proposed to discriminate if the Earth’s
rotation will affect the flow field (hence, the transport) is when the
lake width is larger than the Rossby radius R = U/f, that is when
the Rossby number Ro is lower than unity. Here we show that this
is not correct for the wind-driven steady circulation in lakes. In
Fig. 10b the ratio r from all simulations is plotted as a function of
the Rossby radius R and the width B. We note that at B=50 m and
B = 5000 m markers have been spaced out for a better visualization.
In the case of fixed H and different B (squares, Bx simulations) the
increase of crosswise transport with R is only driven by the variation
inlatitude, as the horizontal extent of the lake does not affect the rel-
ative importance of Earth’s rotation on the secondary circulation.
Hence, for a given Rossby number, different values of crosswise
transport can be found: as an example, the black line where R = B
intersects squares of different colors. As discussed in Section “Effect
of eddy viscosity and boundary layers”, in the range of narrow lakes
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the crosswise transport is smaller due to the effect of the boundary
layers and anisotropy, and this effect is not taken into account in the
computation of Rossby radius. In fact, if v, changes (diamonds), the
relevance of Earth’s rotation r can vary even if Ro is the same. If B is
fixed and H changes (triangles), the magnitude of the Coriolis-
induced transport can be high (yellow colored markers) or low (blue
markers) both for Ro < 1 and Ro > 1. Then, the computation of the
Rossby number cannot give any insight on how much Earth’s rota-
tion affects the Ekman transport in a closed basin.

Limits of the analysis

In this paper, a one-dimensional steady solution was derived for
quantifying the crosswise transport occurring in an elongated

basin due to Earth’s rotation, in unstratified and horizontally
homogeneous conditions. The domain was assumed as rectangular
with a flat bottom, both choices being an important simplification
of a realistic lake, especially when compared to other idealized
models available in literature, which consider linear, triangular
and even more complex bathymetries (e.g. Simons, 1980;
Winant, 2004; Sanay and Valle-Levinson, 2005). However, on the
one hand the simplification of a flat bottom significantly reduces
the number of degrees of freedom of the analysis and let us focus
purely on the large-scale wind-driven circulation. On the other
hand, a rectangular domain is a rather common idealization for
elongated enclosed or semi-enclosed basins (e.g. Kasai et al,
2000; Ponte, 2010). The crucial aspect in our analysis is that the
existence of lateral boundaries controls the development of a
crosswise transport, overcoming the limits of the traditional
Ekman transport solutions derived for ‘infinitely large lakes or
oceans’ (Hutter et al., 2011). We refer the reader to more detailed
approaches for the accurate representation of topographic effects
when irregularities in the horizontal shape of the basin may affect
the development of the circulation (e.g. Mohammed-Zaki, 1980).

While presenting the results, we encountered a few cases where
the one-dimensional approach embedded in the A2019 solution
leads to inaccuracies in the estimation of the crosswise transport,
in particular for very deep cases (H > 300 m). We observed that
these inaccuracies are related to the key assumption that the circu-
lation is closed (i.e., null integral) in the central water column of
the lake, which is not satisfied. Such an assumption is a simplified
version of the general constraint that a steady flow in a closed
domain must have a null exchange across any surface dividing
the domain in two parts, and is valid only when the flow field is
characterized by some symmetry in the cross-section. For more
detailed analyses, two-dimensional (e.g. Dever, 1997; Toffolon,
2013) and three-dimensional solutions (e.g. Winant, 2004; Ponte,
2010) are available for a precise reconstruction of the flow field,
but this is not the main scope of this work.

Considering a steady state is the fundamental assumption,
because the stationarity is the prerequisite for the integral condi-
tion to be valid and thus for the inclusion of the lateral boundaries.
We are not interested in the temporal development of the flow
field, which can be studied with time-varying solutions specifically
designed for that purpose (e.g. Fjeldstad, 1930; Hidaka, 1933;
Platzman, 1963; Madsen, 1977). The numerical results show that
in many cases an equilibrium condition is achieved after a spin-
up time that varies from some hours to some days of constant
and uniform wind, a condition that many lakes experience from
local breezes to large-scale synoptic winds.

We are aware that the assumption of constant eddy viscosity
(together with that of constant density) is quite limiting. Some
efforts were spent to overcome the gaps related to the definition
of v, and v, in analytical formulations (e.g. Thomas, 1975;
Madsen, 1977; Svensson, 1979), but definitive results are not suit-
able for the derivation of a simple analytical solution in closed
form.

Finally, the one-dimensional solution we derived provides an
analytical quantification of transport orthogonal to the main flow
when wind blows along the main axis of elongated lakes. The
numerical results suggest that, despite the simplifications we
adopted, such a solution is suitable for simplified three-
dimensional domains in unstratified conditions, which typically
occurs in many real lakes although with different frequency
depending on their mixing regime. Also, long-lasting wind events
aligned with the main axis of a lake are common for elongated
lakes (e.g. Lake Baikal, Lake Erie, Lake Ontario, Lake Constance,
northern Lake Garda), where steady currents of the kind discussed
here have been already modeled and observed (Rao and Murty,
1970; Gedney and Lick, 1972; Wang et al., 2001; Amadori et al.,
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2018; Piccolroaz et al., 2019) and in some cases shown to signifi-
cantly contribute to deep mixing (Boehrer and Schultze, 2008;
Schmid et al., 2008; Tsimitri et al., 2015; Piccolroaz and Toffolon,
2018; Piccolroaz et al., 2019). Hence, such a simple, even though
limited, analytical tool could help in estimating to what extent
crosswise up/down-welling ascribed to Earth’s rotation can be rel-
evant for the transport and mixing processes of a lake.

Conclusions

In this contribution an analytical solution was derived to help
identifying the scales that determine the importance of Coriolis
acceleration as a driver of transport in non-stratified lakes. We
showed that the Ekman number (i.e. the ratio of the actual depth
of the lake and the Ekman depth) controls whether Earth’s rotation
will affect the steady circulation in a lake of given size at in a given
geographical location and therefore should be used as a governing
scale instead of the Rossby number. Consistently with some previ-
ous findings (Kasai et al., 2000; Sanay and Valle-Levinson, 2005;
Valle-Levinson, 2008), we identified the parameter & which is
directly proportional to the Ekman number, with the novelty of
including in the analysis the size of the lake, the turbulent mixing
and the effect of a closed domain. The combined analytical and
numerical analysis we carried out in this contribution allows for
the following final conclusions:

1. Coriolis force is important also in narrow lakes and produces a
crosswise Ekman transport that can be analytically quantified if
the effect of lateral boundaries is taken into account through a
null flux condition.

2. The steady crosswise transport is scaled by the Ekman number,
which is defined once the depth of the lake, the vertical eddy
viscosity and the latitude are defined. Such a crosswise trans-
port is responsible for up- and down-welling phenomena at
the lake sides.

3. The Rossby number Ro does not provide any useful information
about the development of Ekman currents in enclosed basins.
The use of a horizontal length scale is appropriate only when
the lateral boundary layer is large enough to affect the sec-
ondary circulation: in that case, a frictional length scale is
needed, bringing into play the horizontal eddy viscosity and
requiring the use of an anisotropy parameter like oo proposed
by Toffolon (2013).
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Literature review on Ekman transport

A brief review of the state of the art about the effect of Earth’s
rotation on steady circulation in lakes can be useful to frame the
analytical problem and to get rid of any prejudice on its application
to enclosed real basins. The original work of Ekman (1905) was
derived for infinitely deep and wide rotating systems (as the ocean
can be approximated) subject to constant and uniform wind. To the
other extreme, analytical solutions were proposed for idealized

narrow rectangular lakes (e.g. Heaps and Ramsbottom, 1966) or
enclosed basins with variable bathymetry (e.g. Csanady, 1982),
but neglecting the effect of rotation. The path from Ekman’s origi-
nal solution to the description of steady currents in real enclosed
basins was certainly long, but for the range of intermediate condi-
tions several generalizations of the original Ekman theory have
been proposed (see also Simons, 1980; Hutter et al., 2011;
Defant, 1962 for a review). Finite-depth and time-dependent solu-
tions followed the initial suggestion available in Ekman’s work
(Fjeldstad, 1930; Hidaka, 1933; Platzman, 1963; Madsen, 1977),
together with the inclusion of horizontal pressure gradients associ-
ated to wind set-up (Welander, 1957; Birchfield, 1972), which
were particularly relevant for the case of enclosed basins and were
successfully applied to describe circulation in large lakes (Gedney
and Lick, 1972). Additional complexity was added by taking into
account density stratification (Lee and Ligget, 1970), with relevant
contributions from estuarine studies (Kasai et al., 2000; Valle-
Levinson et al., 2003), and non constant vertical turbulence
(Thomas, 1975; Madsen, 1977; Svensson, 1979). A few analytical
studies specifically focused on narrow, elongated and deep basins
(such as glacial and rift valley lakes) with homogeneous water,
which is a condition that dimictic lakes experience twice a year.
For these lakes, some analytical works predict the development
of intense closed circulation, orthogonal to the wind direction
and forced by the presence of lateral boundaries, with consequent
significant coastal up- and down-welling (Simons, 1980; Winant,
2004; Ponte, 2010; Toffolon, 2013).

Analytical, numerical and observational studies followed to
define the role of Earth’s rotation on horizontal and vertical circu-
lation in closed basins, with diverse and sometimes contradictory
results which enhanced the confusion on the relevant length
scales. In estuarine applications, the lateral distribution of the flow
in semi-enclosed basins was well investigated by a wide number of
studies. To the purposes of the present work, a milestone is repre-
sented by the analytical study of Kasai et al. (2000), who ques-
tioned the conventional assumption of the Rossby radius as a
predictive parameter for the development of rotational currents.
They demonstrated that Earth’s rotation can be less important than
density gradients also in basins where the width is larger than
Rossby radius. In order to quantify the effects of Coriolis accelera-
tion in steady circulation, they used the Ekman number Ek. The
main conclusion of their work was that when Ek is small (i.e.,
H < Dg), the whole water column is inside the Ekman layer and
the flow is governed by viscosity effects. When Ek is large
(H > D), a part of the water column is not in geostrophic balance
and is affected by Coriolis force. Following this result, the numeri-
cal work by Sanay and Valle-Levinson (2005) confirmed that in
homogeneous, rotating basins the Ekman depth is a predictive
scale for the development of transverse circulation, as those pre-
dicted by Winant (2004). This achievement was then extended to
the stratified case by Valle-Levinson (2008), where the relative
importance of the basin’s width and depth was discussed for
density-driven exchanges. Some years later, Ponte et al. (2012)
observed a similar transverse circulation in the Gulf of California.
In the same context, Cheng and Valle-Levinson (2009) compared
the magnitude of lateral advection and Coriolis acceleration by
means of numerical experiments in basins of different sizes. By
quantifying the terms of the momentum equation as functions of
Ekman and Rossby numbers, they observed that lateral advection
is relevant in narrow and deep basins (large Ro and Ek) and
decreases with mixing (large v,), while the relevance of the Coriolis
term increases in wider basins (small Ro) and is less sensitive to
the depth.

Earth’s rotation was also taken into account for investigating
gravity currents caused by riverine intrusions (we refer to
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Griffiths (1986) for an extensive review). In particular, interesting
studies on relatively narrow lakes in unstratified (Pilotti et al.,
2018) and stratified (Laborde et al., 2010) conditions revealed the
existence of relevant deflections of the river plume to the right-
hand shoreline (in northern hemisphere). The scaling suggested
by the authors was based on Rossby radius, computed as U/f
where U was taken as the inflow velocity. Despite the limited
width of the basins, the Rossby number in the cited works was
found to be much smaller than 1, as the inflow velocity was extre-
mely low (generally ~1 ¢cm/s), hence Coriolis acceleration acts on
the flow path of riverine intrusions in the same way as for inertial
currents.

The relative importance of the internal wave field vs geos-
trophic currents (i.e., density stratification vs steady state currents)
was investigated in oceans (Veronis, 1956) and enclosed basins
(Stocker and Imberger, 2003) through analytical approaches based
on energy partitioning (Antenucci and Imberger, 2001) as a func-
tion of the Burger number S = NH/(fL), with N the buoyancy fre-
quency. By splitting the total energy budget into a geostrophic
component and a set of cyclonic and anticyclonic waves, these
studies found that low Burger numbers and long lasting winds
were the condition for the geostrophic component to dominate
on density driven waves, but the effect of Earth’s rotation on the
steady geostrophic current was not taken into account.

Besides the studies based on the basin’s size, some analyses
focused on the role of time scales for the rotational response of
the basin. Amongst these, Mohammed-Zaki (1980) solved analyti-
cally the momentum and continuity equations under the assump-
tions derived from Ekman theory in the case of deep basins
(Ek > 1) and observed that the steady state solution is achieved
under uniform wind forcing after a diffusive time scale propor-
tional to the Ekman number and independent on the lake’s hori-
zontal extent. An inverse frictional timescale, scaled again with
the Ekman number, was then introduced by Dever (1997), control-
ling the vertical structure of the wind-driven response to the
Earth’s rotation in the cross-shelf circulation of the Northern Cali-
fornia Shelf. Differently, Ponte (2010) linked the rotational
response of the basin to the frequency of the wind forcing in such
a way that the Ekman transport is triggered only in the ‘sub-
inertial range’, when the frequency of the wind forcing is smaller
than inertial frequency.

Interestingly, also the contributions described above were
made under the assumption that the horizontal dimension of
the basin is smaller than the barotropic Rossby radius of defor-
mation. However, we should recall that “it is not just the hori-
zontal extent of a basin, but its depth which dictates whether
the Earth’s rotation affects the circulation of a water body”
(Hutter et al., 2011). Hence, shall we include the Coriolis accel-
eration when investigating steady circulation in relatively small
lakes? And what does “small” mean? Citing Hutter et al.
(2011) again, few kilometers horizontal extent seem to be
enough for rotational effects to be relevant in a basin of at least
50 m depth. Nevertheless, since a horizontal scale other than the
Rossby radius (whatever defined) is still missing, the issue on
the meaningful scales for wind-driven steady currents in
enclosed basins on a rotation Earth is still open and deserves a
conclusive answer we tried to give in this contribution.

Analytical solution for free-slip boundary condition

In this section the A2019 solution is derived for the case of free-
slip bottom boundary condition. For consistency with the main
text, the free-slip version of the equations provided here are num-
bered as the corresponding no-slip equations in the main text, after
the letter ‘B’.

In the case of free-slip boundary condition, zero tangential
stresses are applied to the bottom (z = z,) and Eq. (B.10) are com-
bined to the differential problem composed by (7) and (8), with (9)
as surface boundary condition.

ou ov
0z 0z

=0. (B.10)

z=2)

-
z=2)

The complex formulation of the problem (12) is then comple-
mented with the bottom boundary condition (B.13), the surface
boundary condition (z = z;) in (13) and the integral condition (14).

ow

| =0 (B.13)

7=z,

By applying the scales (16) and according to the dimenionless
problem (15), we formulate the corresponding dimensionless
free-slip boundary condition

o0
o¢

=0. (B.19)
=1
The differential problem we need to solve is therefore com-
posed by the differential Eq. (18) and by the surface (19), bottom
(B.19) and integral (20) boundary conditions. The general solution
to the dimensionless problem can be written as a function of ¢ and
¢ as follows:
cos [O(( —1)] o
=———=T +—.
(&) ®sin® + ®?2
By forcing the solution (B.22) to satisfy the integral condition
(20) we obtain the free-slip case a:

o="1T,

(B.22)

(B.23)

which results to be independent on ¢ and therefore on Earth’s rota-
tion. Here the surface slope is indeed counterbalanced by the tan-
gential wind stress only, as zero tangential stresses are considered
at the bottom. Thus, the solution for the surface slope obtained by
applying the integral condition (20) and free-slip bottom boundary
condition (B.19) is the same as in Heaps and Hutter (1984), which is
computed by assuming a closed integral in the direction of wind
only (in our case [y £d{ =0).

In the limit case of low &, we consider the case of very shallow
lakes, where the shallowness is defined with respect to the Ekman
depth (H < Dg). By substituting the expression of ¢ (B.23) in Eq.
(B.22), the solution for very small values of ¢ and therefore of ®
is given by Eq. (B.25):
w 1, 1
Y- 2ttty
which is the usual velocity profile induced by wind stress in a non-
rotating system (e.g., Heaps and Hutter, 1984).

(B.25)

Flow field and crosswise transport

For consistency with the main text, the solution is discussed
assuming a wind aligned with the y axis of the domain, such that
T =i. The behaviour of surface velocity obtained from Eq. (B.22)
by imposing { =0 is plotted in Fig. B1 and compared with the
Ekman solution in the finite depth version. The along-wind motion
wy coincides for both solutions, being larger for low values of ¢ and
decreasing for increasing ¢. The crosswise flow w, follows diver-
gent paths: the E1908 solution goes to infinity for small values of
¢, while the A2019 solution follows a bell-like curve similar to
the no-slip case (see Fig. 3 in the main text), but with a lower min-
imum. In the range of ¢ where wy increases, w, decreases until the
same magnitude is reached and the surface water moves at 45° to
the right of the wind as in the Ekman spiral theory. As previously
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Fig. B1. Dimensionless surface velocity obtained from the analytical solutions
A2019 and E1905: (a) longitudinal component w,, (b) crosswise component wy, and
(c) direction. Wind aligned with the y axis, free-slip bottom boundary condition.
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Fig. B2. Dimensionless transport obtained from the analytical solutions A2019 and
E1905: (a) longitudinal component ®,, (b) crosswise component ®,, and (c) ratio r
between lateral and longitudinal transport. Wind aligned with the y axis, free-slip
bottom boundary condition.

seen in the no-slip case, the classical Ekman approach correctly
describes the motion for large values of ¢ (deep lakes, high lati-
tudes and/or weak mixing regimes), but it overestimates the veloc-
ity in both directions within the range of lower &.

If transport is numerically computed as in Eq. (29), the beha-
viour of longitudinal and crosswise transport from the supported
solution can be studied also in the free-slip case. In Fig. B2 @, in
the along-wind and ®, in the crosswise direction is shown as a
function of &. As for surface velocities plots (Fig. B1), the along-
wind transport @, is not sensitive to rotational effects for ¢ < 1
and decreases for higher values of ¢ as the crosswise transport @,
grows. If the ratio ®,/®, is computed, the threshold value of 1 is
exceeded when the crosswise transport ®, reaches its maximum:
for increasing values of ¢, the crosswise transport induced by rota-
tion is larger than the longitudinal one and approaches the asymp-
totic ratio, which coincides with the traditional Ekman solution.

Validation against numerical results

For a comparison between the analytical solution and the
numerical simulations the reference simulation RO (see Table 1

a) b)
0 1 0 7
0.5 $ 05t #
boo-r
1 I E&=0 1Lt
-0.1 0 0.1 -0.2 0 0.2 04
d
9 ) g .
i /
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Fig. B3. Vertical profiles of dimensionless velocities u/Uy, v/U, obtained from the
analytical solutions (A2019, E1905, S1980, T2013) and from reference numerical
simulation RO at a, b) ¢ ~ 0° (equator), ¢, d) ¢ = 45°, e, f) ¢ = 90° (north pole). Wind
aligned with the y axis, free-slip bottom boundary condition.
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Fig. B4. Crosswise transport ®, computed with analytical solutions (A2019, E1905,
$1980 and T2013) and from numerical reference simulation R0. Wind aligned with
the y axis, free-slip bottom boundary condition.

in the main text) is presented. The horizontal dimensionless veloc-
ities u/Up and v/U, obtained from the complex solution (B.22) are
plotted in Fig. B3 against the dimensionless depth ¢ for the partic-
ular cases of latitude ¢ = 0° (Equator), ¢ = 45°, ¢ = 90°. As it was
clear from the mathematical derivation, the proposed solution
we derived is the same we obtain if we assume S1980. Such a solu-
tion perfectly fits the simulation outputs along x direction (u/Uy)
and is different from the Ekman classic version when ¢ >0
(Fig. B3c and e). Differently, along the wind direction y the longitu-
dinal velocity v/Uy from A2019 and S1980 solutions collapses onto
the classic E1905 solution at all latitudes. In fact, it can be analyt-
ically demonstrated that in the solution proposed here (see Eq.
(B.22)), the imaginary part of w (i.e. wy, = v/Up) is a function of
the real value of ¢ only (oy), which is zero according to (B.23) if
7T =i. Thus, for the case of free-slip boundary condition the classi-
cal solution proposed by Ekman for the along-wind velocity is
equivalent to the one that takes into account the effect of pressure
gradients. As ¢ increases, the matching between T2013 solution
and the correct solution is lost: this was also found in the case of
no-slip bottom boundary condition in the main text and can be
ascribed to the increasing monotonic trend that the T2013 solution
has due to its derivation with a perturbation method assuming
small ¢. This can be even more easily seen in Fig. B2 where cross-
wise transport is plotted in the case of free-slip boundary condition
from numerical RO outputs and analytical solutions. For ¢ < 1 the
classical E1905 solution goes to infinity, while the proposed solu-
tion A2019 (which is equal to S1980) and T2013 provide the cor-
rect value for the transport. For ¢ > 1 the T2013 solution
detaches from the numerical output and tends to infinity, while
the E1905 well reproduces the correct trend in the right part of ¢
domain, where & — oo (See Fig. B4).

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, athttps://doi.org/10.1016/j.jglr.2019.10.013.
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