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We investigate the correlations of magnons inside a nanomagnet and identify an unconventional phase
so-called magnon antibunching, i.e., where there is a large probability for occupation of the single-magnon state.
This antibunched state is very different from magnons at thermal equilibrium and microwave-driven coherent
magnons. We further obtain the steady state analytically and describe the magnon dynamics numerically, and
ascertain the stability of such antibunched magnons over a large window of magnetic anisotropy, damping, and
temperature. This means that the antibunched magnon state is feasible in a wide class of low-damping magnetic
nanoparticles. To detect this quantum effect, we propose to transfer the quantum information of magnons to
photons by magnon-photon coupling and then measure the correlations of photons to retrieve the magnon
correlations. Our findings may provide a promising platform to study quantum-classical transitions and for

designing a single magnon source.
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Introduction. Magnon spintronics is a rising field with
the goal to manipulate the collective excitations in ordered
magnets, so-called magnons, as information carriers and to
employ their advantage of long spin diffusion length, low
energy consumption, and their integration capability with tra-
ditional electronics devices [1]. In the absence of external
stimulation, the magnons reach thermal equilibrium with the
environment, and form a thermal magnon gas, which influ-
ences the spontaneous magnetization, internal energy, and
specific heat of a macroscopic magnet. In modern spintron-
ics, much attention is devoted to the generation, transport,
and readout of nonequilibrium coherent magnons in magnetic
layered structures under the assistance of external knobs from
microwaves, terahertz waves, electric current, and tempera-
ture gradient [2-5]. Magnonic phenomena may be roughly
classified into three classes: (i) pure magnon transport such
as spin pumping [6], spin Seebeck effect [7,8], magnon
spin torque [9], (ii) interconversion between electrons and
magnons including (inverse) spin Hall effect [10], and spin
Hall magnetoresistance [11,12], and (iii) coherent or dissipa-
tive coupling of magnons with other quasiparticles including
photons and phonons [13-18].

With the rise of quantum information science and the
tendency to dock magnonics with quantum information, it
is becoming particularly important to ask whether quantum
states of magnons such as Fock states, squeezed states, an-
tibunching, and Schrodinger cat states can be achieved in
magnonic systems. Both the spintronics and quantum optics
community have made a few steps towards this direction
[19-23]. For example, the magnons in antiferromagnets have
been shown to be a two-mode squeezed state with strong
entanglement, while this entanglement is even enhanced by
cavity photons through the cooling effect [19,21]. Moreover, a
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single magnon excitation was recently detected by entangling
the magnons with a superconducting qubit sensor [23].

In this Rapid Communication, we study magnon corre-
lations inside a nanomagnet at low temperature analytically
and numerically and find that the magnons become anti-
bunched under the influence of magnon-magnon interactions.
The single magnon excitation dominates the excitation spec-
trum, differing from the thermal magnon gas and the coherent
magnons. Antibunching becomes more pronounced in a mag-
net with small size of several nanometers, low magnetic
damping on the order of 1072, and environment temperature
0.2 K, which should be accessible in current experiments. Our
findings may open an intriguing window to study the quantum
properties of magnons and further benefit their docking with
photons for quantum information processing.

Model and method. We consider a biaxial nanomagnet as
shown in Fig. 1(a), described by the Hamiltonian

H=—T3 88 -KY (5)
(i) i
T (S) - H YOS M

where S; is the spin vector of the ith site with magnitude S,
J, K;, K., and H are, respectively, the exchange coefficient,
easy-axis and hard-axis anisotropy coefficients, and external
field. After a Holstein-Primakoff transformation [24] to third
order in a;, ie., S} =+2S—a aqa;~ 25 — afa,a,-/
48, S7 = alTVZS —aja; ~ «/ﬁ(ai+ - a?a?ai/45), St =
S — aj'a,', where q; (aj) is the magnon annihilation (creation)
operator that satisfies the commutation relations [a;, aj] = dij,
where SiﬁE = S§¥ £iS are spin rising and lowering operators,
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FIG. 1. (a) Schematic of a nanomagnetic particle magnetized
along the z axis while the x axis is a hard axis. (b) Fock distribution
of the thermal, antibunched and coherent magnons, respectively.
(c) Phase diagram of the nanoparticle in the (K, S/2y, K,/y N) plane.
The white line corresponds to the second-order autocorrelation func-
tion g (0) = 0.5. The size of the particle is calculated by assuming
a lattice constant 0.5 nm. Other parameters are y = 103w,, & =
2 x 1074w, ® = w, + v, w,/kgT =9.21.

the Hamiltonian can be written in momentum space up to
fourth-order terms as

H = w.a'a+ wa'd + aa) + v(a'a)
+u(d'aaa + a'a'a’a) + E(ae™ + aTe™), (2)

where a = a;_,¢ with k the wave vector of magnons. At low
temperature, the low-energy magnons (k — 0) dominate the
excitation spectrum, such that we neglect the contribution
from high-energy magnons [25]. Furthermore, w, = 2K, +
K., +H, w=K.S/2, v=—-K,/N —K,/2N, u= —K,/4N,
with N the number of spins in the magnet. The last linear
term is added as a driving from microwave with strength &
and frequency w.

The quantum correlations among magnons are character-
ized by the zero-delay second-order autocorrelation func-
tion [26],

(a'a’aa)

g?(0) = - 3)

(a'a)
where (A) = tr(pA) is the ensemble average of the observable
A with p the density matrix of the system. In general, g (0) >
1 refers to a classical correlation of magnons, for example,
g»(0) = 2 for a thermal equilibrium magnon gas. The critical
case g (0) = 1 corresponds to coherent magnons. g (0) <
1 means the magnons are antibunched, a purely quantum-
mechanical type of behavior with Fock number distribution
as shown in Fig. 1(b). Moreover, g?(0) = 0 indicates that

a perfect single magnon source is realized. To calculate the
correlations of magnons, we numerically solve the Lindblad
master equation for the time evolution of the density matrix of
the system [27],

ap

T —i[H, p]+ Lp, “)

where Lp =),  ,[F.pF, — (pFF, + FF,p)/2], with
Fi =+ 1)yaand F, = MaT that describe magnon
annihilation and creation, respectively, y is the dissipation
strength which is related to the dimensionless Gilbert damping
o via y = aw, [28-30], and ny, is the magnon population in
thermal equilibrium.

Phase diagram. The full phase diagram in the
(K,S/2y,K,/yN) plane is shown in Fig. 1(c). (i) For a
magnet with rotational symmetry around the z axis (K, = 0),
the magnons are able to reach an antibunched steady state.
The smaller the size of the magnet (N), the smaller g (0)
and thus the magnons antibunching behavior becomes more
pronounced. (ii) Once the rotational symmetry is broken
(K, # 0), the populations of magnons will keep oscillating
but the average correlation function g®(0) is still below
1. (iii)) A quantum-classical oscillation is found for weak
easy-axis anisotropy, as indicated by the white dots. Next, we
will study the essential physics of these regimes in detail.

Steady antibunching. In the absence of the hard-axis
anisotropy, w = u = 0, the Hamiltonian can be rewritten in
a rotating frame V = exp(—iwa'at) as

H=Ad a+ v a)P+&E@ +a), (@)

where A, is the detuning between microwave driving and
magnon frequency defined as A, = o, — w — iy /2 with dis-
sipation strength included as y.

At low temperature, a thermal mixture of magnons at dif-
ferent Fock states is expected to be very weak, such that
the density matrix may be approximated as a pure state p =
o) (@l|, where |@) = Z;’io C,|n) and its evolution satisfies
the Schrodinger equation id;|¢) = H|p). The steady state
(0C,, /0t = 0) implies the recursion relation

(Agn 4+ vn*)Cy + En+ 1Cpy +E/nCy = 0. (6)

Because the magnon density is very small, the ground state
population dominates the system (Cp =~ 1). By making a
cutoff at n =3, we are able to analytically solve for the
probability amplitude,

(Cl)_ 1 <—(Au+20)§> 7
C) T (Aa+v)(Ag+2v)—282\ E/V2. )

This yields for the second-order correlation function of
magnons,

(a'a’aa) _ 1Aa(Ag +v) — &7
(@a)? (A +v2+E2)2°

When the driving is largely detuned |w, — @| > y, v, the
leading contribution to the correlation is equal to

1
[+ v/(0, — ®)*

indicating that no apparent quantum correlation of magnons
is expected, especially when the magnon-magnon interaction

§2(0) =

®)

§2(0) ~
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FIG. 2. (a) Physical picture of magnon excitation under the in-
fluence of nonlinearity. (b) Driving dependence of the correlation
function g (0) for N = 10* (black squares), 10* (red circles), and
5 x 10? (blue triangles), respectively. The solid lines are theoretical
predictions at zero temperature and the dashed lines are to guide
the eyes. ng = 1073, y = 1073w,. (c) Temperature dependence
of the correlation function. £/y = 0.2. (d) Damping dependence
of the correlation function at ng, = 10~ (red circles) and 10~3 (black
squares).

is absent (v = 0). Of particular interest is when the driving
field reaches resonance with the first excitation level (w =
E| — Ey = w, + v), Eq. (8) is reduced to

(1/4+8%/y?) +v*/4y?
(1/4+E2/y2 +v2/y?)?
If the driving is sufficiently strong & > y,v, we have
2 (0) = 1. In this regime, we have that ((Ax)?) + ((Ap)?) =
1/2, where x = (a' +a)/2 and p=i(a’ —a)/2 are the
quadrature components of the magnon mode. This minimum
uncertainty relation implies that the steady state is a coherent
state, which is expected for strong driving. On other hand,
when v > y > &, g?(0) = y?/v> « 1, which suggests that
the magnons become antibunched. The essential physics can
be understood from Fig. 2(a). The energy levels of the sys-
tem without driving are E, = (nw, + ) (n=0,1,2,...),
which has a nonlinear dependence on n. The input microwave
with w = w, + v will efficiently excite the magnons to level
n =1, but cannot excite them further due to the frequency
mismatch. Hence, the population of magnons at n =1 be-
comes significant compared to other excited states and then
results in a single-magnon-like state with g»(0) < 1.

When thermal effects become significant, the approxima-
tion of the density matrix as a pure state is not valid any
longer. Figure 2(b) shows the driving dependence of the cor-
relation function at a finite temperature for various sizes of
magnet, found from solving the Lindblad master equation.
It is consistent with the expectation that the magnons evolve
to a coherent state under strong driving (£) and the magnons
become strongly antibunched for a system with stronger non-
linearity (v) or smaller spin number N. The difference is at

§2(0) = (10)

weak driving, where the real correlation function should be
equal to 2 instead of 1, predicted by the theory. This is because
the thermal magnons dominate the systems in this regime and
thus the full density matrix needs to be considered instead of
a pure state in a reduced Hilbert space.

To further see the crossover between classical magnons
and quantum magnons caused by the temperature, we tune
the temperature and show the results in Fig. 2(c). The typical
transition temperature is around w,/kgT = 3, corresponding
to 0.2 K for magnetic resonant frequency w,/2m = 10 GHz.
Such low temperature is sufficient to guarantee the stability
of the magnetic particle because of K,V /kgT > 45 [31]. The
damping dependence of the correlation function at different
temperatures is shown in Fig. 2(d). The lower the tempera-
ture, the larger the magnetic damping (y/w,) is allowed to
observe the quantum behavior of magnons. The typical value
of damping to observe antibunching is around 0.008, which
is a realistic value for many magnetic nanoparticles, such as
cobalt and permalloy.

Oscillating antibunching. The physics will be quite dif-
ferent in an easy-plane magnet (K; = 0, K, > 0); now the
Hamiltonian becomes

H=wa'a+wda +aa)+ @ e ™ +ae), (11)

where the higher-order terms are omitted for their smallness
compared with the two-magnon process, that we shall see,
already leads to bunching. In the limit that the field is time
independent (w = 0) [32], we can follow a similar analytical
treatment as in the previous section and derive

<C1> _ 1 < —(As — w)§ ) (12)
G) T A — e \(E —wa)/v2)

One immediately sees that there exists a special point, &, =
/®,w, at which the occupation probability of level n =2
equals to zero due to the smallness of y. This indicates the
existence of a perfect antibunching, which is confirmed by fi-
nite temperature simulations shown in Fig. 3(a). The essential
physics can be understood in Fig. 3(b) as follows. Now the
linear driving term tends to drive the magnon from n — 1 to
n, while this process competes with the double magnon decay
caused by the parametric-type interaction w. At a certain point
&., these two processes compensate and the net occupation
of the n = 2 is again very small. Once the driving increases
further above this critical value, the coherent nature of the
system becomes significant and thus g®(0) — 1, as shown
in Fig. 3(a).

Under a time-dependent driving, this fine balance be-
tween the magnon driving and decay will not always happen,
and thus the correlation function of the magnons oscillates
with time. We confirm this prediction in Figs. 3(c) and 3(d),
where the magnons keep oscillating between an antibunched
state and classical state.

Experimental relevance. As shown above, the essential
conditions to produce antibunched magnons is to use a
low-damping nanosized magnet at low temperatures. Many
reported magnetic materials such as Co, NiyyFesy, Mn3Ga,
and Fe, 03, and the two-dimensional magnet Crl; meet these
conditions [31,33-35].

To probe the antibunched magnons, we suggest coupling
the nanomagnet with a microwave; now the total Hamiltonian
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FIG. 3. (a) Driving dependence of the correlation function g (0)
for w/y = 1 (black squares), and 10 (red circles), respectively. The
inset shows the correlation as a function of w/y when & = /o, w.
(b) Physical picture of magnon excitation under the influence of
nonlinearity. (c) Detuning dependence of the correlation function.
np =107, y = 103w, w = 0.0lw,, & = 0.1w,. (d) Time evolu-
tion of the correlation function at w = 0 (red line) and 0.1w, (black
line), respectively.

in the rotating frame becomes
Hy=H+ Acc'c+ gmpla’c +ac’), (13)

where A, = w. — w — iy./2, ¢ (c') is the photon annihilation
(creation) operator, w,, y, are photon frequency and dissipa-
tion, and gy, is the coupling strength between the magnon and
photon. Note that g, = gs+/N depends on the resonator type
and materials, and g;/27 can reach 10 KHz using a proper
setup [36]. For N = 10? required for magnon antibunching,
the hybrid system is typically in the weak-coupling regime,
i.e., mp < ¥V, Ve, V.

To obtain the steady state, we consider the evolution in
the reduced Fock space as |¢) = Cy|00) + C;|01) + C>[10) +
C3|11) 4+ C4]02) 4+ C5]20), where |mn) refers to the occu-
pations of magnons (m) and photons (n), respectively, and

the coefficients in steady state are computed by assuming
Cp ~ 1, from which the correlation function is obtained. Ow-
ing to the small coupling, we expand the correlation to the
linear order of g, and then derive the ratio of magnon
and photon correlation functions, where the latter is denoted
as g7 (0)

c b

_2Oo _|, v :
T @0 " Tvraral

As long as we choose a cavity with dissipation larger than
the nonlinear term, i.e., ¥, >> v, the ratio p is almost always
equal to 1, regardless of the magnitude of detuning w, , — .
This implies that the magnon correlation can be completely
encoded into the cavity photons, and thus be measured by a
Hanbury Brown—Twiss interferometer [37].

Discussions and conclusion. We note that the magnon
antibunching was also theoretically studied in a hybrid
magnet-cavity-superconductor qubit system [38,39], where
the superconducting qubit induces an anharmonic energy level
of the system and thus suppresses the two-magnon excitation
and the magnet-cavity system with balanced gain and loss
[40]. The cavity photon plays a crucial bridging role in these
proposals, while it is not essential in the generation of anti-
bunching that is discussed here.

In conclusion, we have found a classical-quantum tran-
sition in a nanomagnet as we reduce the temperature. In
the quantum regime, the antibunched magnons prevail, with
very different statistics as compared with thermal magnons
and coherent magnons. The underlying physics is well un-
derstood as a result of magnon-magnon interactions, which
either produce a nonlinear energy level distribution or enhance
the multimagnon process in the system. Our findings may
open up an interesting perspective to create single photons
using magnonic systems and further benefit the integration
of magnons with photons to achieve quantum information
transfer and quantum communications.
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