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1 Introduction

Modeling the bubble-wall velocity of expanding bubbles at a first order electroweak tran-
sition is of an essential importance for an accurate modeling of the gravitational wave
production [2] and for baryogenesis at the electroweak scale [3, 4]. In spite of a lot of
progress, we still lack a reliable first principle calculation which — based on an (out-of-
equilibrium) quantum field theoretic framework — provides a formula which can be used
to get a quantitatively reliable information about the phase transition dynamics. In this
paper we present a first principle (quantum field theoretic) derivation of the force acting
on expanding bubbles that reached stationary state during a strong first order transition,
providing thus an important step towards that noble goal.

To determine the dynamics of expanding bubbles one ought to know the friction force
exerted on them by the plasma. On the other hand, the bubbles back-react on the plasma,
thereby changing its properties. One way to find a general solution of this complex problem
is to solve the Boltzmann equations for the relevant species in the presence of expanding
bubbles [5–8], which is a formidable task. For that reason, in many papers the bubble
velocity is treated as a free parameter whose value is assumed or roughly estimated.

An important question from the point of view of gravitational wave production is
whether the bubble can run away, i.e. permanently accelerate, asymptotically reaching the
speed of light. If such a situation is possible the latent heat of the transition is pumped into
the scalar field, resulting in a characteristic gravitational wave spectrum with a very strong
peak amplitude. An important step towards solving this puzzle was made by Bödeker and
Moore in ref. [1], where they considered the bubble force in the relativistic limit and at the
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leading order in the relevant coupling constants, following an earlier work by Arnold [9].
They found that, in the limit of a large Lorentz factor γ, the force does not depend on γ and
thus concluded that the bubbles can run away if there is enough latent heat released. In
their follow-up paper [10], the authors considered the next-to-leading order effects, finding
a γ dependence in the friction force, which in principle precludes the runaway scenario,
but still allows for highly relativistic walls. Some of the relevant works that discuss how
fast the bubbles can expand include [11–14].1 In particular, ref. [12] refines some of the
arguments presented in [1, 10].

The approach of the present paper is based on covariant conservation of the energy-
momentum tensor of the bubble-plasma system. When applied to the limit when an ap-
proximate Lorentz symmetry2 holds, we find that the friction force scales as (γ2 − 1).
Therefore, for the most of physically interesting cases, the wall will reach stationary state
for moderate velocities and thus will not run away. This is the case when scatterings are
efficient and local thermal equilibrium is enforced. If, on the other hand, scatterings are
inefficient, a ballistic approximation [8] better describes the actual situation. In that case
the bubble force saturates and there is no obstacle for the bubbles to run away. In this
work our formalism is applied to a toy model with one real scalar field in a heat bath,
as well as to a model with the standard-model field content featuring a first order phase
transition and to its simple extension.

The paper is organized as follows. In section 2 we derive our main formula for the
bubble force and discuss its applicability and possible generalizations. In sections 3 and 5
we show how to apply our formalism to a real scalar field and to the standard model
and its simple portal model extension. In section 4 we compare our formalism with the
literature, and in section 6 we conclude. In an extensive appendix we calculate the one-
loop energy-momentum tensor of the standard model in local thermal equilibrium. A
particular attention is devoted to renormalization and to showing gauge independence of
the renormalized energy-momentum tensor.

2 The bubble force from the renormalized energy-momentum tensor

When taken together, the energy-momentum tensor of the plasma T pµν and expanding
bubbles T bµν must be covariantly conserved,

∇µ〈T̂ pµν + T̂ bµν〉 = 0 . (2.1)

For simplicity we shall assume that the bubbles are large and nearly spherical, such that
their front can be approximated by nearly planar walls propagating through the plasma.
Because the surface tension of the bubbles is typically quite large, this approximation is
justified. Moreover, we shall assume that the following hierarchy of scales holds, L,D, τint =
1/Γ� RH , where L is the bubble wall thickness, D is the relevant diffusion time (recall that

1After submission of the first version of this paper, two related works appeared [15, 16].
2Even though an expanding bubble explicitly breaks Lorentz symmetry, one can speak of an approximate

Lorentz symmetry maintained by the state, if it can be characterized by a Lorentz covariant distribution
function. A notable example of such a state is local thermal equilibrium.
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c = 1), Γ is the scattering rate of the relevant plasma species, and RH = 1/H is the Hubble
radius characterizing the expansion of the Universe. Then the covariant derivative in (2.1)
can be approximated by an ordinary derivative and the expansion of the Universe can be,
to the leading order in adiabatic expansion, encoded by the temperature dependence on
the scale factor of the Universe a(t). Taking account of these, equation (2.1) simplifies to,

−∂t〈T̂ p00〉+ ∂z〈T̂ pz0〉 − ∂t〈T̂
b
00〉+ ∂z〈T̂ bz0〉 = 0, (2.2)

−∂t〈T̂ p0z〉+ ∂z〈T̂ pzz〉 − ∂t〈T̂ b0z〉+ ∂z〈T̂ bzz〉 = 0 . (2.3)

Several remarks are in order:

• The energy-momentum tensor in eqs. (2.2)–(2.3) is a composite operator which di-
verges, so to make it finite it ought to be regularized and renormalized;

• The expectation values in (2.3) ought to be calculated in a state that includes the
bubble, or which approximates it well enough;

• Eqs. (2.2)–(2.3) simplify further in the bubble frame, in which the terms containing
time derivatives drop out. This applies when the bubble reaches stationary state
and that is where our analysis holds. The regime of nonstationary bubbles is worth
investigating in a separate work.

In the bubble frame, one can then integrate equations (2.2)–(2.3) across the bubble to
obtain,

∆〈T̂ pz0〉+ ∆〈T̂ bz0〉 = 0, (2.4)
∆〈T̂ pzz〉+ ∆〈T̂ bzz〉 = 0 , (2.5)

where ∆〈T̂ p,bµν 〉 denotes the change of the µν components of the energy-momentum tensor
of the plasma or bubble across the bubble. In what follows we focus on eq. (2.5) since the
bubble-wall speed is determined by the balance of the two terms in (2.5) which encapsulate
the driving force of the vacuum energy and the friction force from interactions with the
plasma.

When calculating the plasma contribution in (2.5), it is convenient to calculate it
in the plasma frame, in which 〈(T̂00)plasma〉 ≡ ρp and 〈(T̂zz)plasma〉 ≡ Pp. As Tµν is a
tensor, Lorentz boosting it to the bubble frame results in, 〈T̂ pzz〉 = (γ2 − 1)(ρp + Pp) + Pp,
〈T̂ bzz〉 = Pb,3 where in the last relation we used ρb + Pb = 0 (since the bubble possesses no
entropy). Taking account of the thermodynamic relation for the entropy density s,

sp = ρp + Pp
T

= s , (2.6)

we arrive at the following expression for the friction force F per volume V on an expanding
bubble,

F

V
≡ −∆P = (γ2 − 1)T∆s , (2.7)

3The γ dependence in this relation is exact if in the plasma frame there is no significant violation of
Lorentz symmetry. For now it suffices to note that this is the case if e.g. local thermal equilibrium is
maintained across the moving bubble.
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where we used, P = Pp+Pb and ∆Pb = ∆〈T̂ bzz〉. The relation (2.7) tells us that the change
in the pressure is balanced by the change in the entropy density of the plasma across the
bubble and that the effect grows quadratically with the Lorentz factor γ = 1/

√
1− v2,

unless some compensating γ dependent terms arise from the plasma frame ∆s, which we
discuss later. Since in the derivation of eq. (2.7) we assumed stationary bubbles, making use
of (2.7) one can determine the terminal bubble speed. This simple observation constitutes
one of the principal results of this work.

Equation (2.4) in the plasma frame reads ∆(γ2vTs) = 0 and thus implies that (with
nonzero variation of entropy across the bubble) the temperature or velocity of the plasma
must change across the bubble. Here we focus on the bubble-wall force, eq. (2.7), therefore
studying the effect of eq. (2.4) is beyond the scope of the present work.4

Before we proceed to applications, in what follows we discuss applicability of for-
mula (2.7).

1. To arrive at (2.7) we took an expectation value of the energy-momentum tensor. This
can be exacted by making use of the full quantum formalism, which gives accurate answers,
but it is hard to implement because it involves quantum field theory in an out-of-equilibrium
setting. A much simpler procedure is to take a semiclassical limit, according to which the
plasma can be described as a collection of quasiparticles that remain approximately on-
shell across the bubble interface. To estimate when the quasiparticle approximation is
reliable, recall that according to the uncertainity principle particles can be off-shell for
short periods of time satisfying, ∆t . 1/∆E ∼ 1/E, where E =

√
p2 +m2 is the energy of

the particle. Conversely, when the wall passage time ∼ L/(γv) is longer than the bubble
wall thickness, L/γ (which gets Lorentz-contracted in the plasma frame), then particles
will be approximately on-shell, i.e.

γv < γ < LT (on− shell condition) , (2.8)

where we assumed that E ∼ T .5 A typical bubble wall thickness L at the electroweak tran-
sition is of the order L ∼ 10/T [8], implying that when γ . 10 the plasma quasiparticles
will be on-shell and the semiclassical kinetic formalism applies. When the on-shell condi-
tion (2.8) is satisfied, that does not yet mean that local thermal equilibrium is reached.
In fact, an additional condition — efficient scatterings on the bubble interface — must be
met for a local thermal equilibrium to be reached. We elaborate more on that below.

The adiabatic approximation we employ here can be regarded as a semiclassical ap-
proximation, in which the effects of varying backgrounds are modeled by mass insertions
along a particle’s trajectory, as illustrated in figure 1. This is a kinematic effect enforced
by the energy conservation in the bubble frame, and the approximation holds as long as

4Variation of temperature and velocity across the bubble wall has been studied in ref. [16] which appeared
after the submission of the first version of this article.

5The condition (2.8) is not the most general one. Namely, in view of Einstein’s relation, E =
√
p2 +m2,

the on-shell condition is most restrictive for highly infrared particles, for which p2 < m2, such that E ≈ m
and the on-shell condition (2.8) becomes γv < γ < Lm. Since typically the most massive particles dominate
the bubble friction, it is often the case that m ∼ T and (2.8) applies. If, however, the heaviest particle’s
mass is much smaller than T , then (2.8) ought to be replaced by the more stringent condition, γv < γ < Lm.
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X X X Xm(x) m(x') m(x'') m(x''')

Figure 1. The propagation of a particle (horizontal solid black line) in presence of field dependent
mass insertions, m(x) =

√
λ/2φ0(x) (vertical dashed lines).

the quantum off-shell effects are small. On top of this, particles can interact and scatter off
each other. Even though scattering effects can be important for a complete understand-
ing of the phase transition dynamics, we postpone their study for future work since they
require the inclusion of higher-loop effects. In this work we investigate only two limits,
namely very rapid and very slow scatterings.

When bubbles are very fast (or very thin) and the criterion (2.8) is violated, quantum
off-shell effects can become significant. To capture that, when constructing the energy-
momentum tensor, one ought to use exact mode functions in the moving bubble back-
ground, which is a much harder endeavor. For an example of how that can be done for
fermionic fields and without loop effects, see e.g. ref. [17]. To consistently include the
quantum loop effects on top of such a tree level treatment, one would have to solve the
corresponding out-of-equilibrium problem using a perturbative quantum field theoretic
framework such as the Schwinger-Keldysh formalism [18–20]. While progress has been
made in applying such a formalism in baryogenesis/leptogenesis scenarios [21–24] (for re-
views see [4, 25]) and in cosmic inflation [26–30], little or no progress has been made in
studying cosmological phase transitions.

2. While our conclusions based on the consideration of the energy-momentum tensor
operator are general, the form of eq. (2.7) is based on the assumption that the (expecta-
tion value of the) energy-momentum tensor is well approximated by a perfect fluid form,
〈T̂µν〉 = (ρ + P)uµuν + gµνP. To get a better understanding of the limitations of this
approximation, recall that the perfect fluid form can be viewed as the leading order ap-
proximation in a gradient expansion. Including the first order gradient corrections yields
the well known expression,

〈T̂µν〉 = (ρ+ P)uµuν + gµνP + τµν , (2.9)

where
τµν = 2η

[
∇(µuν) + u(µu · ∇uν)

]
−
(2

3η − ζ
)

(gµν + uµuν)∇ · u . (2.10)

Here η and ζ denote the shear and the bulk viscosity, respectively, and (αβ) means that the
indices are symmetrized. Notice that τµν is orthogonal to uµ, uµτµν = 0 = τµνu

ν , and that
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its trace is proportional to the bulk viscosity, Tr[τµν ] = gµντµν = 3ζ∇ · u, where we used,
u2 = −1 and uµ(u ·∇)uµ = 0. If the plasma is in thermal equilibrium, then (2.10) vanishes.
To see that recall that in the plasma (bubble) frame, uµ = (1, 0, 0, 0) (uµ = (γv, 0, 0, v)),
such that (if one neglects the expansion of the Universe) the covariant derivatives acting
on uµ give zero. Therefore, one gets a nonvanishing contribution from the viscosity part of
the energy-momentum tensor (2.10) only if both (a) plasma velocity is perturbed from its
thermal equilibrium form and (b) the viscosity coefficients do not vanish. In a perturbative
treatment the leading order contribution to the energy-momentum tensor comes from the
one-loop approximation. Since the one-loop contribution is non-dissipative, the viscosities
(whose nature is dissipative) acquire nonvanishing contributions only at two and higher
loops. Therefore in weakly coupled theories the dominant contribution to the bubble force
is captured by the one-loop calculation and the bubble dynamics can be obtained from
eq. (2.7). That does not mean that an accurate answer for the bubble dynamics can be
obtained just from a one-loop analysis, as higher loops may be essential for determining
the accurate form of the state with respect to which one takes the expectation value of the
energy-momentum tensor.

3. Even though formula (2.7) was obtained based on non-equilibrium considerations, it
has a deceptively similar form to the fundamental thermodynamic law,

dE = TdS − PdV + µdN , (2.11)

where E denotes the energy, S is the entropy, P is the pressure, V is the volume, µ the
chemical potential and N the particle number of the system. To see that let us divide (2.11)
by dV to obtain its local form,

ρ = Ts− P + µn , (2.12)

where ρ = dE/dV is the energy density, s = dS/dV is the entropy density and n =
dN/dV is the number density. Next, close enough to thermal equilibrium µ ' 06 and the
contribution of µn can be neglected and one obtains a standard thermodynamic relation,
that the change in energy density plus pressure across the bubble equals to the change
in the entropy density times the temperature, ∆(ρ + P) = T∆s, which was used in the
derivation of eq. (2.7).

Let us now look more closely at how our approach compares with the usual description
according to which the transition dynamics is governed by the latent heat release ` =
∆ρ and by the change in the effective potential across the bubble, see e.g. ref. [8]. Our
approach here is instead based on the change in the entropy density across the bubble,
∆s = ∆ρ+∆P = `+∆P, which naturally arises from the energy-momentum conservation.
In the one-loop approximation and in local thermal equilibrium, ∆P = −∆Veff , where Veff
is the one-loop effective potential.7 Therefore, we have ∆s = `−∆Veff . It would be worth
investigating whether the two approaches are equivalent in more general situations.

6The condition µ ' 0 does not mean that eq. (2.7) does not apply away from thermal equilibrium in
which chemical potentials are appreciable. It just means that we have subsumed all the relevant effects
that contribute to the bubble friction into the entropy increase.

7To see that, note that from eq. (3.18) we can read off the thermal contribution to the pressure, P =
−(6π2β4)−1[z−1∂zJB(6, z)]z=βm, where JB(6, z) is given in eq. (3.11). By a suitable partial integration one
can show, z−1∂zJB(6, z) = −3JB(4, z), from which we conclude, P = (2π2β4)−1JB(4, βm) = −Veff , which
completes the proof.
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The usual intuition from statistical physics tells us that, in the limit of a thick bub-
ble interface, entropy does not increase across the interface if local thermal equilibrium
is maintained, i.e. plasma particles crossing a thick interface constitutes an isoentropic
process. This is true only if a single particle species forms the plasma. However, in real-
istic applications many particle species are present. Then the system naturally splits into
active species, which exert a significant force on the interface, and passive species, whose
mass remains approximately constant or zero across the interface, such that they do not
exert a significant force on the interface. The passive species form a heat reservoir. The
standard thermodynamic picture then applies. The entropy density in the active part of
the system reduces significantly, thus exerting the force on the bubble. The heat reservoir
absorbs heat, thus heating up. If the heat capacity of the reservoir is large enough, the
total temperature of the system plus reservoir does not change much, and the local thermal
equilibrium description, which assumes equal temperature on both sides of the interface,
can be considered as the leading order approximation. In realistic situations, in which the
standard model contains most of the degrees of freedom, the active particles are the top
quark, the weak gauge bosons and the Higgs particle and they comprise about 20% of the
relativistic degrees of freedom; the remaining 80% constitute a large heat reservoir.

In order to illustrate how to use (2.7) for the phase transition dynamics, in what follows
we first consider a simple real scalar field model and then more general models. For the
scalar theory we will analyze two opposite cases: the local thermal equilibrium, where we
assume that the interactions in the wall are very efficient; and the ballistic approximation
in which the interactions in the wall are inefficient. The force that we find in both cases
will display a very distinct behavior.

3 Real scalar field

In this section we calculate the one-loop energy momentum tensor of a self-interacting,
massless scalar field in the presence of an expanding spherical bubble at a first order phase
transition. For simplicity we shall first consider the case in which the scalar is in a local
thermal equilibrium (lte), which approximates well the scalar field state if the thermalization
time scale, τth = 1/Γth is smaller than the time ∆tb = L/(γv) it takes the bubble to pass
by an observer in the plasma frame, i.e.

τth = 1
Γth

<
L

γv
(local thermal equilibrium) . (3.1)

Since Γth is controlled by a coupling constant, which is typically smaller than one, τth >

1/T , the condition (3.1) is more stringent than the on-shell condition (2.8).8 If (3.1) is not
met, then particles that move across the bubble partially thermalize, and in the extreme
case do not thermalize at all, in which case a ballistic approximation applies. In what follows
we firstly calculate the energy-momentum tensor by assuming local thermal equilibrium

8We do not verify whether this condition is met for the toy model that we consider here, since in this
model no phase transition is present and we treat it only as an illustration of the method. More realistic
models are considered in section 5.
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Figure 2. The Feynman diagram that contributes at one-loop level to the energy-momentum
tensor of a real scalar field. The dashed circle denotes the scalar propagator and the cross denotes
the energy-momentum tensor insertion.

and then discuss how our results are affected if ballistic approximation represents a more
appropriate description.

The free scalar field action is given by,

S0 [φ, gµν ] =
∫
dDx
√
−gLφ , Lφ = −1

2g
µν(∂µφ)(∂νφ)− 1

2m
2φ2 , (3.2)

where gµν is the inverse of the metric tensor gµν , the signature of the metric is mostly plus,
g = det [gµν ] and m is the scalar mass. The origin of the mass can be either a tree-level
mass, m0, or it can be generated by a field condensate. For example, adding a scalar
self-interaction,

Lint = − λ4!φ
4 (3.3)

to the Lagrangian in (3.2) will generate in the presence of a condensate 〈φ̂〉 = φ0 a field
dependent mass,9

m2(φ0) = λ

2φ
2
0 . (3.4)

If the background field φ0 = φ0(x) varies in spacetime, the mass (3.4) will follow the suit.
As long as the variation is slow, it can be treated as an adiabatically varying quantity.

Varying (3.2) with respect to gµν results in the energy-momentum tensor,

T φµν ≡ −
2√
−g

δS0
δgµν

= (∂µφ)(∂νφ) + gµνLφ . (3.5)

Here we are interested in evaluating the expectation value of the one-loop energy-
momentum tensor,

〈T̂ φµν〉 = 〈T [(∂µφ̂)(∂ν φ̂)]〉+ gµν〈T [L̂φ]〉 . (3.6)

The contributing one-loop diagram is shown in figure 2, where the dashed line denotes the
scalar propagator and the cross (×) indicates the energy-momentum tensor insertion.

9Since no condensate can be generated in a pure massless λφ4 theory [31], realistic models of spontaneous
symmetry breaking must include extra fields or a negative mass term. For simplicity in this section we
neglect this complication.
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3.1 Local thermal equilibrium approximation

Since at one-loop order the energy-momentum tensor (3.6) can be evaluated by making use
of the field propagator, the next natural step is to construct the scalar field propagator,
which is in general defined by,

i∆m(x;x′) = Tr
[
ρ̂(t)T [φ̂(x)φ̂(x′)]

]
. (3.7)

Here ρ̂ denotes the density operator, which contains the information about the scalar field
state and T denotes the time ordering operator. In local thermal equilibrium (3.1) holds
and the density operator can be approximated by its local equilibrium form, ρ̂ → ρ̂th =
e−βĤφ/Tr[e−βĤφ ], where Ĥφ is the Hamiltonian operator.

In general the free scalar propagator (3.7) obeys the equation of motion,

√
−g

(
�−m2

)
i∆m(x;x′) = i~δD(x− x′) , (3.8)

wherem = m(φ0) is the field-dependent scalar field’s mass. The thermal propagator in (3.8)
can be thought of as the inverse of the operator,

√
−g

(
�−m2) × δD(x − y), where � =

gµν∇µ∇ν denotes the d’Alembertian operator with thermal boundary conditions imposed.
In practice this can be done by inserting the thermal density operator ρ̂th in (3.6). Further-
more, since time scales that govern the phase transition dynamics are typically much shorter
than the Hubble time, the expansion of the Universe can be considered as adiabatic and
in the leading order adiabatic approximation the d’Alembertian reduces to the usual wave
operator, �→ ∂2 = ηµν∂µ∂ν (the expansion of the Universe is then captured by taking T =
T (t)). That means that for our purposes it suffices to determine the thermal propagator for
a massive scalar in Minkowski space in slowly varying background fields (the metric tensor
and the scalar field). That propagator is well known and in the plasma frame it reads,10

i∆m(x;x′) = mD−2

(2π)D/2
KD−2

2

(
m
√

∆x2
)

(m
√

∆x2)
D−2

2
+
∫

dD−1p

(2π)D−1
ei~p·(~x−~x′)

Ep

cos[Ep(t− t′)]
eβEp − 1

, (3.9)

where Kν(z) is the Macdonald function (the modified Bessel function of the second kind),
Ep =

√
~p 2 +m2 and,

∆x2(x;x′) = −(|t− t′| − ıε)2 + ‖~x− ~x ′‖2 (3.10)

is the invariant distance function on Minkowski space where the appropriate ıε prescription
for the Feynman propagator is also indicated.

Note that in the free propagator (3.9) the vacuum (∝ K(D−2)/2) and thermal contri-
butions neatly split and that the thermal contribution is finite, and thus can be evaluated
in D = 4. While it is not generally possible to write in a closed form the thermal part of

10As we argue at the end of section 2, the local thermal equilibrium assumed when constructing the prop-
agator (3.9) approximates well the state if scatterings are efficient and if the massive scalar is supplemented
by a sufficiently large heat reservoir.

– 9 –



J
H
E
P
0
1
(
2
0
2
1
)
0
7
0

the propagator in (3.9), its coincident and near coincident limits are possible to express in
terms of the bosonic thermal integral,

JB(n, z) ≡
∫ ∞

0
dxxn−2 ln

(
1− e−

√
x2+z2

)
, (3.11)

based on which one can obtain the thermal contribution to the one-loop effective potential
of a bosonic degree of freedom in n space-time dimensions. For example, in n = 4 and for a
particle of massm, the one-loop thermal effective potential is V (1)

T = −[2π2β4]−1JB(4, βm).
With these remarks in mind we can write a closed form expression for the coincident

propagator (3.9),

i∆m(x;x) =
mD−2Γ

(
1− D

2
)

(4π)D/2
+ 1

2π2β2

∫ ∞
0

dx
x2√

x2 + (βm)2
1

e
√
x2+(βm)2 − 1

=
mD−2Γ

(
1− D

2
)

(4π)D/2
+ 1

2π2β3m
[∂zJB(4, z)]z=βm , (3.12)

such that the vacuum part is divergent in D = 4 and ought to be regularized. The vacuum
contribution in (3.12) was evaluated by noting that the Bessel function Kν(z) in eq. (3.9)
can be expanded around the lightcone as a sum of two series (ν = (D − 2)/2),

Kν(z)
zν

=
Γ
(
1− D

2

)
2
D
2

∞∑
n=0

(z/2)2n(
D
2

)
n
n!

+
Γ
(
D
2 − 1

)
2
D
2

∞∑
n=0

(z/2)2n+2−D(
2− D

2

)
n
n!
, z = m

√
∆x2 , (3.13)

and then used the fact that in dimensional regularization, by a clever use of the suitable
analytic extension, one finds that the series with D dependent powers in (3.13) does not
contribute at coincidence. Since all power-law divergences get subtracted in this way, this
feature became known as the automatic subtraction.

In order to evaluate (3.6) we need,

〈T [(∂µφ̂)(∂ν φ̂)]〉 =
[
∂µ∂

′
ν〈T ∗[φ̂(x)φ̂(x′)]〉

]
x′→x

, (3.14)

where we introduced the usual T ∗ time ordering which is defined to commute with the
two external derivatives in (3.14). The vacuum part of (3.14) is −2ηµν times the linear
coefficient in ∆x2 of the propagator in (3.9), which is easily extracted from the integer
series in (3.13),

〈T [(∂µφ̂)(∂ν φ̂)]〉vac = ηµν
mDΓ

(
− D

2
)

2(4π)D/2
. (3.15)

When taken together with the vacuum part in (3.12) this then implies, 〈T [L̂]〉vac = 0, such
that,

〈T̂µν〉vac = ηµν
mDΓ

(
− D

2
)

2(4π)D/2
, (3.16)

which has the form of a cosmological constant.
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The thermal contribution to (3.14) is given by the integral over pµpν of the coincident
thermal integral in (3.9). Recalling that p0 = Ep, the 00 and ij contributions ought to be
evaluated separately (the 0i contribution vanishes),

〈T [(∂0φ̂)(∂0φ̂)]〉th = 1
2π2β5m

[∂zJB(6, z)]z=βm + m

2π2β3 [∂zJB(4, z)]z=βm (3.17)

〈T [(∂iφ̂)(∂jφ̂)]〉th = δij
1

6π2β5m
[∂zJB(6, z)]z=βm , (3.18)

such that 〈T [L̂]〉th = 0, and the contributions in (3.18) are the thermal contributions to
the one-loop stress-energy tensor.

To complete the calculation, we still ought to renormalize the vacuum contribu-
tion (3.16), which for a constant bare mass can be done by adding a cosmological constant
counterterm. However, here we are primarily interested in a mass generated by a field
condensate (3.4), and the suitable counterterm action is of the form,

Sct =
∫
dDx
√
−g

[
−δλ4! φ

4
]
, (3.19)

which contributes to the energy-momentum tensor as,

T ct
µν = −δλ4! φ

4gµν . (3.20)

We shall use the minimal subtraction scheme, and to that purpose expand (3.16) around
D = 4,

〈T̂µν〉vac = −ηµν
m4

32π2

[
µD−4

D − 4 + 1
2 ln

(
m2

4πµ2

)
+ γE

2 −
3
4

]
, (3.21)

where µ is an arbitrary scale and m2 = λφ2
0/2. Comparing (3.21) with (3.20) we see that,

δλ = − 3λ2

16π2
µD−4

D − 4 , (3.22)

removes the divergence from (3.21), resulting in the following renormalized energy-
momentum tensor,

〈T̂µν〉ren = −ηµν
m4

64π2

[
ln
(
m2

4πµ2

)
+ γE −

3
2

]
+ ηµν

6π2β5m
[∂zJB(6, z)]z=βm

+δ0
µδ

0
ν

{ 2
3π2β5m

[∂zJB(6, z)]z=βm + m

2π2β3 [∂zJB(4, z)]z=βm
}
. (3.23)

From the point of view of the bubble force calculation, the change in the entropy
density (2.6) across the bubble is what determines the friction force on the bubble interface,
which is determined by the second line in (3.23) (Lorentz covariant contributions have a
vanishing entropy density),

T∆s = 2π2

45β4 −
2

3π2β5m
[∂zJB(6, z)]z=βm −

m

2π2β3 [∂zJB(4, z)]z=βm . (3.24)
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Figure 3. The dimensionless change in the entropy density ∆s/T 3 (solid blue) of a real scalar field
thermal plasma across the nucleated bubble as a function of the scalar mass m/T . Since the scalar
mass m =

√
λ/2φ0(x) increases across the bubble as the scalar condensate increases, the entropy

in the broken phase decreases. The maximum amount by which the entropy density can change is
2π2T 3/45, which is formally reached when m → ∞, when the entropy density inside the bubble
tends to zero (horizontal dashed).

0 1 2 3 4 5
βm

1

2

3

4

5
γ

Figure 4. The bubble Lorentz factor γ(v) as a function of the scalar mass m/T for ∆P = −0.01/β4

(green dashed), ∆P = −0.1/β4 (solid black) and ∆P = −0.5/β4 (solid orange).

Inserting this into eq. (2.7) gives an expression for the bubble speed as a function of the
change in the pressure across the bubble −∆P due to the bubble nucleation and the change
of the plasma entropy density. Since −∆P depends on the amount of supercooling before
bubbles start nucleating and on the detailed form of the effective potential, the toy model
Lagrangian considered in this section cannot be used for a meaningful estimation of ∆P.
For that reason we shall not attempt to estimate it here, but instead we shall treat it as a
free parameter of the transition.

In figure 3 we show how the entropy density changes across the bubble as a function
of the scalar mass. The relativistic plasma limit, s = 2π2T 3/45 (dashed) is reached in the
limit when the mass in the broken phase m→∞, because then the entropy density inside
the bubble tends to zero.
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Figure 5. The bubble speed v/c as a function of the scalar mass m/T for the same choice of
the parameters as in figure 4: ∆P = −0.01/β4 (green dashed), ∆P = −0.1/β4 (solid black) and
∆P = −0.5/β4 (solid orange).

The main application of eq. (2.7) is to determine the terminal velocity (or Lorentz
factor) of a bubble in stationary state. Figure 4 shows the bubble’s Lorentz factor γ as
a function of the scalar mass and the strength of the transition, expressed as ∆P across
the bubble for a moderately strong transition, ∆P = −0.1/β4 (solid black), for a strong
transition ∆P = −0.5/β4 (solid orange) and for a very weak transition ∆P = −0.01/β4

(dashed green). For each choice of ∆P there is a minimum bubble Lorentz factor, γmin =√
1 + [45(−∆P)/(2π2T 4)], reached when m → ∞. The maximum γ is reached when

m→ 0, in which case the bubble runs away (since in that limit there is no force). However,
for every m2 > 0 and ∆P < 0, no matter how small they may be, a finite γ is reached.

Figure 5 shows the bubble speed for the same choice of parameters as in figure 4. Notice
that, independently of ∆P, all curves begin at v = c for m = 0. The horizontal dashed
lines indicate the lowest attainable bubble speed for a given phase transition strength ∆P.

We see that in the case of local thermal equilibrium, the bubble velocity stabilizes at
relatively low values. Therefore, even based on our analysis which is limited to moderate
velocities with γ < 10, one can conclude that the bubbles cannot run away.

3.2 Ballistic approximation

If the thermalization rate is not large enough to satisfy eq. (3.1) then the ballistic approxi-
mation [8] is the more appropriate one to model the state of the field. In this case, one as-
sumes that particles are in thermal equilibrium in the symmetric phase far in front of the ex-
panding bubble, and they move across the wall so fast that they interact semiclassicaly, but
the time is so short that they do not reach a local thermal equilibrium. To solve for the force
acting on a bubble in this case, one can solve the Liouville equation in the bubble frame,(

pz
E
∂z −

∂z(m2)
2E ∂pz

)
f(pz, z) = 0 , (3.25)

where E = E(pz, p⊥, z) =
√
p2
⊥ + p2

z +m(z)2. By observing that, ∂z = (∂zm2)∂m2 , one
sees that the general solution of (3.25) can be written as a general function of m2 + p2

z
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and p⊥ (or, equivalently, of E),

f = f(p2
z +m2, ~p⊥) , (3.26)

which is equivalent to saying that E and ~p⊥ are conserved in the bubble frame. On the
other hand, in front of the bubble, where m = 0 (inside the bubble where m 6= 0), the
solution is given by,

f−∞ = 1
eβγ(E−vpz) − 1

(pz > 0, z → −∞,m = 0) , (3.27)

f∞ = 1
eβγ(E−vpz) − 1

(pz < 0, z → +∞,m 6= 0) . (3.28)

respectively. Notice that the negative pz branch of the distribution function (3.28) exists
only if thermalisation inside the bubble takes place. Since the bubbles at the electroweak
transition grow large before they start colliding, this condition will be satisfied for
typical bubbles. If not, the negative branch (3.28) will be absent. When the boundary
condition (3.27)–(3.28) is imposed on (3.26) one obtains the general ballistic solution,
which is conveniently broken into three parts as follows.

Case A. Transmission (t+) from the symmetric phase:

f(z, pz, ~p⊥) = 1
exp

[
βγ
(
E − v

√
p2
z +m(z)2

)]
− 1(

pz(z) >
√
m2

0 −m(z)2
)
. (3.29)

Case B. Reflection (r):

f(z, pz, ~p⊥) = 1
exp

[
βγ
(
E − vsign[pz]

√
p2
z +m(z)2

)]
− 1(

−
√
m2

0 −m(z)2 < pz(z) <
√
m2

0 −m(z)2
)
. (3.30)

Case C. Transmission (t−) from inside the bubble:

f(z, pz, ~p⊥) = 1

exp
[
βγ
(
E + v

√
p2
z +m(z)2 −m2

0

)]
− 1

,

(
pz(z) < −

√
m2

0 −m(z)2
)
, (3.31)

where we temporarily introduced an index 0 on m to denote the mass deep inside the
bubble. Note that in the reflected solution (3.30) we included both the particle incoming
on the wall (−m0 < pz < 0) and the reflected particles (0 < pz < m0), because they both
contribute to the force on the wall.

The ballistic solution (3.29)–(3.31) tells us that quasiparticles are still on-shell, but they
are not thermally distributed. As a consequence of this departure from thermal equilibrium
Lorentz symmetry is violated. This then introduces a dependence on the Lorentz factor γ
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in the plasma frame quantities in eq. (2.7), making thus the γ dependence of the bubble
force more complex than what eq. (2.7) suggests.

To obtain the bubble force one must calculate the change in the plasma pressure across
the bubble interface. The pressure in the bubble frame reads,

Pz =
∫

d3p

(2π)3
p2
z

E
f , (3.32)

where the index z indicates that Pz is the pressure in the direction in which the bubble
expands. For simplicity in eq. (3.32) we took account of the plasma contribution only
(since the vacuum contribution is unchanged). The form of the pressure in (3.32) can
be obtained from the zz part of eq. (3.14), provided the thermal distribution function
1/(eβEp −1) in (3.9) gets replaced by the ballistic distribution function (3.29)–(3.31). This
ballistic approximation is valid as long as the semiclassical on-shell condition (2.8) holds
true. Since the pressures in the other two spatial directions do not change by the expanding
bubble, we do not need to consider them here. The quantity Pz in (3.32) represents the total
pressure in the z direction in the wall frame exerted by the plasma, and it is therefore equal
to 〈T̂ pzz〉 = (γ2− 1)Ts+Pp, where s and Pp are the plasma frame quantities, and therefore
— up to an unimportant term Pp — it equals the differential bubble force in eq. (2.7).
To evaluate the integrals in (3.32), it is convenient to first integrate over E, in which case
the ranges of integration are, E ∈ [

√
p2
z +m2,∞), pz ∈ (−∞,∞). By making use of

EdE = p⊥dp⊥ and integrating e.g. the transmitted contribution (3.29) over E one gets,

Pt+z = − 1
4π2βγ

∫ ∞
√
m2

0−m(z)2
dpzp

2
z ln

[
1− exp

(
−βγ(1− v)

√
p2
z +m(z)2

)]
. (3.33)

The integral over pz cannot be done analytically. To simplify it, it is convenient to intro-
duce dimensionless variables, M± = βγ(1± v)m, x = βγ(1± v)pz, and the integral (3.33)
becomes,

Pt+z = − 1
4π2β4γ4(1− v)3

∫ ∞
βγ(1−v)

√
m2

0−m(z)2
dxx2 ln

(
1− e−

√
x2+M2

−

)
, (3.34)

where v ≡ v(γ) =
√

1− (1/γ2). An analogous procedure gives for the reflected
contribution (3.30)

Prz = − 1
4π2β4γ4

{
1

(1− v)3

∫ βγ(1−v)
√
m2

0−m(z)2

0
dxx2 ln

(
1− e−

√
x2+M2

−

)

+ 1
(1 + v)3

∫ βγ(1+v)
√
m2

0−m(z)2

0
dxx2 ln

(
1− e−

√
x2+M2

+

)}
, (3.35)

and for the transmitted contribution (3.31),

Pt−
z = − 1

4π2β4γ4

∫ ∞
βγ
√
m2

0−m(z)2
dxx2 (3.36)

× ln
[
1− exp

(
−
√
x2 +

(
βγm(z)

)2 − v√x2 + (βγ)2
(
m(z)2 −m2

0

)2
)]

.
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The total pressure is then simply the sum of the three contributions,

Pz = Pt+z + Prz + Pt−z , (3.37)

and the pressure difference across the bubble reads

∆Pz = ∆Pt+z + ∆Prz + ∆Pt−z . (3.38)

There is a subtlety involved in evaluating (3.37) in the reflected contribution (3.35), which
is simply equal to, ∆Prz = Prz . This is because the contribution of the reflected particles to
∆Prz is given by Prz in front of the wall, minus the pressure at the turning point. But this
contribution is zero because the phase space at the turning point is zero (all particles at
the turning point have pz = 0, such that the integral over pz vanishes). Upon combining
all of the contributions (3.34), (3.35) and (3.36) one obtains for the pressure difference,11

∆Pz(βm, γ) = π2

90β4

[
4(γ2 − 1) + 1

]
− 1

4π2β4γ4

{
− JB(4, βγ(1− v)m)

(1− v)3 (3.39)

+

[
M2

+Li2
(
e−M+

)
+ 2M+Li3

(
e−M+

)
+ 2Li4

(
e−M+

)]
M+=βγ(1+v)m

(1 + v)3

+
∫ ∞

0
dxx

[√
x2 + (βγm)2 − x

]
ln
[
1− exp

(
−
√
x2 +

(
βγm

)2 − vx)]} ,
where Lis(z) =

∑∞
n=1(zn/ns) denotes the polylogarithm function and we dropped the index

0 on the mass. The first term in (3.39) is the pressure at the vanishing mass,

Pz(0, γ) = π2

90β4

[
4(γ2 − 1) + 1

]
, (3.40)

which is precisely of the form, (γ2−1)Ts0 +P0, with s0 = (ρ0 +P0)/T , ρ0 and P0 being the
entropy density, energy density and pressure of an ultrarelativistic plasma with one degree
of freedom. The third line in (3.39) comes from particles penetrating the interface from
inside the bubble. As noted above, this contribution will be present only if thermalization
inside the bubble takes place.

Eq. (3.39) is to be compared with the pressure difference across the interface obtained
assuming local thermal equilibrium (lte) close to the interface, for which f = 1/[eβγ(E−vpz)−
1] and hence,

∆Pz,lte(βm, γ) = π2

90β4

[
4(γ2 − 1) + 1

]
+ 1

4π2β4γ

∫ ∞
−∞

dxx2 ln
(

1− e−γ(
√
x2+(βm)2−vx)

)
. (3.41)

11To arrive at eq. (3.39) we made use of the integral,∫ M

0
dxx2 ln

(
1− e−x

)
= −π

4

45 +M2Li2
(
e−M

)
+ 2MLi3

(
e−M

)
+ 2Li4

(
e−M

)
.
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From eqs. (3.29)–(3.31) we see that, in the ballistic approximation, all particles ascending
onto the interface (Cases A and B) slow down, such that f > flte, implying that Pz > Pz,lte,
from which we infer ∆Pz < ∆Pz,lte, meaning that the ballistic approximation yields a
smaller bubble force and thus also faster bubbles.12 This should not come as a surprise,
since the ballistic approximation completely neglects particle interactions on the interface,
it minimizes entropy production across the bubble, thus underestimating the bubble force.
To get an idea by how much, in figure 6 we plot ∆Pz defined in (3.39) as a function of
the Lorentz factor γ for m = 0.1T (orange dashed), m = 0.2T (black dashed), m = 0.4T
(solid red), and m = 0.8T (solid blue). As expected, the force is larger for larger masses.
Unlike in the case of the local thermal equilibrium force, the ballistic force saturates with
γ. Interestingly, from the point of view of applicability range of our approach, the force
saturates already for moderate values of γ < 10, suggesting the possibility of runaway
in the ballistic limit. Motivated by that, we evaluate the maximum force reached when
γ →∞ from eqs. (3.39)–(3.40) as follows. In the limit when γ � 1,

γ(1− v) ≈ 1
2γ

(
1 + 1

4γ2

)
, γ(1 + v) ≈ 2γ

(
1− 1

4γ2

)
, (3.42)

and the pressure difference ∆Pz in eq. (3.39) can be estimated as,

∆Pz = m2

24β2 +O
(1
γ
, γ3e−γβm

)
. (3.43)

In this limit our estimate (3.43) agrees with the result of ref. [1], eq. (2.4). To get the
result (3.43) we have used the small argument expansion of the JB integral in the first
line of eq. (3.39). The terms in the second line can be neglected, since in that limit the
polylogarithm functions are exponentially suppressed as ∼ e−2γβm, which is easily seen from
their small argument expansion. Finally, the third line in (3.39) is exponentially suppressed
at least as ∼ e−γβm,13 and hence does not contribute at the leading order to (3.43).

12This conclusion is valid provided the particles descending the wall (Case C), for which f < flte and
hence ∆Pz > ∆Pz,lte, contribute sub-dominantly to the force. This must be the case because in the wall
frame the distribution function of the descending particles is always suppressed when compared with that
of the ascending particles, implying that they also sub-dominantly contribute to the bubble force.

13To see this, let us rewrite the integral in the third line in (3.39) ,

It− = − 1
γ

∫ ∞
0

dx′x′
[√

x′2 +M2 − x′
]

ln
[
1− exp

(
−γ(

√
x′2 +M2 + vx′)

)]
, (3.44)

where we used the variables x′ = γx, M = βm and we included the prefactor −1/γ4 in the definition of the
integral. Next, it is convenient to introduce Lorentz boost variables, x = γ(x′+ve′), e = γ(e′+vx′), e(x) =√
x2 +M2, e′ =

√
x′2 +M2, upon which the integral naturally splits into two parts, It− = I1 + I2, where

I1 = γ2(1 + v)2
[(√

1 + (γv)2M −M2
)

Li2
(
e−
√

1+(γv)2M
)

+ Li3
(
e−
√

1+(γv)2M
)]

+γ2(1 + v)Li2
(
e−
√

1+(γv)2M
)
∼ 2γ2 (2γM + 3− 2M2) e−γM , (3.45)

where the last estimate holds in the limit γ →∞. The second integral cannot be evaluated exactly, but it
can be bounded from above by the simpler integral obtained by replacing

√
x2 +M2 → x in the exponent,

which can be evaluated,

−I2 < 2γ2(1 + v)2Li4
(
e−γvM

)
+ γ2(1 + v)vM2Li2

(
e−γvM

)
∼ 2γ2 (4 +M2) e−γM ,

from where we conclude that It− is suppressed at least as ∼ e−γβm.
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Figure 6. The force on the bubble ∆Pz defined in (3.39) as a function of the Lorentz factor γ for
m = 0.1T (orange dashed), m = 0.2T (black dashed), m = 0.4T (solid red), and m = 0.8T (solid
blue). As expected, the force is smaller for smaller masses.
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Figure 7. The force on the bubble ∆Pz defined in (3.39) as a function of m/T for γ = 1.1 (orange
dashed), γ = 1.5 (black dashed), γ = 2 (solid red), and γ = 5 (solid blue).

Notice that, if there are heavy particles in the plasma, m � T , the bubble force
is ∝ m2 and thus gets saturated at much larger values and for large Lorentz factors,
γ & m/T . Namely, even though the number of heavy particles is exponentially suppressed
in the plasma frame, their energy in the wall frame gets boosted by the Lorentz factor γ,
thereby reducing their suppression. An important lesson to take from this analysis is that,
if a phase transition is strong and bubbles are relativistic, then the existence of very heavy
particles (with a mass m� T ) can be of a crucial importance for the correct determination
of the terminal bubble-wall velocity. In particular, heavy particles can determine whether
the bubbles run away or not.

To illustrate how the bubble force depends on the particle mass, in figure 7 we plot ∆Pz
in (3.39) as a function of m/T for a fixed Lorentz factor γ. The values of γ (starting from
bottom up) are γ = 1.1 (orange dashed), γ = 1.5 (black dashed), γ = 2 (solid red), and
γ = 5 (solid blue), respectively. For small masses the force in the ballistic approximation
increases rather slowly (left panel), but then it continues increasing and eventually saturates
for very large masses. This is in contrast with the local thermal approximation result in
figure 3, which shows that the lte force already saturates for quite modest masses.
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Figure 8. Comparison of the force on the bubble ∆Pz given by the ballistic approximation (3.39)
and the lte approach (3.41) as a function of m/T . Left panel: γ = 1.1 (lte: solid blue; ballistic:
dashed blue), γ = 2 (lte: solid red; ballistic: dashed red). Right panel: γ = 5 (lte: solid blue;
ballistic: dashed blue), γ = 10 (lte: solid red; ballistic: dashed red).

In order to get a better insight into how much the bubble force calculated in the
ballistic approximation is smaller than in the local thermal equilibrium (lte), in figure 8
we plot ∆Pz (3.39) as a function of m/T for a fixed Lorentz factor γ. In the left panel we
show, from bottom up, γ = 1.1 (lte is solid blue curve, ballistic is dashed blue) and γ = 2
(lte is solid red curve, ballistic is dashed red), while in the right panel the force for γ = 5
(lte is solid blue curve, ballistic is dashed blue) and γ = 2 (lte is solid red curve, ballistic
is dashed red) are shown. Notice that the force in the lte approximation is always larger,
but for sufficiently large masses the two forces asymptote to the same value. This means
that very massive particles (m� T ) contribute more in the ballistic approximation than in
the lte approximation. This observation can be important for the correct determination of
the phase transition dynamics, particularly in systems with very heavy degrees of freedom.
Finally, in figure 9 we plot the natural logarithm of ∆Pz (3.39) as a function of the Lorentz
factor γ for a fixed mass m. Left panel shows, from bottom up, m = 0.1T (lte: solid blue;
ballistic: dashed blue), m = 0.5T (lte: solid red; ballistic: dashed red), while right panel:
m = 1T (lte: solid blue; ballistic: dashed blue), m = 5T (lte: solid red; ballistic: dashed
red). Notice that the force calculated in the local thermal equilibrium approximation can
be orders of magnitude larger than that calculated in the ballistic approximation. Notice
further that, as γ increases the ratio of the two forces increases, which can be explained by
recalling that, as γ increases, the ballistic force saturates.

To conclude, the analysis in this section shows that the entropy production generated
by a passing bubble (and thus also the bubble force) minimizes in the limit when particle
interactions are negligible and can be treated in a ballistic approximation, in which case the
bubbles’ runaway is expected. In the opposite limit, when particles scatter efficiently and
can be consequently approximated by a local thermal equilibrium, the entropy production
and the bubble force maximize. As long as the local thermal equilibrium approximation
applies, entropy production grows as the Lorentz factor squared and quickly reach terminal
velocity which can be estimated from the one-loop energy-momentum tensor. We empha-
size that formula (2.7) derived in section 2 applies in both of those limits as well as in more
general situations, provided one takes proper care of the state of the field. Furthermore,
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Figure 9. Natural logarithm of the force on the bubble ∆Pz given by the ballistic approxima-
tion (3.39) and the lte approach (3.41) as a function of the Lorentz factor γ. Left panel: m = 0.1T
(lte: solid blue; ballistic: dashed blue), m = 0.5T (lte: solid red; ballistic: dashed red). Right panel:
m = 1T (lte: solid blue; ballistic: dashed blue), m = 5T (lte: solid red; ballistic: dashed red).

both the ballistic and the local thermal equilibrium approximation can be understood as
the leading order approximation in a more general treatment, in which they represent the
leading (zeroth) order approximation to an expansion in powers of the perturbative pa-
rameter ΓL/v for the ballistic approximation and v/(ΓL) for the local thermal equilibrium
approximation, where L is the thickness of the bubble interface, v its speed and Γ the
relevant thermalization rate.

4 Comparison with existing results

Since the problem of bubble dynamics at first order transitions is long-standing and there
exists rich literature of the topic, it is useful to clarify where we differ when compared with
the existing work. Our principal statement is that the force on an expanding bubble can be
extracted from the energy-momentum conservation law (2.3). When written in the bubble-
wall frame (2.5) it can be recast as (2.7), from which we get a differential force on the bubble,

dP = −dF
V

= −(γ2 − 1)Tds = −(γ2 − 1)d(ρp + Pp) = −d
[
〈T̂ pzz〉 − Pp

]
, (4.1)

where ρp and Pp are plasma frame quantities and 〈T̂ pzz〉 is calculated in the bubble frame.
Note that Pp is just 〈T̂ pzz〉 in the plasma frame, such that eq. (4.1) indicates that the force
on the bubble is present only when the bubble is moving.

The precise form of the energy-momentum tensor in (4.1) is complicated and it depends
both on the state chosen and on the accuracy at which T̂ pzz(x) is evaluated. For simplicity
of the argument here we work in the one-loop approximation and assume a state in which
the bubble profile is an adiabatic function of z. Then for a real scalar field in thermal
equilibrium (outside the bubble) one can use the thermal part of the massive scalar prop-
agator (3.9) to calculate the force in (4.1). When integrated across the bubble, eq. (4.1)
can then be recast as,

F

V
=
∫
dz
dφ0
dz

dm2

dφ0

∫
d3p

(2π)3E

[ 1
eβγ(E−vpz) − 1

− 1
eβE − 1

]
, (4.2)
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where we made use of the bubble frame relations,

d(p2
z) = −d(m2) , dE = 0 (4.3)

and of the differential chain rule, d(p2
z) = dz∂z(p2

z) = −dz(dφ0/dz)(dm2/dφ0).
If we compare eq. (3.3) from ref. [1] to the result in eq. (4.2) we see two unimportant

differences. Firstly, the force in eq. (4.2) is two times larger, and secondly, eq. (3.3) in
ref. [1] does not subtract the term needed to make the force vanish in the static limit.14

Moreover, eq. (3.3) takes into account that the distribution function depends on the z
coordinate and is different at each point. Once a simplifying assumption of local thermal
equilibrium in front of the bubble is imposed as was done above, eq. (3.3) from ref. [1] and
our result in eq. (4.2) do agree up to the minor differences already discussed.

The above analysis shows that, starting with our main result (2.7), and up to the well
understood differences, our general quantum expression for the bubble force reduces to the
standard semi-classical expression in refs. [1, 7, 8]. The question that then naturally arises
is: why did we reach a different conclusion from [1] and from the result above in eq. (4.2)
when studying rapidly expanding bubbles in thermal equilibrium?

The answer lies in the use of the energy conservation across the wall as in eq. (4.3). By
applying it, we impose a non-equilibrium distribution inside the bubble and thus we violate
Lorentz symmetry which was crucial for obtaining the (γ2 − 1) scaling of the friction force
in the lte case.

In tracing individual particles and applying energy-momentum conservation the ap-
proach of ref. [1] is closer to our classical treatment of the ballistic regime. We derived the
distribution inside the bubble, assuming thermal equilibrium outside and applying Liou-
ville equation (see eq. (3.25)). If highly relativistic wall velocities are considered typical
momenta in the wall frame are much larger than the masses involved. Then, the distribu-
tion inside and outside the bubble are approximately the same. This brings our analysis of
the ballistic limit close to the analysis of ref. [1] and, moreover, explains why in that limit
the result — that the force saturates for large γ — is similar. Nevertheless, it is important
to emphasize that our treatment of the ballistic limit is not limited to the highly relativistic
regime. Moreover, our general formula (2.7) allows one to calculate the bubble force not
just in local thermal equilibrium or in the ballistic approximation, but also in more general
settings that go beyond the semiclassical treatment. The limited, one-loop computation of
this work does not include the transition radiation which was treated in refs. [10], however,
higher-order computations should account also for that effect.

5 Standard model and its extensions

In this section we utilize the results from sections 2, 3 and appendix A to study the phase
transition dynamics in the standard model and some of its popular extensions. To keep our
analysis as simple as possible we do not analyze here the bubble nucleation (from which one

14In ref. [1] it is mentioned that the force coming from the difference in vacuum potential on two sides of
the wall should be taken into account. Then, a static limit is discussed and a conclusion is reached that a
wall can be static only at the critical temperature.
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can infer the latent heat of the transition, bubble surface tension of the transition, etc.),
neither we address the non-equilibrium aspects of the transition. Instead, we compute the
force on the expanding bubbles, from which one can then infer the dynamics of the tran-
sition if one knows the pressure difference across the bubble interface. Below we apply the
local thermal equilibrium approximation. To verify whether it holds one should evaluate the
condition given by eq. (3.1) using some estimates for thermalization rates, see e.g. refs. [7, 8].

Standard model. Even though it is known that the transition in the standard model is a
crossover [32], it is useful to analyze it since its particle content is verified by experiments
and the first microscopic analysis of the dynamics of the electroweak phase transition
was presented in [7, 8], where the authors assumed that the transition is first order. It
is well known that not all fields of the standard model are relevant for the dynamics of
the electroweak transition. Namely, only those fields which significantly contribute to the
thermal effective potential and which exert a large force on the bubble are important,
and these are the fields whose mass is of the order of the temperature. For the standard
model that selects: the top quark (12 relativistic degrees of freedom, mt = 173 GeV), the
Higgs boson (1 relativistic degree of freedom, mH = 125 GeV), W± bosons (6 relativistic
degrees of freedom, mZ = 91.2 GeV) and the Z boson (3 relativistic degrees of freedom,
mZ = 91.2 GeV). All other particles are much lighter and do not significantly contribute.
For example, the next heaviest particle is the bottom quark, whose mass is about 5 GeV.
Unless there is a large supercooling such that nucleation occurs at a very low temperature,
comparable with or lower than 5 GeV, the bottom quark and other particles of the standard
model are not important for the phase transition dynamics.

According to eq. (2.7) it is the change in the entropy density across the bubble, T∆s =
ρp + Pp (see (3.24)) that determines the force per unit area on the bubble. With this in
mind and from eq. (A.21) we can extract the top contribution,

T∆st = 7π2

15β4 + 8
π2β5mt

[∂zJF (6, z)]z=βmt + 6mt

π2β3 [∂zJF (4, z)]z=βmt . (5.1)

From the analysis of the Abelian Higgs model in its condensate phase in appendix A we
infer that the Higgs boson after symmetry breaking contributes as one massive scalar field
(see eqs. (A.125) and (3.23)–(3.24)),

T∆sH = 2π2

45β4 −
2

3π2β5mH
[∂zJB(6, z)]z=βmH −

mH

2π2β3 [∂zJB(4, z)]z=βmH . (5.2)

Based on the same Abelian Higgs model analysis (see eq. (A.125)) we can conclude that
W± and Z bosons contribute as two and one massive gauge bosons, respectively,

T∆sW = 4π2

15β4 −
4

π2β5mW
[∂zJB(6, z)]z=βmW −

3mW

π2β3 [∂zJB(4, z)]z=βmW , (5.3)

T∆sZ = 2π2

15β4 −
2

π2β5mZ
[∂zJB(6, z)]z=βmZ −

3mZ

2π2β3 [∂zJB(4, z)]z=βmZ . (5.4)

Note that in eqs. (5.2)–(5.4) we have assumed that a local thermal equilibrium is attained.
The total change in the entropy density in a model with the field content of the standard
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Figure 10. The change in the entropy density ∆sSM/T
3 (solid blue) of the standard model plasma

across a nucleated bubble as a function of the ratio of the top mass (in the broken phase) and the
temperature, βmt = mt(φ0)/T . The maximum amount by which the entropy density can change
is 41π2T 3/45, which is reached when βmt →∞ (horizontal dashed).

model is then obtained by simply summing the four contributions in eqs. (5.1)–(5.4),

T∆sSM = T
(
∆st + ∆sH + ∆sW + ∆sZ

)
. (5.5)

To get an impression of how strong the bubble force is in a theory with the matter
content of the standard model, in figure 10 we plot the increase in the entropy density
across the bubble wall as a function of βmt (when plotting figure 10 we made use of
βmi = (mi/mt)βmt with i = H,W,Z). When compared with the single scalar field in
figure 3, we see that the entropy increase — and thus also the force on the bubble —
is, as expected, much larger in the standard model than in the real scalar case. This is
so because there are many more heavy degrees of freedom in the standard model. To be
precise, twenty two in the standard model vs one in the real scalar field.

In figures 11 and 12 we show the bubble Lorentz factor and the corresponding ex-
pansion speed for the standard model as a function of the top condensate in units of the
temperature. When compared with the real scalar field in figures 4 and 5, we see that
the bubbles become non-relativistic already for reasonably strong transitions for which
βmt ' 1. Given that the top Yukawa yt ' 1, this is equivalent to φ0/T ' 1. Recalling the
Shaposhnikov’s baryon washout criterion for the strength of the transition, φ0/T ≥ 1, we
infer that the bubbles at a strongly first order phase transition with the standard model
matter content are typically subsonic, which broadly speaking agrees with the results of
the more detailed microscopic analyses of Moore and Prokopec presented in refs. [7, 8].

Standard model with a singlet. There are several types of extensions of the standard
model in which the standard model is extended by a scalar field which is a singlet under the
standard model gauge group. Examples include portal models [33] (an important class of
which are conformal portal models, see e.g. refs. [34–37] and references therein) and super-
symmetric models, which include scalar singlet fields, a notable example being the NMSSM.

Quite generically both classes of models lead to strongly first order transitions. Even
though in portal extensions the transition often proceeds in two stages — the nucleation
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Figure 11. The bubble Lorentz factor γ(v) for the standard model as a function of the top mass
mt/T for ∆P = −0.01/β4 (green dashed), ∆P = −0.1/β4 (solid black) and ∆P = −0.5/β4 (solid
orange).
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Figure 12. The bubble speed v/c as a function of the top mass mt/T for the same choice of
parameters as in figure 11: ∆P = −0.01/β4 (green dashed), ∆P = −0.1/β4 (solid black) and
∆P = −0.5/β4 (solid orange).

along the scalar singlet direction is followed by a rolling along the Higgs direction [37] —
studying how the additional field content affects the transition dynamics can still be useful.
In this case, we ought to add to (5.1)–(5.4) the contribution of the singlet,15

T∆ss = Ns

[
2π2

45β4 −
2

3π2β5ms
[∂zJB(6, z)]z=βms −

ms

2π2β3 [∂zJB(4, z)]z=βms

]
, (5.6)

where ms and Ns denote the singlet mass and its number of relativistic degrees of freedom,
respectively (for example, Ns = 2 if the singlet is a complex scalar).

As a general remark, adding more massive degrees of freedom generally increases the
entropy production across the expanding bubbles, which in turn increases the force on
the bubbles, thus slowing them down. On the other hand, if the character of the phase
transition is changed — as it is for example in the aforementioned conformal models —

15If the phase transition occurs along the scalar direction and then followed by rolling in the Higgs
direction, then only the particles acquiring mass in the first stage are relevant for the pressure calculation.
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strong super-cooling can be present, resulting in a large latent heat release, which in turn
accelerates the walls. It is also worth noting that, if there is more than one scalar field
in the theory, then multistage transitions are possible, see e.g. ref. [37]. Even though the
dynamics of such multistage transitions can be analyzed with eq. (2.7), such transitions
are beyond the scope of this paper.

6 Summary and discussion

We derive a general quantum field theoretic formula (2.7) for the terminal velocity of ex-
panding bubbles of a first order phase transition. The formula has a simple physical inter-
pretation. If local thermal equilibrium is attained across the bubble interface, the friction
force acting on a bubble is proportional to the entropy increase across the bubble, with the
proportionality constant being the Lorentz factor squared, γ2−1 = v2/(1−v2). Our formula
is applicable to quantum field theories both in and out-of equilibrium and can be applied at
the one or higher-loop level. In this paper we show how to apply (2.7) at the one-loop level
in the toy model with one scalar field which exhibits spontaneous symmetry breaking (in
section 3), as well as to the standard model and its simple extensions (in section 5). Our
analysis applies to bubbles with a moderate Lorentz factor, γ . 10, and when scatterings
are efficient, such that the local thermal equilibrium approximation applies and the relevant
two-point functions are approximately thermal. A particular attention is devoted to how
to obtain gauge independent results, the details of which are given in appendix A. Our for-
mula (2.7) generalizes the previous known semi-classical formula of refs. [7, 8], and reduces
to it in the adiabatic one-loop approximation. However, our analysis reveals an important
dependence of the force on the relativistic γ factor of the wall which was not known before.

We apply our formula (2.7) to two simple cases. First we assume local thermal equilib-
rium. Our results show that the force grows as the Lorentz factor-squared, ∝ (γ2− 1), and
thus the bubbles quickly reach their terminal velocity. This allows to expect, even though
our computation formally does not apply to γ > 10, that runaway is not possible in this
scenario. The other limit that we analyzed — the ballistic approximation in which the
particles do not thermalize efficiently — displays behavior closer to the runaway scenario
featuring friction force that saturates already for moderate γ values. These two limiting
cases — the local thermal equilibrium which overestimates the force and the ballistic case
which underestimates it — can be used to estimate the true force acting on a bubble, which
needs to be between the two extrema. Moreover, the force in more realistic scenarios can
be estimated as perturbations around one of our two solutions.

While the analysis presented in this work is at places simplistic, it can capture the
leading order contribution to the bubble force in a broad range of situations. Nevertheless,
there are situations in which our analysis is not accurate enough. For example, when a
transition is not very strong, the force can be significantly altered by higher-loop effects
which can induce a moderate, or even large, departure from equilibrium, whose effects can
be transported away from the bubble interfaces. This type of corrections, as well as their
gauge dependence, should be carefully investigated and one should reassess how the analysis
presented here is affected when these effects are included. Furthermore, the latent heat
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released by the transition can induce significant effects on the plasma, which can propagate
and dissipate in the form of sound waves and turbulence, both of which can heat up and
induce a large scale motion of the plasma, thus affecting the force on the bubbles, which
should also be taken into account. These are just some of the unaccounted-for effects, which
can influence the dynamics of the transition and which are captured by our formula (2.7).
In order words, this paper provides an important step towards an accurate modeling of the
dynamics of the electroweak phase transition, which can be of paramount importance for
a quantitative understanding of the gravitational wave production and baryogenesis at the
electroweak scale.
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A The energy-momentum tensor

In this appendix we present some details of the calculations of the one-loop energy-
momentum tensor for a massive fermionic field, massless and massive gauge fields and
the Abelian Higgs model all in thermal state in Minkowski space. The real scalar field is
considered in the main text in section 3. Most of the material covered in this appendix can
be found in the literature [38–41], however not in a single source.

Dirac Fermion. The action for a Dirac fermionic field Ψ(x) that suffices for the one-loop
calculation is of the form,

S[Ψ] =
∫
dDx
√
−gLΨ , LΨ = i

2Ψ̄γµ∇µΨ− i

2Ψ̄←−∇µγ
µΨ−mΨ̄Ψ (A.1)

where Ψ̄ = Ψ†γ0, m = yφ0(x) is the field dependent mass, y is a Yukawa coupling and ∇µ
is the covariant derivative acting on a spinor field [42, 43],

∇µ = ∂µ + Γµ , Γµ = 1
8
[
γa, γb

]
eµa∇µeνb . (A.2)

Here Γµ is the spin(or) connection, eµa(x) is the tetrad field, which lifts tensors into the
tangent space. For example, gµν(x)eµa(x)eνb (x) = ηab and

√
|g| = |det[eνb]| ≡ |e|, where ηab

is the (flat) tangent space metric at a spacetime point xµ. From (A.1) one easily gets the
equation of motion for the fermionic Feynman propagator,

√
−g (iγµ∇µ −m)αγ iS

γβ(x;x′) = iδβαδ
D(x− x′) , (A.3)
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where α, β, γ are spinor indices, and

iSαβ(x;x′) = Tr
[
ρ̂inT

(
Ψ̂α(x) ˆ̄Ψβ(x′)

)]
= −Tr

[
ρ̂inT

( ˆ̄Ψβ(x′)Ψ̂α(x)
)]

(A.4)

≡ Θ(t− t′)Tr
[
ρ̂inΨ̂α(x) ˆ̄Ψβ(x′)

]
−Θ(t′ − t)Tr

[
ρ̂in

ˆ̄Ψβ(x′)Ψ̂α(x)
]
,

and ρ̂in is the fermionic density operator (in Heisenberg picture).
The Dirac matrices γµ(x) build a Clifford algebra, and obey the standard relations on

spacetime
{γµ(x), γν(x)} = −2gµν(x) , (A.5)

and on the tangent space, {
γa, γb

}
= −2ηab , (A.6)

respectively, such that γµ(x) = eµa(x)γa, where the Latin letters a, b, c denote the flat
tangent space indices. The right hand side of (A.3) follows from the canonical quantization
relation, {

Ψ̂α(t, ~x), Ψ̂†β(t, ~x ′)
}

= δαβ
δD−1(~x− ~x ′)

aD−1 , (A.7)

which follows from the form of the canonical momentum of Ψ, ΠΨ = −iaD−1Ψ∗. The
factor aD−1 in (A.7) originates from specifying to a homogeneous cosmological spacetime,
in which the metric is diagonal with

√
−g = aD and 1/a comes from the tetrad eµb = a−1δµb

that projects γµ(x) onto the tangent space according to, γµ = eµaγ
a.

The stress-energy tensor is obtained by varying the action in eq. (A.1) with respect to
the tetrad field according to TΨ

µν = −|e|−1ea(µ
δS

δe
ν)
a

and its expectation value reads,

〈T̂Ψ
µν(x)〉 =

〈
T

[
ˆ̄Ψ(x)

(
− i

2γ(µ∂ν) + i

2
←−
∂ (µγν)

)
Ψ̂(x)

]〉
+ 1

2gµν
〈
T
[
L̂Ψ(x)

]〉
, (A.8)

which is covariantly conserved, ∂µ〈T̂Ψ
µν〉 = 0.16 We wish to calculate (A.8) at the one-loop

order, which corresponds to the Feynman diagram in figure 13, where the solid oriented
line is the free thermal fermionic propagator and the cross indicates the fermionic energy-
momentum insertion, which is obtained by varying (A.8) with respect to Ψ(y) and Ψ̄(y′).

In adiabatic regime (see section 2), when the effects of the expansion can be neglected,
and by making use of (iγµ∂µ−m)(iγν∂ν +m) = (∂2−m2)1, where ∂2 = ηµν∂µ∂ν , ∂µ∂ν =
∂ν∂µ, and 1 is the unity matrix in the spinor space, one finds that the free thermal fermionic
propagator (A.4) can be expressed in terms of a ‘scalar’ propagator i∆F (x;x′),

iSαβ(x;x′) = (iγν∂ν +m)αβi∆F (x;x′) , (A.9)

where

i∆F (x;x′) = mD−2

(2π)D/2
KD−2

2

(
m
√

∆x2
)

(m
√

∆x2)
D−2

2
−
∫

dD−1p

(2π)D−1
ei~p·(~x−~x′)

Ep

cos[Ep(t− t′)]
eβEp + 1

, (A.10)

16For simplicity we assume that the background spacetime is expanding adiabatically slowly, such that
time derivatives of the scale factor a can be neglected. Then the way the expansion enters the problem is
through temperature’s dependence on the scale factor, whose precise form can be obtained from conservation
of the entropy density s, (d/dt)s ≈ 0. If no large amounts of entropy are created by interactions, the
temperature scales approximately inversely with the scale factor, i.e. T ∝ 1/a.
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Figure 13. The Feynman diagram corresponding to the one-loop stress-energy tensor for fermions.
The cross indicates the fermionic stress-energy tensor insertion defined by (A.8).

with Ep =
√
p2 +m2. The principal difference between i∆F (x;x′) and the scalar prop-

agator i∆(x;x′) in (3.9) is in the thermal part, where the Bose-Einsten distribution
function, nBE = 1/(eβEp − 1) in eq. (3.9) is replaced by the Fermi-Dirac distribution,
nFD = 1/(eβEp + 1) in (A.10) and an overall minus sign in the fermionic thermal part
(which can be traced back to the anticommuting nature of the fermionic fields). This
affects, for example, the coincident fermionic propagator through,

i∆F (x;x) =
mD−2Γ

(
1− D

2
)

(4π)D/2
+ 1

2π2β3m
[∂zJF (4, z)]z=βm , (A.11)

where we introduced a fermionic thermal integral,

JF (n, z) ≡
∫ ∞

0
dxxn−2 ln

(
1 + e−

√
x2+z2

)
, (A.12)

and we should keep in mind that ∂zJF (n, z) < 0. Notice that we evaluated the thermal
contribution to the coincident fermionic propagator (A.11) in D = 4. The result (A.11) is
to be compared with (3.12) and (3.11), where the difference is in the form of the fermionic
integral (A.12), but also in the sign of the coincident thermal propagator in (A.11). This
sign difference can be traced back to the fact that the fermionic propagator is formally a
one-loop quantity, and each fermionic loop contributes with a minus sign when compared
with a bosonic loop.

We have now all the elements needed to evaluate the one-loop energy-momentum
tensor (A.8). For that we firstly need the contribution of the mass term,

〈T [Ψ̄(x)Ψ(x)]〉 =
(
−
mD−1Γ

(
1− D

2
)

(4π)D/2
− 1

2π2β3 [∂zJF (4, z)]z=βm

)
Tr[1] , (A.13)

where Tr[1] = 2D/2 is the number of fermionic degrees of freedom in D spacetime dimen-
sions, which reduces to four in D = 4 (two chiralities and two helicities). Next,〈

T

[
ˆ̄Ψ(x)

(
− i

2γ(µ∂ν)
)
Ψ̂(x)

]〉
= − i2γ

αβ
(µ ∂

x
ν)

〈
T ∗
[ ˆ̄Ψβ(x′)Ψ̂α(x)

]〉
x′→x

, (A.14)

where, as before when we considered the real scalar field in section 3, the T ∗ product
indicates that the derivative ∂xν commutes with the time ordering operator T ∗. With
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eq. (A.9) in mind, it is clear that only the term containing two γµ’s contributes. By recalling
that, Tr

[
iγ(µ∂

x
ν)iγ

ρ∂xρ

]
= δρ(µ∂

x
ν)∂

x
ρTr [1] = ∂xµ∂

x
νTr [1], we can rewrite eq. (A.14) as,〈

T

[
ˆ̄Ψ(x)

(
− i

2γ(µ∂ν)
)
Ψ̂(x)

]〉
= 1

2
[
∂xµ∂

x
ν i∆F (x;x′)

]
x′→x

Tr[1]

= −1
2
[
∂x
′
µ ∂

x
ν i∆F (x;x′)

]
x′→x

Tr[1] , (A.15)

where the last equality follows from the symmetry of the propagator under the exchange,
x↔ x′. Analogous considerations show that the second term in (A.8) contributes equally,
such that we have〈

T

[
ˆ̄Ψ(x)

(
− i

2γ(µ∂ν) + i

2
←−
∂ (µγν)

)
Ψ̂(x)

]〉
= −

[
∂′(µ∂ν)i∆F (x;x′)

]
x′→x

Tr[1], (A.16)

where Tr[1] = 2D/2. When eqs. (A.16) and (A.13) are compared with the analogous
results for the real scalar field of section 3, we see that — up to the factor Tr[1] = 2D/2

which counts the number of degrees of freedom of a Dirac fermion — the fermionic one
loop energy-momentum tensor can be obtained from the real scalar one by replacing
i∆(x;x′) by i∆F (x;x′). This then immediately implies that, the expectation value of the
Lagrangian vanishes, i.e. 〈T [L̂Ψ]〉 = 0 and that (cf. eqs. (3.16) and (3.21))

〈T̂Ψ
µν(x)〉 = −2D/2

[
∂′(µ∂ν)i∆f (x;x′)

]
x′→x

. (A.17)

Just as in the case of the real scalar, the vacuum part of (A.17), which equals,

〈T̂Ψ
µν(x)〉vac = −ηµν

mDΓ
(
− D

2
)

2(2π)D/2
(A.18)

can be renormalized by the counterterm action (3.19). If the fermion mass m is generated
by a real scalar field condensate,

m(φ0) = yφ0 , (A.19)

where y is a Yukawa coupling and φ0 denotes a scalar condensate that may be adiabat-
ically varying in space and time, then in the minimal subtraction scheme the counterterm
coupling required to renormalize (A.18) reads (see eqs. (3.20)–(3.22)),

δλΨ = 3y4

π2
µD−4

D − 4 . (A.20)

Upon adding the counterterm contribution to the energy-momentum tensor one obtains
the sought-for renormalized one-loop energy-momentum tensor for the Dirac fermion,

〈T̂Ψ
µν〉ren = ηµν

m4

16π2

[
ln
(
m2

2πµ2

)
+ γE −

3
2

]
− 2ηµν

3π2β5m
[∂zJF (6, z)]z=βm

−δ0
µδ

0
ν

{ 8
3π2β5m

[∂zJF (6, z)]z=βm + 2m
π2β3 [∂zJF (4, z)]z=βm

}
. (A.21)

This result implies that the renormalized vacuum contribution to the energy density of a
Dirac fermion is negative and four times as large as that of a real scalar field. Its thermal
contribution harbors four fermionic degrees of freedom which obey Fermi-Dirac statistics.
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Abelian gauge field model. The action for an Abelian gauge field reads,

SEM[Aµ] =
∫
dDx
√
−gLEM , LEM = −1

4g
µρgνσFµνFρσ , (A.22)

where Fµν = ∂µAν − ∂νAµ is the field strength and Aµ is an Abelian gauge field, a prime
example of which is the photon of the quantum electrodynamics (QED). The action (A.22)
possesses an Abelian gauge symmetry, under which the field transforms as,

Aµ → Aµ + ∂µΛ(x) , (A.23)

where Λ(x) is an arbitrary function of space and time. This means that Aµ contains
redundant (unphysical) degrees of freedom which make the kinetic operator for Aµ derived
from (A.22) non-invertible. Without going into the details of the gauge fixing procedure,
this is resolved by adding a gauge fixing term to the action, which makes the kinetic operator
invertible, but does not change any physical quantity. A legitimate gauge fixing is the Fermi
gauge, which is convenient since it has one gauge parameter ξ which can be used to control
gauge dependence of the results. The corresponding gauge fixing action and Lagrangian are,

SFermi =
∫
dDx
√
−gLFermi , LFermi = − 1

2ξ (gµν∇µAν)2 . (A.24)

The canonical momentum of the theory is obtained by a variation of the total action,
Stot = SEM + SFermi with respect to ∂0Aµ(x), and in Minkowski background it reads,

Πν
A(x) = δStot

δ∂0Aν(x) = −ηµν (∂0Aµ − ∂µA0) + 1
ξ
δν0η

ρσ∂ρAσ , (A.25)

such that e.g. Π0
A = ξ−1ηρσ∂ρAσ does not vanish. Due to the added gauge fixing

term (A.24), all of the canonical momenta become dynamical, such that the canonical
commutation relation in the Fermi gauge is simple,[

Âµ(t, ~x), Π̂ν
A(t, ~x ′

]
= iδ νµ δ

D−1(~x− ~x ′) . (A.26)

The Feynman propagator equation in the Fermi gauge is therefore,(
∂2ηµν −

(
1− 1

ξ

)
∂µ∂ν

)
i [ν∆α] (x;x′) = iδµαδ

D(x− x ′) , (A.27)

where
i [ν∆α] (x;x′) =

〈
T
[
Âν(x)Âα(x ′)

]〉
. (A.28)

The solution of (A.27) can be written as,

i [ν∆α] (x;x′) =
[
ηνα − (1− ξ) ∂ν∂α

∂2

]
i∆0(x;x ′) , (A.29)

where i∆0(x;x ′) is the massless limit of the thermal scalar propagator (3.9), which equals
(see the n = 0 term of the second series in eq. (3.13)),

i∆0(x;x ′) =
Γ
(
D
2 − 1

)
4πD/2

( 1
∆x2(x;x′)

)D−2
2

(A.30)

+ 1
4π2

−P 1
−∆t2 + r2 + π

βr

e
4πr
β − 1(

e
2π(r+∆t)

β − 1
)(

e
2π(r−∆t)

β − 1
)
 , (A.31)
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where ∆t = t− t′, r = ‖~x−~x ′‖, ∆x2(x;x′) is given in eq. (3.10) and, for simplicity, we have
evaluated the thermal part (A.31) in D = 4 (because it is finite in D = 4 and therefore
does not need to be regularized). The first term in the second line (A.31) is not there to
cancel the principal part (P) of the vacuum propagator (A.30) in D = 4, but instead it is
needed to get the thermal contribution to vanish in the zero temperature limit, β →∞.

We are now ready to proceed with the calculation of the one-loop energy-momentum
tensor, which for the total photon action, consisting of eq. (A.22) plus the gauge fixing
part (A.24), reads,

〈T̂EM
µν 〉 = ηαρ

[
δ β(µδ

σ
ν) −

1
4ηµνη

βσ
] 〈
T [F̂αβF̂ρσ]

〉
− 2
ξ
ηαβ

〈
T
[
Â(µ∂ν)∂αÂβ

] 〉
(A.32)

+ 1
ξ
ηµνη

αβηρσ
〈
T
[
Âα∂β∂ρÂσ

] 〉
+ 1

2ξ ηµνη
αβηρσ

〈
T
[
(∂αÂβ)(∂ρÂσ)

] 〉
.

where we also took an expectation value of the operator-valued energy-momentum tensor.
Next, the derivatives in (A.32) can be taken out of the expectation values, provided one
replaces the T with the T ∗ time ordering, such that the energy-momentum tensor (A.32)
can be recast as,

〈T̂EM
µν (x)〉 =

[
4ηαρδ β(µδ

σ
ν) − η

αρηµνη
βσ
]
∂′ρ]∂[α

〈
T ∗
[
Âβ](x)Â[σ(x′)

] 〉
x′→x

(A.33)

+1
ξ

[
−2ηρσδ α(µδ

β
ν)∂
′
α∂
′
ρ + ηµνη

αβηρσ
(
∂′α + 1

2∂α
)
∂′ρ

] 〈
T ∗
[
Âβ(x)Âσ(x′)

] 〉
x′→x

. (A.34)

This expression can be simplified by making use of the tensor structure of the photon
propagator (A.29),

〈T̂EM
µν (x)〉 =

[
D − 3

2 ηµν∂
2 − (D − 2)∂µ∂ν

]
i∆0(x;x′)x′→x (A.35)

+
[1

2ηµν∂
2 − 2∂µ∂ν

]
i∆0(x;x′)x′→x , (A.36)

where we took account of the antisymmetry property of the derivatives, ∂′αi∆0(x;x′) =
−∂αi∆0(x;x′). The first line (A.35) originates from the gauge field action (A.33), while
the second line (A.36) comes from the gauge fixing term contribution (A.34). Notice that
both contributions in (A.35)–(A.36) do not dependent on the gauge parameter ξ, and
combine into,

〈T̂EM
µν (x)〉 =

[
D − 2

2 ηµν∂
2 −D∂µ∂ν

]
i∆0(x;x′)x′→x . (A.37)

It is now clear that in dimensional regularization the vacuum part of i∆0(x;x′)
in (A.30) does not contribute to (A.35). However, the thermal part does contribute and
the result is,

〈T̂EM
µν (x)〉 ?= 4× π2

30β4 δ
0
µδ

0
ν + 4× π2

90β4

(
ηµν + δ0

µδ
0
ν

)
, (A.38)
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where17

∂j∂ki∆0(x;x′)x′→x = − π2

90β4 δjk , ∂2
0i∆0(x;x′)x′→x = − π2

30β4

∂0∂ji∆0(x;x′)x′→x = 0 , ∂2i∆0(x;x′)x′→x = 0 . (A.39)

The result (A.38) cannot be correct, since it suggests that the photon has four degrees
of freedom, instead of two of the physical photon (the two transverse polarizations with
helicities, h = ±~). The reason is the gauge fixing term (A.24) which made all four
polarizations of the photon dynamical (cf. eq. (A.25)), thus explaining (A.38). Even
though eq. (A.38) does not depend on the gauge parameter ξ, it is not correct because we
did not take account of the contribution from the Faddeev-Popov ghosts. It is well known
that in the vacuum the contribution from ghosts in Abelian gauge theories vanishes, for
more general states such as thermal states however, ghosts do contribute and thus have
to be taken into account. To show that, consider the Fadeed-Popov ghost action and
Lagrangian associated with an Abelian gauge field,

Sghost =
∫
dDx
√
−gLghost , Lghost = −gµν(∂µc̄)(∂νc) , (A.40)

where c = c(x) is a complex Grasmannian (anticommuting) scalar field and c̄ = c∗(x).
The corresponding canonical momenta are,

Πc = −∂0c̄ and Πc̄ = ∂0c , (A.41)

(the minus in Πc = δSghost/δ∂0c comes from the anticommuting of δ/δ∂0c with c̄) which
imply the following nonvanishing canonical quantization rules,18

{
ĉ(t, ~x), Π̂c(t, ~x ′)

}
= −iδD−1(~x− ~x ′) ,

{
ˆ̄c(t, ~x), Π̂c̄(t, ~x ′)

}
= −iδD−1(~x− ~x ′) , (A.42)

from where one obtains the ghost propagator equation,

∂2i∆gh
0 (x;x′) = iδD(x− x′) , (A.43)

with

i∆gh
0 (x;x′) ≡

〈
T
[
ĉ(x)ˆ̄c(x′)

]〉
= −

〈
T
[
ˆ̄c(x′)ĉ(x)

]〉
(A.44)

= θ(t− t′)
〈
ĉ(x)ˆ̄c(x′)

〉
− θ(t′ − t)

〈
ˆ̄c(x′)ĉ(x)

〉
. (A.45)

Had we defined the ghost propagator with the ghost field ordering as indicated after
the second equality in (A.44), we would have obtained −iδD(x − x′) on the right hand
side of (A.43). Ghosts are complex, bosonic, anticommuting fields, so their propagator

17The small argument expansion of (A.31) is, i∆th
0 (x;x′) ∼ 1

12β2 − π2

180β4 (r2 + 3∆t2).
18The ghost quantization rules (A.42) accord with the fermionic one (A.7), if one recalls that ΠΨ(x) =
−iaD−1Ψ∗(x).
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equation is simply related to that of a massless scalar (A.31), i∆gh
0 (x;x′)↔ i∆0(x;x′),19

i∆gh
0 (x;x ′) =

Γ
(
D
2 − 1

)
4πD/2

( 1
∆x2(x;x′)

)D−2
2

(A.49)

+ 1
4π2

−P 1
−∆t2 + r2 + π

βr

e
4πr
β − 1(

e
2π(r+∆t)

β − 1
)(

e
2π(r−∆t)

β − 1
)
 . (A.50)

The argument presented in footnote 19 shows that, as a consequence of treating the
ghosts as Grassmannian fields in thermal equilibrium, implies that they should obey a
Fermi-Dirac statistic.

The reason why ghosts are treated as anticommuting fields is that, upon integrating
them out, one reproduces the correct Faddeev-Popov OFP(x;x′) determinant. This deter-
minant is obtained by a functional variation of the gauge fixing condition with respect to
the gauge parameter, which ensures the correct field-dependent integration measure along
gauge orbits, and which for the problem at hand reads,

OFP(x;x′) = δ

δΛ(x′)∇
µAµ(x) = �xδD(x− x′) , (A.51)

whose determinant,
det

[
OFP(x;x′)

]
= det

[
�xδ

D(x− x′)
]

(A.52)

can be represented as a path integral over the anticommuting Faddeev-Popov complex
ghost fields,

det
[
OFP(x;x′)

]
=
∫
Dc̄Dcexp

[
i

∫
dDx
√
−g
(
− gµν∂µc̄∂νc

)]
. (A.53)

On the other hand, eq. (A.52) implies,

det[OFP(x;x′)] = exp
{
i
[
− iTr ln

(
OFP(x;x′)

)]}
, (A.54)

such that its contribution to the effective action is of the form,

ΓFP = −iTr
[
ln
(
OFP(x;x′)

)]
, (A.55)

19One can consider the positive frequency thermal Wightman function for the ghost field,

i∆+
gh(x;x′) =

〈
ĉ(x)ˆ̄c(x′)

〉
= Tr

[
ρ̂thĉ(x)ˆ̄c(x′)

]
, ρ̂th = e−βĤgh

Tr
[
e−βĤgh

] , (A.46)

where ρ̂th is the thermal density matrix and Ĥgh is the ghost Hamiltonian. By taking the cyclic properly
of the trace, c(t, ~x) = e−iĤghc(0, ~x)eiĤgh and the non-commuting nature of the ghost fields, one obtains the
following Kubo-Martin-Schwinger condition for the ghost,

Tr
[
ρ̂thĉ(t, ~x)ˆ̄c(t′, ~x′)

]
= −Tr

[
ρ̂th ˆ̄c(t′ + iβ, ~x′)ĉ(t, ~x)

]
, (A.47)

from where we infer,
i∆+(t, ~x; t′, ~x′) = −i∆−(t, ~x; t′ + iβ, ~x′) , (A.48)

which reads in momentum space, i∆̃+(pα) = −e−βp
0
i∆̃−(pα). This suggests that the thermal part of the

ghost propagator should obey a Fermi-Dirac statistic.
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which equals minus twice that of a real scalar field, which contribute as, Γφ =
(i/2)Tr [ln (Oφ(x;x′))]. This observation has led to the development of the ghost field
formalism, according to which ghosts are — just like fermions — anticommuting fields,
but they obey a Bose-Einstein statistic. However, as we argue in footnote 19, that is in-
consistent with the notion that a thermal state is defined in terms of the thermal density
operator. Since ghosts fields are commonly viewed as ‘unphysical’, the field practitioners
have gotten used to this inconvenience, and declared by fiat that ghosts fields obey a Bose-
Einstein statistic.20 Our take on this is that, once degrees of freedom are added to the
Hamiltonian, they are degrees of freedom and have to be dealt with as such.

Here we take a different take on ghosts. Note that the Faddeev-Popov determinant
can be also written as,

det
[
OFP(x;x′)

]
= 1

det
[
�−1
x δD(x− x′)

]
=
∫
Dφ̄ghDφghexp

[
i

∫
dDx
√
−g
(
φ̄gh�

−1φgh
)]
, (A.56)

where φgh is now defined as a complex (commuting) scalar ghost field and φ̄gh = φ∗gh. The
price to pay is the non-local action (A.56) which governs the dynamics of the ghosts and
which, upon a partial integration, can be recast as,

Sgh =
∫
dDx
√
−gLgh, Lgh = φ̄gh

1
�
φgh = −gµν

(
∂ν
�
φ̄gh

)(
∂µ
�
φgh

)
+ bd. term. (A.57)

The principal disadvantage of this action is that it is non-local. One should not be scared by
non-local actions however, as they have successfully been dealt with in the literature on dark
energy [45–47]. One may wonder whether the nonlocality can be dealt with by introducing
auxiliary fields, χ = �−1φgh, in terms of which the ghost action can be rewritten into an
on-shell (weakly) equivalent (S′gh ≈ Sgh) form as,

S′gh =
∫
dDx
√
−g

[
−gµν∂νχ̄∂µχ+ λ̄

(
χ−�−1φgh

)
+ λ

(
χ̄−�−1φ̄gh

)]
, (A.58)

where λ = λ(x) and λ̄ = λ̄(x) are Lagrange multiplier fields. Upon solving for the constraint
fields λ and λ̄, one gets the original action. However, varying with respect to χ and χ̄ yields,

�χ+ λ = 0 , �χ̄+ λ̄ = 0 . (A.59)
20An alternative strategy was proposed by Kobes, Semenoff and Weiss in ref. [44], where the authors

posit that both the gauge and ghost sectors of gauge theories should be treated as particles in the vacuum
state, i.e. that the corresponding propagators should be constructed with boundary conditions imposed
such that they possess only the vacuum part. While this may give correct answers for thermal states, there
is no guarantee that such a prescription will work in more general non-equilibrium situations. Furthermore,
this prescription requires a separation of the gauge and ghost sectors from the ‘physical sector’, and that
separation in general requires a use of nonlocal operators, and hence it is unnecessarily complicated and
quite delicate. Moreover, since the principal goal of quantization of constrained systems is to demonstrate
that observables calculated in perturbation theory do not depend on the gauge fixing procedure or on the
choice of the gauge part of the initial state, we find the proposal of ref. [44] unsatisfactory.
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Now λ and λ̄ can be eliminated in favor of χ and χ̄, to obtain yet another on-shell equivalent
ghost action,

S′′gh =
∫
dDx
√
−g

[
gµν∂νχ̄∂µχ+ χ̄φgh + φ̄ghχ

]
, (A.60)

This action is local, and that is desirable. However the price we paid to get (A.60) is in
that χ and χ̄ are ghost scalars, i.e. they have a negative kinetic term. As long as we do not
include dynamical gravity, this need not be fatal for the theory, and we can work safely
with it.21 The action (A.60) is not problem free however. Indeed, upon varying (A.60)
with respect to χ̄, χ, φ̄gh and φgh we get,

�χ = φgh , χ = 0 , �χ̄ = φ̄gh , χ̄ = 0 . (A.61)

Obviously, these equations cannot be the correct equations for the ghost sector. The correct
equations are obtained by acting 1/� on the first and third equation in (A.61),

χ = 1
�
φgh , χ = 0 , χ̄ = 1

�
φ̄gh , χ̄ = 0 , (A.62)

which are equivalent to the equations obtained from the original action (A.56)–(A.57).
The above exercise is instructive, as it teaches us that one ought to be extra careful when
making use of the procedure which is known to be valid for constrained systems and whose
dynamics is described by local Hamiltonians.

In order to avoid such pitfalls, we shall work here with the non-local version of the
theory (A.57), which is feasible at the one-loop level and that is what we do next. Varying
the action (A.57) with respect to φ̄gh and φ̄gh gives,

1
∂2 i∆gh(x;x′) = iδD(x− x′) , (A.63)

where
i∆gh(x;x′) =

〈
T
[
φ̂gh(x) ˆ̄φgh(x′)

] 〉
(A.64)

with

T
[
φ̂gh(x) ˆ̄φgh(x′)

]
= θ(t− t′)φ̂gh(x) ˆ̄φgh(x′) + θ(t′ − t) ˆ̄φgh(x′)φ̂gh(x) , (A.65)

and for simplicity we assumed in (A.63) a Minkowski background. Eq. (A.65) implies that
the ghosts φgh and φ̄gh are bosonic fields which obey a Bose-Einstein statistic, and the
solution with thermal boundary conditions can be written as (see footnote 25 below),

i∆gh(x;x′) = ∂2iδD(x− x′) +
[
∂4i∆th

M

(
x;x′

)]
M2→0

=
[
∂4i∆M

(
x;x′

)]
M2→0

. (A.66)

where i∆th
M (x;x′) denotes the thermal part of the massive scalar propagator (3.9). In

eq. (A.66) we shifted the poles of the massless propagator, (k0)2 = ‖~k‖2 by δM2 = M2,
which regulates the would-be singular behavior of its thermal part. In what follows, it will
become clear how to use (A.66) in practical calculations.

21There are gauges in which some of the gauge field components have a ghost-like kinetic term. However,
because these belong to the gauge sector of the theory, that is considered not to be a problem.
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The next step is the one-loop energy-momentum tensor from the ghost fields, T gh
µν =

−(2/
√
−g)(δSghost/δg

µν), whose expectation value is,

〈T̂ gh
µν 〉 = −2

〈
T

[(
∂(µ
�
φ̄gh

)(
∂ν)
�
φgh

)]〉
+ gµν

〈
T

[( 1
�
φ̄gh

)
φgh

]〉
(A.67)

+ gµνg
αβ
〈
T

[(
∂α
�
φ̄gh

)(
∂β
�
φgh

)]〉
+ gµν

〈
T

[
φ̄gh

( 1
�
φgh

)]〉
,

which, upon extracting the derivatives, can be recast as,

〈T̂ gh
µν 〉 = −2

∂′(µ∂ν)

∂′2∂2

〈
T ∗
[
φ̄gh(x′)φgh(x)

]〉
x′→x

+ gµν

∂′2

〈
T ∗
[
φ̄gh(x′)φgh(x)

]〉
x′→x

(A.68)

+ gµνg
αβ ∂

′
α∂β

∂′2∂2

〈
T ∗
[
φ̄gh(x′)φgh(x)

]〉
x′→x

+ gµν
∂2

〈
T ∗
[
φ̄gh(x′)φgh(x)

]〉
x′→x

,

where we set, � → ∂2 and �′ → ∂′2. We can now use the ghost propagator (A.66) to
show that the vacuum part of the energy momentum tensor (A.67) vanishes in dimensional
regularization. The thermal part, on the other hand, gives a non-trivial contribution.
Indeed, by taking account of,

1
∂2 i∆

th
M (x;x′)x′→x = 1

∂′2
i∆th

M (x;x′)x′→x = 1
M2 i∆

th
M (x;x′)x′→x ,

one sees that only the first term in eq. (A.67) contributes (on-shell),

〈T̂ gh
µν 〉 = −2∂′(µ∂ν)i∆th

0 (x;x′)x′→x , (A.69)

which equals minus twice the contribution of a massless scalar field (cf. eqs. (A.39)
and (A.50)), resulting in,

〈T̂ gh
µν (x)〉 = −2× π2

30β4 δ
0
µδ

0
ν − 2× π2

90β4

(
ηµν + δ0

µδ
0
ν

)
. (A.70)

Upon adding this ghost contribution to (A.38) one finally obtains the gauge independent
and physically correct one-loop energy-momentum tensor for the photon in thermal equi-
librium,

〈T̂EM
µν (x)〉 = 2× π2

30β4 δ
0
µδ

0
ν + 2× π2

90β4

(
ηµν + δ0

µδ
0
ν

)
. (A.71)

The Feynman diagrams contributing to the one-loop energy-momentum tensor of a
massless gauge field (the photon) are shown in figure 14, where both the photon loop
(wiggly) and the ghost loop (dashed) are shown. From the result (A.71), one can read off
the energy density and pressure of an ideal gas of photons, ρ = π2T 4/15, P = π2T 4/45, such
that P = (1/3)ρ, which is the correct result for an ultrarelativistic plasma with two degrees
of freedom. The corresponding entropy density is, s = kB(P + ρ)/T = kB4π2T 3/45. The
important lesson to learn from this calculation is that, even though we obtained a result
in which any dependence on the gauge parameter ξ dropped out even without including
the ghosts, the result was in a subtle way incorrect, and only when we included the ghosts’
contribution we obtained the physically correct result.
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Figure 14. The one-loop Feynman diagrams contributing to the one-loop energy-momentum tensor
of a massless gauge field. The photon contribution is the diagram with wiggly lines and the ghost
diagram is dashed and oriented.

Massive gauge field. We include in this appendix a massive Proca gauge field Aµ, since
it appears in the calculation of the energy-momentum tensor of the Abelian Higgs model
and consequently of the standard model. The Proca action is given by,

SProca[Aµ] =
∫
dDx
√
−gLProca, LProca = −1

4g
µρgνσFµνFρσ −

1
2M

2gµνAµAν , (A.72)

where Fµν = ∂µAν − ∂νAµ is the field strength and M is its mass. The Proca field has
D − 1 dynamical degrees of freedom and no gauge symmetry, such that the calculation
of the energy-momentum tensor is rather simple since it is not complicated by gauge
symmetry. From (A.72) one easily obtains the equation of motion (in Minkowski space)
for the Proca field, (

(∂2 −M2)ηµν − ∂µ∂ν
)
Âν(x) = 0 . (A.73)

Upon acting ∂µ on (A.73) we see that the Lorentz condition, ηµν∂µÂν = 0 is automatically
imposed by the equation of motion, which kills one degree of freedom. Because of this, it
is natural to require that the Feynman propagator obeys the equation of motion,22

(
(∂2 −M2)ηµν − ∂µ∂ν

)
i [ν∆α] (x;x′) =

(
δµα −

∂µ∂α
∂2

)
iδD(x− x′) , (A.74)

such that the Proca propagator is transverse on both legs,

∂νxi [ν∆α] (x;x′) = 0 = ∂αx′i [ν∆α] (x;x′) . (A.75)

In the language of gauge theories this can be formally viewed as the Landau gauge of the
massive gauge field propagator of the Abelian Higgs model, whose detailed analysis can
be found below in this appendix. The transversality property (A.75) dictates the form of
the Proca propagator,

i [ν∆α] (x;x′) =
(
ηνα −

∂ν∂α
∂2

)
i∆M (x;x′) (A.76)

where i∆M (x;x′) is the real scalar propagator (3.9) whose mass is m = M .
22The precise meaning of the operator, G(x;x′) ≡ (1/∂2)δD(x− x′), is revealed upon acting with ∂2 on

both sides of the equation, which gives ∂2G(x;x′) = δD(x − x′), which means that iG(x;x′) = i∆0(x;x′)
is the massless scalar propagator, whose precise form is subject to boundary conditions. Since here we are
interested in the thermal propagator on Minkowski space, iG(x;x′) is the thermal propagator for a massless
scalar and its spacetime dependence is given in eqs. (A.49)–(A.50).
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We are now ready to calculate the energy-momentum tensor of the Proca field. Varying
the action (A.72) with respect to the inverse metric gives,〈

T̂Proca
µν

〉
= ηαρ

[
δ β(µδ

σ
ν) −

1
4ηµνη

βσ
] 〈
T [F̂αβF̂ρσ]

〉
+M2

[
δ α(µδ

β
ν) −

1
2ηµνη

αβ
] 〈
T [ÂαÂβ ]

〉
. (A.77)

Upon pulling the derivatives out of (A.77) and making use of the transverse form of the
Proca propagator (A.76) one obtains (cf. eq. (A.35)),〈

T̂Proca
µν (x)

〉
=
[
D − 3

2 ηµν∂
2 − (D − 2)∂µ∂ν

]
i∆M (x;x′)x′→x

−M2
(
D − 3

2 ηµν + ∂µ∂ν
∂2

)
i∆M (x;x′)x′→x . (A.78)

The vacuum contribution can be extracted from eq. (3.9) and the integer series of (3.13),〈
T̂Proca
µν

〉
vac

= (D − 1) MD

2(4π)D/2
Γ
(
−D2

)
ηµν

= −3× M4

32π2

[
µD−4

D − 4 + 1
2 ln

(
M2

4πµ2

)
+ γE

2 −
5
12

]
ηµν

+O(D − 4) . (A.79)

The thermal contribution is a homogeneous solution that satisfies the on-shell condition,
(∂2 −M2)i∆th

M (x;x′) = 0, such that can be evaluated〈
T̂Proca
µν (x)

〉
th

= −(D − 1)∂µ∂νi∆ th
M (x;x′)x′→x , (A.80)

where we made use of, (1/∂2)i∆ th
M (x;x′) = (1/M2)i∆ th

M (x;x′). Comparing this with (3.14)
we conclude that a massive Proca field has D − 1 degrees of freedom (three degrees in
D = 4), which is in agreement with the expectation. Namely, one out of the D degrees of
freedom of the massive vector field Aµ gets removed by the transversality condition (A.75).

The vacuum contribution (A.79) diverges and thus must be renormalized. If M is
a tree-level mass, it is easy to see that the counterterm action is that a cosmological
constant,23

SProca
ct = δ

( Λ
16πG

)∫
dDx
√
−g , (A.81)

whose energy-momentum tensor is,

(Tµν)Proca
ct = δ

( Λ
16πG

)
ηµν . (A.82)

By comparing (A.82) with (A.79) one can see that the minimal subtraction demands,

δ

( Λ
16πG

)
= 3M4

32π2
µD−4

D − 4 . (A.83)

23If M is generated by a scalar field condensate, then the correct counterterm is the scalar self-coupling
term.
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When (A.82) is added to (A.79) one obtains the renormalized vacuum contribution to
the energy-momentum tensor. Taking account of the thermal contribution as well (which
is three times that of the real scalar field given in (3.23)), one obtains the renormalized
one-loop energy-momentum tensor of a massive vector field in the thermal state,

〈
T̂Proca
µν

〉
ren

= −3M4

64π2

[
ln
(
M2

4πµ2

)
+ γE −

5
6

]
+ ηµν

2π2β5M
[∂zJB(6, z)]z=βM (A.84)

+ δ0
µδ

0
ν

{ 2
π2β5M

[∂zJB(6, z)]z=βM + 3M
2π2β3 [∂zJB(4, z)]z=βM

}
.

Abelian Higgs model. This model, also known as scalar quantum electrodynamics
(SQED), consists of one complex scalar Φ and one Abelian gauge field Aµ and its action
is given by,

SSQED[Φ, Aµ] =
∫
dDx
√
−gLSQED(Φ, Aµ) , (A.85)

LSQED = −1
4g

µρgνσFµνFρσ − gµν(DµΦ)∗(DµΦ)− µ2Φ†Φ− λΦ(Φ∗Φ)2 , (A.86)

where the gauge-covariant derivative is defined as,

DµΦ = (∂µ + igAµ) Φ , (A.87)

where g is the gauge coupling constant, µ2 is the scalar mass parameter and λΦ its quartic
self-coupling. The model possesses an Abelian gauge symmetry. This means that the
Lagrangian (A.85) is invariant under the following local field transformations,

Φ→ e−igΛ(x)Φ , Aµ → Aµ + ∂µΛ(x) . (A.88)

For example, the covariant derivative (A.87) transforms multiplicatively under (A.88),

DµΦ→ e−igΛDµΦ . (A.89)

When the mass parameter µ2 > 0 in (A.86), then µ is the tree level scalar mass. In
this symmetric phase, the model (A.85)–(A.86) contains one massive complex scalar with
mass m = µ and one massless gauge field. The corresponding contributions to the one-loop
energy-momentum tensor have already been calculated: the energy-momentum tensor of a
complex scalar field is two times that of a real scalar given in eq. (3.23) with mass m→ µ

and the energy-momentum tensor of a massless gauge field is given in eq. (A.71).
When, on the other hand, µ2 < 0, the scalar field Φ exhibits a spontaneous symmetry

breaking and acquires a condensate by the famous Brout-Englert-Higgs (BEH) mechanism.
To study the mechanism, it is convenient to decompose Φ as,

Φ = 1√
2

(ϕ1 + iϕ2 + φ0) , (A.90)

where we take the field condensate φ0 = 〈Φ̂〉 to be real (this can be always achieved by a
suitable global gauge transformation (A.88)). The gauge field Aµ is assumed not to develop
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a condensate. Then ϕ1 is the Higgs field and ϕ2 is the Goldstone boson of the symmetry
‘broken’ by the condensation.24 Upon inserting (A.90) into (A.86) we get (up to boundary
terms) for the quadratic part of the Lagrangian,

L(2) = −1
4η

µρηνσFµνFρσ −
1
2η

µν(∂µϕ1∂νϕ1 + ∂µϕ2∂νϕ2)

−1
2M

2ηµνAµAν +Mηµν∂µAνϕ2 −
1
2m

2
Hϕ

2
1 + m2

Hφ
2
0

8 (A.91)

where we have defined M2 = (gφ0)2 and m2
H = 2λφ2

0 and for simplicity calculated L(2) on
Minkowski background, on which gµν → ηµν . Note that the scalar and gauge perturbations
couple in the gauge (A.90) via the term M∂µA

µϕ2. The fields decouple in the ‘t Hooft
gauge [48],

LtHooft = − 1
2ξ (gµν∇νAµ + ξMϕ2)2 (A.92)

in which the total quadratic gauge fixed Lagrangian reads (with gµν → ηµν),

L(2)
tot = −1

4η
µρηνσFµνFρσ −

1
2η

µν(∂µϕ1∂νϕ1 + ∂µϕ2∂µϕ2)− 1
2M

2ηµνAµAµ

−1
2m

2
Hϕ

2
1 −

1
2ξM

2ϕ2
2 −

1
2ξ (∂µAµ)2 + Lghosts + m2

Hφ
2
0

8 , (A.93)

where we also included the Faddeev-Popov ghost Lagrangian, which can be obtained from
the Faddeev-Popov determinant, which is obtained by considering how the gauge fixing
condition varies with respect to infinitesimal gauge transformations, Λ(x)→ θ(x),

DFP = det
[

δ

δθ(x′)
[
�− ξMg(φ0 + ϕ1)

]
θ(x)

]
= det

[(
�−M2

c − ξgMϕ1
)
δD(x− x′)

]
, (A.94)

where M2
c = ξM2 and we made use of (A.92), δθAµ = ∂µθ and δθϕ2 = −gθ(φ0 + ϕ1).

From (A.94) it follows that the corresponding Lagrangian can be written in terms of Grass-
mannian ghost fields as,

Lghosts = −gµν(∂µc̄)(∂νc)− ξM2c̄c− ξgMc̄cϕ1 , (A.95)

such that in the ‘t Hooft gauge the ghosts and the Abelian scalar interact. The quadratic
Lagrangian (A.93) splits nicely into the contributions from different fields,

L(2)
tot = L(2)

ϕ1 + L(2)
ϕ2 + L(2)

Aµ
+ L(2)

ghosts + m2
Hφ

2
0

8 , (A.96)

where L(2)
ghosts is the quadratic part of (A.95). That means that the model consists of two

massive scalars with masses m2
1 = m2

H = 2λφ2
0 and m2

2 = ξM2 = ξ(gφ0)2, one massive
gauge field with M2 = g2φ2

0 and a massive ghost with M2
c = ξM2, where we assume ξ ≥ 0

for stability. All of these particles contribute to the energy-momentum tensor, and the
corresponding Feynman diagrams are shown in figure 15.

24In fact, since the Ward identities generated by the symmetry transformation (A.88) are respected both
in the symmetric and in the condensate phase, the gauge symmetry is never really broken. Nevertheless, be-
cause the scalar condensate generates a mass for the gauge field, and a massive Proca theory does not possess
a gauge symmetry, the condensate phase is often — but not correctly — referred to as the broken phase.

– 40 –



J
H
E
P
0
1
(
2
0
2
1
)
0
7
0

Figure 15. The Feynman diagrams contributing to the one-loop energy-momentum tensor for the
Abelian Higgs model. There are four separate contributions. The Higgs field and the Goldstone
boson diagrams are denoted by long dashed lines, the massive gauge boson is the wiggly diagram
and the ghost contribution is the short-dashed diagram.

In section 3 we analyzed a massive scalar field, and in this appendix a massless gauge
field, a massless ghost and a massive gauge field, but the massive gauge field was a Proca
field which does not possess any gauge symmetry.

This means that we still ought to analyze the massive gauge field and the massive ghost.
Let us start with the massive gauge field. From (A.93) we can read off the propagator
equation of motion,(

(∂2 −M2)ηµν −
(

1− 1
ξ

)
∂µ∂ν

)
i [ν∆α] (x;x′) = iδµαδ

D(x− x ′) , (A.97)

which, in the massless limit M → 0, reduces to that of a massless gauge field in Fermi
gauge (A.27). A formal solution of (A.97) can be written as (cf. eq. (A.29)),

i [ν∆α] (x;x′) =
[
ηνα − (1− ξ) ∂ν∂α

∂2 − ξM2

]
i∆M (x;x ′) , (A.98)

where i∆M (x;x ′) is the massive scalar propagator (3.9) of mass M . The solution (A.29)
can be recast in a more convenient form (for ξ 6= 1 and ξ ≥ 0) as,25

i [ν∆α] (x;x′) =
(
ηνα −

∂ν∂α
M2

)
i∆M (x;x ′) + ∂ν∂α

M2 i∆√ξM (x;x ′) . (A.102)

This form of the solution is convenient since the propagator (A.102) splits naturally into a
gauge independent transverse part and a gauge dependent longitudinal part.

25When writing the solution (A.102) we made use of the fact that the particular solution of a sourced
differential equation of the form,

(∂2 − ξM2)G(x;x′) = i∆M (x;x′) , (A.99)

can be written as,

G(x;x′) = 1
(1− ξ)M2

[
i∆M (x;x′)− i∆√

ξM
(x;x′)

]
, (ξ 6= 1) . (A.100)

In the singular (Feynman) gauge when ξ = 1 the solution of (A.99) is a parametric derivative,

G(x;x′) = ∂

∂M2 i∆M (x;x′) , (ξ = 1) . (A.101)

We leave the analysis of this case as an exercise to the reader.
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We are now ready to calculate the corresponding energy-momentum tensor. By varying
eq. (A.93) with respect to gµν one gets (cf. eqs. (A.33)–(A.34) and (A.77)),

〈T̂ gauge
µν 〉 =

[
4ηαρδ β(µδ

σ
ν) − η

αρηµνη
βσ
]
∂′ρ]∂[α

〈
T ∗
[
Âβ](x)Â[σ(x′)

] 〉
x′→x

(A.103)

+ 1
ξ

[
−2ηρσδ α(µδ

β
ν)∂
′
α∂
′
ρ + ηµνη

αβηρσ
(
∂′α + 1

2∂α
)
∂′ρ

] 〈
T ∗
[
Âβ(x)Âσ(x′)

] 〉
x′→x

(A.104)

+M2
[
δ α(µδ

β
ν) −

1
2ηµνη

αβ
] 〈
T [ÂαÂβ ]

〉
. (A.105)

Acting on the transverse and longitudinal tensor structures of the propagator (A.102)
yields,

〈T̂ gauge
µν 〉 =

[
D − 3

2 ηµν(∂2 −M2)− (D − 1)∂µ∂ν
]
i∆M (x;x′)x′→x (A.106)

−∂µ∂νi∆√ξM (x;x′)x′→x . (A.107)

By making use of (3.9) and (3.13) we can evaluate the vacuum part of (A.106)–(A.107),

〈T̂ gauge
µν 〉vac = (D − 1) MD

2(4π)D/2
Γ
(
−D2

)
ηµν + (

√
ξM)D

2(4π)D/2
Γ
(
−D2

)
ηµν , (A.108)

which corresponds to (D − 1) massive scalar degrees of freedom with mass M and one
massive gauge degree of freedom with mass

√
ξM . Since the thermal contribution is on-

shell, we see that when (∂2 −M2) acts in (A.106) it yields zero and we have,

〈T̂ gauge
µν 〉th = 3∂′(µ∂ν)i∆ th

M (x;x′)x′→x + ∂′(µ∂ν)i∆th√
ξM

(x;x′)x′→x . (A.109)

This can be evaluated by taking account of the thermal contributions of a real scalar field
in eqs. (3.12) and (3.23),

〈T̂ gauge
µν 〉th = ηµν

1
2π2β5M

[∂zJB(6, z)]z=βM (A.110)

+ δ0
µδ

0
ν

{ 2
π2β5M

[∂zJB(6, z)]z=βM + 3M
2π2β3 [∂zJB(4, z)]z=βM

}
+ ηµν

1
6π2β5√ξM

[∂zJB(6, z)]
z=β
√
ξM

(A.111)

+ δ0
µδ

0
ν

{
2

3π2β5√ξM
[∂zJB(6, z)]

z=β
√
ξM

+
√
ξM

2π2β3 [∂zJB(4, z)]
z=β
√
ξM

}
.

The first two lines (A.110) are generated by the transverse part of the massive vector
while the latter two (A.111) originate from the longitudinal (gauge dependent) part. In
conclusion, we have found out that the massive gauge field in covariant ‘t Hooft gauge
contributes as (D − 1) massive degrees of freedom with mass M and one gauge degree of
freedom with mass

√
ξM .
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Next we analyze the massive ghost field. One way to proceed is to use the Grassman-
nian ghost fields whose the Lagrangian is eq. (A.95).26 Here we use a nonlocal prescription,
already discussed in some detail above, cf. eqs. (A.56) and (A.57) .

From the inverse of the Faddeev-Popov determinant (A.94) (see eq. (A.56)), we can
infer the quadratic part of the non-local ghost action,

Sgh =
∫
dD
√
−gLgh , Lgh = φ̄gh

1
�−M2

c

φgh . (A.114)

where φgh and φ̄gh are scalar ghost fields. Eq. (A.114) implies the following equation of
motion for the massive scalar ghost propagator,

1
∂2 −M2

c

i∆gh
Mc

(x;x′) = iδD(x− x′) (A.115)

and its solution can be written formally as (cf. eq. (A.66)),

i∆gh
Mc

(x;x′) = (∂2 −M2
c )iδD(x− x′) +

[
(∂2 −M2

c )2i∆th
M

(
x;x′

)]
M2→M2

c

=
[
(∂2 −M2

c )(∂′2 −M2
c )i∆M

(
x;x′

)]
M2→M2

c

, (A.116)

where i∆M denotes the massive scalar propagator (3.9). Just as in the massless ghost
case discussed above (see eqs. (A.63)–(A.70)), in order to regulate the would-be singular
behavior of the solution (A.116) we shifted the poles by δM2 = M2 − M2

c in (A.116).
That is enough to regulate the one-loop the energy-momentum tensor of the massive scalar
ghosts, and that is what we do in what follows.

The corresponding one-loop energy-momentum tensor is then (cf. eq. (A.68)),

〈T̂ gh
µν 〉 = −2

∂′(µ∂ν)

(∂′2 −M2
c )(∂2 −M2

c )

〈
T ∗
[
φ̄gh(x′)φgh(x)

]〉
x′→x

+ gµν

∂′2 −M2
c

〈
T ∗
[
φ̄gh(x′)φgh(x)

]〉
x′→x

+gµν
gαβ∂′α∂β +M2

c

(∂′2 −M2
c )(∂2 −M2

c )

〈
T ∗
[
φ̄gh(x′)φgh(x)

]〉
x′→x

+ gµν
∂2 −M2

c

〈
T ∗
[
φ̄gh(x′)φgh(x)

]〉
x′→x

. (A.117)

26In the analysis of the massless Abelian gauge field above, we observed that, if one treats massless ghosts
as Grasmannian fields and define their thermal state in a standard way by means of the thermal density
operator, one finds that ghosts obey the Fermi-Dirac statistic, which leads to invalid results. In order to
arrive at the correct result one ought to postulate that the ghosts obey a Bose-Einstein statistic, such that
the ghost propagator is that of a massive scalar field (3.9),

i∆gh
Mc

(x;x′) =
〈
T
[ˆ̄c(x′)ĉ(x)

]〉
= i∆Mc (x;x′) . (A.112)

The corresponding energy-momentum tensor is then,

〈T̂ gh
µν (x)〉 = 2

〈
T
[
∂(µ ˆ̄c(x)∂ν)ĉ(x)

]〉
= −2∂(µ∂

′
ν)i∆gh

Mc
(x;x′)x′→x , (A.113)

implying that the ghost energy-momentum tensor is minus twice that of a massive scalar field, whose
vacuum and thermal contributions can be written as (A.120) and (A.121), respectively.
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Now, by making use of (A.116) and of,

1
(∂′2 −M2

c )(∂2 −M2
c )
i∆gh

Mc
(x;x′) = i∆Mc(x;x′) , (A.118)

where i∆Mc(x;x′) is the massive scalar propagator (A.117), one sees that — just as in the
massless ghost case (A.69) — only the first term in (A.117) contributes, and which can be
simplified as,

〈T̂ gh
µν 〉 = −2∂′(µ∂ν)i∆Mc(x;x′) . (A.119)

When this is evaluated one obtains minus twice the contribution of the real massive scalar
field (3.23) with m2 = M2

c . Therefore, we have for the vacuum ghost contribution,

〈T̂ gh
µν 〉vac = −ηµν

(
√
ξM)D

(4π)D/2
Γ
(
− D

2
)
, (A.120)

and the thermal contribution of the massive scalar ghost reads (cf. eq. (3.23)),

〈T̂ gh
µν 〉th = − ηµν

3π2β5√ξM
[∂zJB(6, z)]

z=β
√
ξM

(A.121)

− δ0
µδ

0
ν

{
4

3π2β5√ξM
[∂zJB(6, z)]

z=β
√
ξM

+
√
ξM

π2β3 [∂zJB(4, z)]
z=β
√
ξM

}
.

This concludes our analysis of the massive ghost.
We now have all the pieces we need to calculate the one-loop energy-momentum ten-

sor of the Abelian Higgs model in its Higgs phase. Let us first consider the vacuum
part. Adding the vacuum contribution of the two massive scalars, one with mass mH and
the other with mass

√
ξM to that of the massive gauge field (A.108) and the massive

ghost (A.120) results in,

〈T̂AH
µν 〉vac = mD

H

2(4π)D/2
Γ
(
−D2

)
ηµν + (D − 1) MD

2(4π)D/2
Γ
(
−D2

)
ηµν . (A.122)

The gauge dependent contributions from the second scalar and the massive vector are
canceled by the ghost contribution. As expected, the energy momentum tensor (A.122)
diverges in D = 4 and it ought to be renormalized. The counterterm action is clearly (cf.
eqs. (A.86)),

SAH
ct =

∫
dDx
√
−g

(
−δλΦ(Φ∗Φ)2

)
→
∫
dDx
√
−g

(
−1

4δλΦφ
4
0

)
. (A.123)

The corresponding energy-momentum tensor is T ct,AH
µν = −1

4δλΦφ
4
0ηµν , such that the fol-

lowing minimal subtraction choice,

δλΦ = −4λ2
Φ + 3g4

8π2
µD−4

D − 4 , (A.124)

removes the divergent part of (A.120) (cf. eq. (3.21)). Therefore, the sought-for renor-
malized one-loop thermal energy-momentum tensor of the Abelian Higgs model in the
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condensate phase is,

〈T̂AH
µν 〉ren = − m4

H

64π2

[
ln
(
m2
H

4πµ2

)
+ γE −

3
2 −

4π2

λΦ

]
ηµν (A.125)

−3M4

64π2

[
ln
(
M2

4πµ2

)
+ γE −

5
6

]
ηµν

+ηµν
1

6π2β5mH
[∂zJB(6, z)]z=βmH

+δ0
µδ

0
ν

{ 2
3π2β5mH

[∂zJB(6, z)]z=βmH + mH

2π2β3 [∂zJB(4, z)]z=βmH

}
+ηµν

1
2π2β5M

[∂zJB(6, z)]z=βM

+δ0
µδ

0
ν

{ 2
π2β5M

[∂zJB(6, z)]z=βM + 3M
2π2β3 [∂zJB(4, z)]z=βM

}
,

where we also included the relevant thermal contributions (3.23) (with m → mH) as well
as eq. (A.110). The results of this appendix are used in the main part of the paper, in
particular in section 5.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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