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Abstract
Aggression after military deployment is a common occurrence in veterans. Neurobiological research has shown that aggres-
sion is associated with a dysfunction in a network connecting brain regions implicated in threat processing and emotion 
regulation. However, aggression may also be related to deficits in networks underlying communication and social cognition. 
The uncinate and arcuate fasciculi are integral to these networks, thus studying potential abnormalities in these white matter 
connections can further our understanding of anger and aggression problems in military veterans. Here, we use diffusion 
tensor imaging tractography to investigate white matter microstructural properties of the uncinate fasciculus and the arcu-
ate fasciculus in veterans with and without anger and aggression problems. A control tract, the parahippocampal cingulum 
was also included in the analyses. More specifically, fractional anisotropy (FA) estimates are derived along the trajectory 
from all fiber pathways and compared between both groups. No between-group FA differences are observed for the uncinate 
fasciculus and the cingulum, however parts of the arcuate fasciculus show a significantly lower FA in the group of veterans 
with aggression and anger problems. Our data suggest that abnormalities in arcuate fasciculus white matter connectivity 
that are related to self-regulation may play an important role in the etiology of anger and aggression in military veterans.
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Introduction

Anger and aggression problems are frequently reported in 
veterans after military deployment (Elbogen et al. 2013; Rei-
jnen et al. 2015; Shea et al. 2018). In a sample of 1090 USA 
military veterans, 9% endorsed engaging in severe violence 
and 26% in other physical aggression in the previous year 
of the study (Elbogen et al. 2014). A meta-analysis of 17 
studies on the prevalence of aggressive and violent behavior 
among the military, aggressive behavior was present with 
estimates of 10% for physical assault and 29% for all types of 
physical aggression in the last month. Rates were increased 
among combat-exposed personnel (MacManus et al. 2015) 
from the United States and the United Kingdom following 
deployment to Iraq and/or Afghanistan. In the National Viet-
nam Veterans Readjustment Study (NVVRS), 33% of male 
USA veterans with current post-traumatic stress disorder 
(PTSD) reported intimate partner aggression in the previous 
year (Jordan et al. 1992). These problems hardly diminished 
over time (Heesink et al. 2015) and often remained even 
after treatment (Shin et al. 2012). The findings underline 
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the importance of research into the etiology of anger and 
aggression to improve treatment strategies.

Anger and aggressive behavior are related to a network 
of emotion processing brain regions, the amygdala, anterior 
cingulate, hypothalamus, and brain stem; as well as inhibi-
tory and value processing prefrontal regions, the ventrome-
dial, and orbitofrontal prefrontal cortex (Blair 2016; Waller 
et al. 2017). Functional connectivity studies in populations 
with clear indications of anger and aggression have found 
evidence of reduced inhibitory interactions between fron-
tal areas and the amygdala (Best et al. 2002; Coccaro et al. 
2007; Varkevisser et al. 2017). These functional differences 
involving emotional processing, cognitive control, and atten-
tion might involve structural abnormalities in white mat-
ter connectivity. Diffusion tensor imaging (DTI) studies in 
impulsive aggression are scarce, but a tract that may be of 
interest given previous work is the uncinate fasciculus (UF) 
(Dailey et al. 2018). The UF connects the frontal lobe and 
temporal pole structures including the amygdala (Catani 
et al. 2002; Schmahmann et al. 2007) and is related to the 
use of social–emotional information in decision-making 
(Von Der Heide et al. 2013). A recently published system-
atic review showed that in adults with antisocial disorder, 
the diffusion characteristics of the UF are altered (Waller 
et al. 2017). Furthermore, white matter abnormalities in the 
UF have been linked to aggressive behavior in non-clinical 
populations of adults (Peper et al. 2015).

The arcuate fasciculus (AF) is also of interest to the cur-
rent work. The AF connects frontal, temporal, and parietal 
regions related to social cognition (Bernhardt et al. 2014). 
To the best of our knowledge, this tract has not yet been 
investigated in an aggression focused DTI study, but known 
associations between the AF and various psychological pro-
cesses suggest that it could be relevant to aggression as well. 
The AF is related to emotion regulation (Sun et al. 2017), 
mentalizing (Nakajima et al. 2018), language (Kamali et al. 
2014; Schomers et al. 2017), and, of particular interest, the 
social use of language (Catani and Dawson 2016). Deficits in 
language are known to be a risk factor in anger and aggres-
sion (Miller et al. 2008; Teten et al. 2010). Lower FA values 
in the AF have also previously been linked to mood disor-
ders (Spitz et al. 2017).

To conceptually verify our results, we included analy-
ses of a subdivision of the cingulum as a control tract 
in which differences between healthy and pathological 
aggression populations are not expected. The cingulum 
is a multi-component, complex fiber system, which can 
be divided into distinct subdivisions (Jones et al. 2013; 
Heilbronner and Haber 2014). The current status of the 
subdivisions differentiates the following parts going from 
the most frontal toward dorsal and temporal components: 
subgenual, anterior cingulate, midcingulate, retrosplenial, 
and parahippocampal portions. The subdivisions are based 

on studies investigating quantitative measures, for example 
DTI metrics, of the tract parts (Concha et al. 2005; Jones 
et al. 2013; Lin et al. 2014; Metzler-Baddeley et al. 2017). 
Among the subdivisions, the parahippocampal cingulum 
was selected, which is running within the parahippocam-
pal gyrus or Broca Area (BA) 34 and 28, retrosplenial 
cingulate gyrus (BA 26, 19, and 30) (Thiebaut de Schot-
ten et al. 2012; Mandonnet et al. 2018), connecting the 
posterior cingulate cortex and medial temporal lobe. The 
parahippocampal cingulum has been linked to memory and 
visuospatial working memory in the general population 
(Zahr et al. 2009; Bubb et al. 2018) and in patient groups 
with temporal lobe epilepsy (TLE) (Winston et al. 2013), 
velocardiofacial syndrome (VCFS), also called 22q11.2 
deletion syndrome (Kates et al. 2007) and autism spectrum 
disorder (ASD) (Chien et al. 2016).

The aim of the current study is to determine whether 
tissue microstructure of the AF or the UF as assessed with 
the FA is related to anger and aggression. Tract pathways 
were reconstructed using fiber tractography, and compari-
sons of the FA of whole tracts and segments of tracts were 
compared between veterans with anger and aggression and 
a control group of veterans who had also been in combat, 
but did not suffer from anger and aggression problems.

Methods

Participants

This study included 29 male veterans with anger and 
aggression (Aggression group) and 30 control veterans 
(Control group). Participants in the Aggression group 
were recruited via their psychologists/psychiatrists at one 
of the outpatient clinics of the Military Mental Health 
Care Institute or via advertisements in the waiting room 
and newsletters for veterans. Control participants were 
recruited by advertisements or had participated in previ-
ous studies. The two groups were matched for number of 
deployments, education, and age. Inclusion criteria for the 
Aggression group were based on the four research criteria 
for impulsive aggression described by Coccaro (2012): (1) 
verbal or physical aggression towards other people occur-
ring at least twice weekly on average for 1 month; or three 
episodes of physical assault over a 1 year period; (2) the 
degree of aggressiveness is grossly out of proportion; (3) 
the aggressive behavior is impulsive (not premeditated); 
(4) the aggressive behavior causes either distress in the 
individual or impairment in occupational or interpersonal 
functioning (Coccaro, 2012). Inclusion criteria for the 
Control group were (1) no current DSM-IV diagnosis; (2) 
no history of pathologic aggressive behavior.
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Interview and questionnaires

The Dutch version of the International Neuropsychiatric 
Interview (MINI) was used to screen for the presence of 
comorbid psychiatric disorders (Overbeek et al. 1999). The 
complete MINI was administered. In this interview, the fol-
lowing current or life-time disorders were screened: depres-
sive disorder, dysthymia, suicidal risk, (hypo)manic disor-
der, panic disorder, anxiety disorder, agoraphobia, social 
phobia, obsessive compulsive disorder, PTSD, alcohol or 
drug dependence and/or abuse, psychotic disorders, ano-
rexia nervosa, bulimia nervosa, generalized anxiety disorder, 
antisocial personality disorder, somatization disorder, hypo-
chondria, body dysmorphic disorder, pain disorder, atten-
tion deficit hyperactivity disorder (ADHD), and adjustment 
disorder.

To measure anger and aggression, two questionnaires 
were administered. First, the Dutch version of the State-
Trait Anger Expression Inventory-revised (STAXI-2; Hov-
ens et al. 2015, Spielberger 1999) was used. The STAXI-2 
consists of 57 items on a 4-point Likert scale and is divided 
into two subscales: State Anger and Trait Anger. Further-
more, the Dutch translation of the Buss-Perry Aggression 
Questionnaire (AQ) (Buss and Perry 1992; Meesters et al. 
1996) was administered. The AQ consists of 29 items on a 
5-point Likert scale and is divided into four subscales: Phys-
ical Aggression, Verbal Aggression, Anger, and Hostility.

Data acquisition

All data sets were acquired using a 3 T MRI scanner (Philips 
Medical System, Best, The Netherlands). Two diffusion MRI 
scans were collected; one with posterior–anterior (PA) and 
one with anterior–posterior (AP) phase-encoding direc-
tions, each with one non-diffusion-weighted image (b = 0 s/
mm2) and 30 diffusion-weighted images (b = 1000 s/mm2), 
where the distribution of the diffusion-weighted gradients 
was based on work by Jones et al. (Jones et al. 1999). The 
acquisition settings were: TR = 7057 ms, TE = 68 ms, voxel 
size = 1.875 × 1.875 × 2  mm3, 75 slices, and slice thick-
ness = 2 mm without gap, FOV = 240 × 240  mm2, matrix 
size = 128 × 128. Details of the T1 weighted anatomi-
cal scan: TR = 10 ms, TE = 4.6 ms, flip angle = 8°, voxel 
size = 0.8 × 0.8 × 0.8  mm3, FOV = 240 × 240  mm2, matrix 
size = 304 × 299.

Data processing

The diffusion MRI data sets were processed using FSL 
(v5.0.9) (Jenkinson et al. 2012) and ExploreDTI (v4.8.6) 
(Leemans et al. 2009). First, susceptibility distortions were 
estimated with topup (Andersson et al. 2003) which were an 
input for eddy (Andersson and Sotiropoulos 2016) to correct 

for motion, geometrical distortions, and rotation of the diffu-
sion gradient orientations (Leemans and Jones 2009). Other 
settings of eddy were left at default values. Robust extrac-
tion of brain tissue was executed with BET (Smith 2002). 
DTI estimation was performed using REKINDLE (Tax et al. 
2015). Whole brain tractography was performed with the 
following parameter settings: seed FA threshold = 0.2; angle 
threshold = 30° (Basser et al. 2000).

Reconstruction of both AFs (left and right; we did not 
have any priori hypotheses concerning laterality) were per-
formed by placing two Boolean “AND” regions of interest 
(ROIs) (Conturo et al. 1999; Catani et al. 2002; Wakana 
et al. 2007). The first ROI was placed on the most posterior 
coronal slice showing the fornix on the midline to include 
the pathways laterally to the corona radiata trajectories run-
ning towards the frontal lobe. The second ROI was placed 
on a sagittal slice to include the pathways going towards the 
temporal lobe. Figure 1a, b shows the positions of the ROIs 
for the reconstruction of the AF.

Reconstruction of the UF (left and right) was performed 
by placing two Boolean “AND” ROIs on the most posterior 
coronal slice, where the temporal and frontal lobes were 
separated (Conturo et al. 1999; Catani et al. 2002; Wakana 
et al. 2007). The first ROI included the entire temporal lobe, 
and the second ROI included all pathways running towards 
the frontal lobe. Obvious artifacts (lines running towards the 
occipital lobe or lines over the midline) were removed by 
“NOT” ROIs. Figure 1c, d shows the positions of the ROIs 
for the reconstruction of the UF.

Reconstruction of the cingulum (left and right) was per-
formed by placing two Boolean “AND” ROIs in the coronal 
plane. The first is at the middle of the splenium of the cor-
pus callosum (CC), while the second is middle of genu of 
CC (Conturo et al. 1999; Catani et al. 2002; Wakana et al. 
2007). An additional “NOT” ROI was placed in the mid-
sagittal plane to exclude interhemispheric fibers, which are 
non-plausible for the cingulum. Supplementary Fig. 1 shows 
the position of the “AND” ROIs for the parahippocampal 
cingulum.

Statistical analyses

The mean FA values over the whole tracts were computed 
and compared between groups. Furthermore, a segment-wise 
analysis was performed to investigate the properties of the tract 
pathways along the trajectory as described previously (Colby 
et al. 2012; Szczepankiewicz et al. 2013; Reijmer et al. 2013; 
O’Hanlon et al. 2015). For all the three bundles, three positions 
at the ends of the pathways were excluded from the analyses to 
minimize partial volume effects (Vos et al. 2011). FA values 
over the length of the left and right UF, AF, and cingulum 
were compared between groups using the following two-step 
approach. First, between-group t tests were performed for each 
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2 mm segment along the tract separately. Second, permutation 
tests were performed to test whether the length of sequences of 
consecutive nominally significant segments was above chance 
level. The null-hypothesis distribution of this nominally signif-
icant sequence length was determined using permutation tests 
as used in the previous studies (Gladwin et al. 2016). Permuta-
tion tests allow a simple and valid approach to estimate distri-
butions involving non-independent tests (Nichols and Holmes 
2002; Eklund et al. 2016), such as those for different positions 
in the current analyses. The permutation procedure consisted 
of randomizing group assignment and was done for 10,000 
permutations. From these permutations, a null-hypothesis 
distribution of the longest sequence of consecutive nominally 
significant segments over the whole tract was computed and 
used to test observed sequence lengths. Using this approach, 
false-positive rate is controlled for over the whole fiber trajec-
tory. This approach may be more sensitive to localized abnor-
malities than using the mean FA over the whole tract.

Results

Demographics

The groups did not differ on age, education, number 
of deployments, and time since last deployment (all 
p’s > 0.10). As expected, the Aggression group showed 
significantly higher scores on all anger and aggression 
measures compared to the Control group. Table 1 shows 
statistics of the demographic data and questionnaire data.

Mean FA values per tract

Reconstruction of the left and right UF was possible in 
all participants; it failed for the left AF in six participants 
and for the right AF in one participant; and reconstruction 

Fig. 1  Configurations of regions 
of interest (ROIs) that are used 
for tractography to segment the 
right arcuate (sagittal: A and 
coronal: B) and the right unci-
nate (sagittal: C and coronal: 
D) fasciculi in a representative 
subject. The ROIs are shown in 
red and the tracts in green with 
the fractional anisotropy as the 
background map
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of the left and right cingulum was possible in all partici-
pants. Supplementary Fig. 2 shows the tracking results of 
ten representative subjects for the UF and AF. Between 
the groups, there were no significant differences in mean 
FA values for each fiber bundle (UF right: t(57) = 0.120, 
p = 0.91; UF left: t(57) = 0.193, p = 0.85; AF right: 
t(56) = 1.123, p = 0.27; AF left: t(51) = 0.934, p = 0.36; 
cingulum left bundle: t(57) = 0.826, p = 0.412; cingulum 
right: t(57) = − 0.328, p = 0.744.

Along‑tract analyses

Uncinate fasciculus

between-group t tests showed one nominally significant 
difference along the right UF tract pathway (t(57) = 2.05, 
p = 0.045, uncorrected). However, this was not sufficient to 
achieve whole-tract significance using the permutation test. 
The left UF showed no significant differences along the tract 
pathway (all p values > 0.20). The FA values along the right 
and left UF are depicted in Fig. 2.

Table 1  Demographics of the 
anger group and the control 
group

SD standard deviation, STAXI-2 State-Trait Aggression Inventory-revised

Anger group (N = 29) Control group (N = 30) Statistics
Mean (SD) Mean (SD)

Age (years) 36.28 (6.31) 34.53 (7.59) t (57) = 0.96, p = 0.34
Education 4.21 (0.62) 4.2 (0.81) t (57) = 0.04, p = 0.97
Number of deployments 2.07 (1.16) 2.37 (1.25) t (57) = − 0.95, p = 0.35
STAXI-2
State Anger 24.07 (11.30) 15.20 (0.76) t (57) = 4.29, p < 0.001
Trait Anger 23.03 (7.01) 12.13 (2.47) t (57) = 8.02, p < 0.001
Aggression Questionnaire
Physical aggression 30.07 (7.48) 18.47 (4.55) t (57) = 7.22, p < 0.001
Verbal aggression 15.66 (3.97) 11.3 (1.54) t (57) = 5.60, p < 0.001
Anger 24.48 (5.34) 11.17 (2.49) t (57) = 12.35, p < 0.001
Hostility 24.24 (7.00) 11.87 (3.41) t (57) = 8.68, p < 0.001

Fig. 2  Schematic overview of the along-tract analysis for the uncinate fasciculi (UF). An example of the left and right UF is shown in A and B. 
C and D show the FA values along the left and right UF, respectively
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Arcuate fasciculus

Figure 3 shows the between group t-test results for both the 
right and left AF tracts. Significant differences on the left 
AF were found at 66 mm (t(51) = 2.196, p = 0.03), 68 mm 
(t(51) = 2.301, p = 0.03), 70 mm (t(51) = 2.124, p = 0.04), 
74 mm (t(51) = 2.107, p = 0.04), 76 mm (t(51) = 2.569, 
p < 0.01), 78 mm (t(51) = 2.910, p = 0.005), and at 80 mm 
(t(51) = 2.615, p < 0.01), where the positions are meas-
ured from the anterior end of the tracts. Permutation tests 
showed that this number of consecutive significant points 
was significant (p = 0.019). The FA values along the right 
and left AF are depicted in Fig. 3. Significant differences 
on the right AF were found at 32  mm (t(56) = 2.170, 
p = 0.03), 34  mm (t(56) = 2.536, p = 0.01), 36  mm 
(t(56) = 2.782, p = 0.01), 38 mm (t(56) = 2.647, p = 0.01), 
and at 40 mm (t(56) = 2.167, p = 0.03). Permutation tests 
showed that this number of consecutive significant points 
did not reach the threshold for significance (p = 0.091).

Cingulum

Along the tract permutation tests showed no significance 
for both left and right cingulum. The along the tract FA 
values are depicted in Supplementary Fig. 3.

Discussion

This study was performed to test whether combat veterans 
with anger and aggression differ in white matter structure 
in the UF and AF from combat veterans without anger 
and aggression. The UF and AF play a role in the regula-
tion of emotion and attention and are, therefore, of interest 
in anger and aggression. No differences between the two 
groups were found in the UF, but evidence pointed at lower 
FA in the AF in the veterans with anger and aggression.

The AF connects the dorsolateral prefrontal cortex 
with posterior parietal and temporal regions (Makris 
et al. 2005). Using tract-based spatial statistics, altered 
white matter microstructure was also reported for the AF 
in intermittent explosive disorder (IED), a psychological 
disorder characterized by impulsive aggression (Lee et al. 
2016). The finding of lower FA values within the AF for 
the Aggression group in the current study provides further 
evidence that white matter organization within this area 
plays an important role in anger and aggression. The role 
of the AF is primarily related to cognitive functioning and 
language (Schomers et al. 2017). Why could this play a 
role in aggression? First, anger and aggression in veterans 
have been linked to alexithymia (Teten et al. 2008; Miller 
et al. 2008), a condition that is characterized by reduced 

Fig. 3  Schematic overview of the along-tract analysis in the arcuate 
fasciculi (AF). An example of the left and right AF is shown in A and 
B. C and D show the FA values along the left and right AF, respec-

tively, where the black lines highlight significant differences between 
the two groups
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emotional self-awareness and that is associated with lower 
FA values in AF (Kubota et al. 2012). Second, the link 
between lower FA values in the AF and mentalizing sys-
tems has been reported in autism (Kana et al. 2014). Con-
cerning the role of AF in language, it plays a role in com-
plex comprehension, social communication, and higher 
semantic processing in particular (Catani and Dawson 
2016). Taken together, this suggests that the relationship 
between reduced AF connectivity and aggression could be 
mediated via deficits in emotional self-awareness, interpre-
tation, and expression, as these AF-related processes also 
play a role in the ability to appropriately regulate emotions 
and aggression (Scheier et al. 1974; Cole et al. 1994; Cohn 
et al. 2010; Mohammadiarya et al. 2012; Locke et al. 2015; 
Hawes et al. 2016; Wegrzyn et al. 2017). Future research 
appears warranted to follow this line of studies to uncover 
these relationships in more detail.

No differences in FA values along the UF were found 
in the current study. In a previous study in healthy indi-
viduals, no link was found between UF microstructure and 
trait aggressiveness (Beyer et al. 2014). Furthermore, in a 
study with IED patients, no differences in white matter in 
brain areas corresponding to the UF were found as well (Lee 
et al. 2016). Altered UF microstructure is, however, related 
to antisocial behavior (Waller et al. 2017) and especially 
psychopathy (Craig et al. 2009). In this context, disconnec-
tion studies of Phineas Gage revealed that his aggressive 
behavior was related to the damage of the UF (Van Horn 
et al. 2012; Thiebaut de Schotten et al. 2015). The relation-
ship between UF organization and aggressive behavior might 
depend on whether aggression is antisocial or instrumental 
in nature. The current population of veterans is characterized 
by impulsive aggression rather than psychopathic behavior, 
potentially explaining the absence of effects for the UF.

Research into the etiology of anger and aggression in 
military veterans needs to be extended beyond fronto-limbic 
dysfunction. Brain networks involved in attention and exec-
utive functioning, including prefrontal and parietal cortex 
(Wager and Smith 2003; Van Hecke et al. 2013), may play 
an important role as well, as shown by abnormal white mat-
ter microstructure in parietal regions of the SLF (Karlsgodt 
et al. 2015). The current study also shows that analysis of a 
diffusion measure of interest along the tract, instead of one 
global estimate per tract, is valuable, as this kind of analysis 
can be more sensitive in detecting subtle differences in fiber 
tract microstructure.

The cross-sectional nature of the current study gives no 
information regarding the question whether the abnormal 
microstructure of the AF in veterans with anger and aggression 
is a cause or a consequence of the problems with anger and 
aggression during deployment. It should also be noted that the 
underlying mechanism associated with aggression might dif-
fer within our sample. Thus, it is possible that the UF and AF 

tracts may help to explain some aspects of aggressive behavior 
in some military veterans, but not in others. A limitation of our 
study is that the sample size does not allow subgroup analysis. 
In addition, we acknowledge that our cohort was also limited 
in gender and age, and thus, we cannot claim that our results 
would generalize to the full population of military veterans, 
including women and veterans of different age.

An unexpected finding in the current results was the relative 
difficulty in detecting the right rather than left AF. However, 
asymmetric properties of the AF are not unprecedented, as 
lateral differences of the tract have been showed previously 
(Dubois et al. 2009; Lebel and Beaulieu 2009; Allendorfer 
et al. 2016; Reynolds et al. 2019). While DTI-based fiber trac-
tography (Mori et al. 1999; Basser et al. 2000) is still the most 
widely used approach in a clinical setting, there are nowa-
days more accurate approaches to compute fiber orientations, 
such as those based on spherical deconvolution approaches 
(Tournier et al. 2007; Dell’Acqua et al. 2010; Tax et al. 2014; 
Jeurissen et al. 2019). In regions with crossing fiber configu-
rations, these advanced tractography techniques have been 
shown to provide more reliable reconstructions of white matter 
fiber pathways (Jeurissen et al. 2011; De Schotten et al. 2011; 
Thiebaut de Schotten et al. 2012; Rojkova et al. 2016; Kenney 
et al. 2017). In this context, scalar measures derived from DTI, 
such as the mean diffusivity or the FA used in this work, are 
also non-specific in regions with multiple crossing fiber path-
ways and are prone to partial volume effects (Vos et al. 2011, 
2012; Jeurissen et al. 2013). With higher angular resolution 
diffusion MRI acquisitions becoming more and more available 
in the clinical realm, future work may incorporate more direct 
and tract-specific measures for studying potential white matter 
abnormalities in military veterans with problems of anger and 
aggression (Raffelt et al. 2012; Dell’Acqua et al. 2013).

This study contributes to the understanding of the inter-
play between information processing and microstructural 
white matter tissue organization in veterans with anger and 
aggressive behavior. Disturbances in networks involving the 
AF responsible for social cognition may render individuals 
more vulnerable to aggression. Knowledge about this underly-
ing neural substrate could ultimately be used to facilitate target 
interventions of such vulnerabilities.
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