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Ellipticity and dissipation effects in magnon spin valves

Jiansen Zheng,1 Andreas Rückriegel,1 Scott A. Bender,1 and Rembert A. Duine1,2,3

1Institute for Theoretical Physics and Center for Extreme Matter and Emergent Phenomena, Utrecht University, Leuvenlaan 4, 3584 CE
Utrecht, The Netherlands

2Center for Quantum Spintronics, Department of Physics, Norwegian University of Science and Technology, NO-7491 Trondheim, Norway
3Department of Applied Physics, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands

(Received 5 December 2019; revised manuscript received 17 February 2020; accepted 17 February 2020;
published 2 March 2020)

We consider alignment-dependent spin and heat transport across a magnon spin valve in the tunneling regime,
i.e., a junction consisting of two weakly coupled ferromagnetic insulators. We determine the difference in spin
and heat conductance between the parallel and antiparallel configuration of the magnetization direction. The
dependence of these conductances on both the Gilbert damping and ellipticity is studied. We find that both
magnon ellipticity and dissipation open channels for magnons to tunnel through in the antiparallel configuration.
Our results highlight an important difference between electronic and magnon spin transport in spin-valve
structures and may be important for the development of devices based on magnetic insulators.
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I. INTRODUCTION

Spintronics based on spin-polarized charge currents has
led to a boost in information storage technology with the
discovery of giant magnetoresistance (GMR) in antiferromag-
netically coupled Fe/Cr superlattices [1,2]. GMR arises from
the spin-dependent transmission of the conduction electron.
Magnons, the quanta of collective excitations in magnetically
ordered systems, can carry spin current in magnetic insulators
in the absence of any charge current, e.g., in the spin Seebeck
effect [3], where the magnons are driven by a thermal bias,
or in nonlocal setups in which the magnons are biased elec-
trically using the spin Hall effect in adjacent normal metals
[4]. Magnon spin transport is promising, for example, to
improve the power efficiency of logic devices [5–7] and for
neuromorhpic computing [8,9].

To find analogies of GMR in magnon spin transport, spin-
valve structures that encompass magnetic insulators have re-
cently been studied experimentally and theoretically [10–12].
Wu et al. have observed that the spin Seebeck effect of a
heterostructure made of two ferromagnetic insulators, namely
yttrium iron garnet (YIG), separated by a nonmagnetic heavy
metal layer, depends on the relative orientation of the magne-
tizations of the two magnetic insulators [13]. The difference in
spin Seebeck signal between parallel and antiparallel configu-
rations is observed to decrease significantly as the temperature
is lowered. In a recent theoretical work, a Green’s function
formalism for magnon tunneling driven by a temperature bias
across a ferromagnetic junction has been developed and ap-
plied to compute the diode properties of the tunneling magnon
current [14]. A key aspect of this study is the inclusion of
magnon-magnon interactions that are exploited for the rec-
tification and negative differential spin Seebeck effects. Fur-
thermore, a tunable spin Seebeck diode based on a magnetic
junction structure in which the tunneling spin current can be
turned on and off by controlling the magnetization orientation
has also been theoretically proposed [15].

In this work, we study the alignment dependence of
magnon heat and spin transport across a heterostructure
consisting of two ferromagnetic insulators that are weakly
exchange coupled, e.g., by a nonmagnetic spacer layer that
mediates exchange interactions. The setup we consider is
illustrated in Fig. 1. The ferromagnetic insulators act as
reservoirs for magnons. The magnons can be coherently
driven by ferromagnetic resonance, or incoherently generated
with an electrical or thermal bias using adjacent normal
metals [16]. We focus on the effect of the ellipticity of
the magnetization precession, which is usually caused by
anisotropies, and also on the effects of dissipation that we
parametrize with a Gilbert damping constant. The latter is
a phenomenological parameter that characterizes the decay
of magnons. The ellipticity of precession has been shown
to strongly affect the parametric excitation of magnons in
ferromagnetic resonance experiments [17], and plays a role in
Rayleigh-Jeans condensation of pumped magnons in thin-film
ferromagnets [18]. Moreover, at the quantum-mechanical
level, the ellipticity leads to squeezed ground states and, in
the case of antiferromagnets, entanglement between different
sublattice magnons [19,20]. Meanwhile, a low Gilbert
damping has also been demonstrated to enable long-distance
spin transport in magnetic insulators such as yttrium iron
garnet [4]. Neither the influence of damping nor ellipticity
has, however, been considered for magnon tunneling in the
insulating spin valve structure considered here.

In our setup, magnons tunnel between the ferromagnets
due to the weak exchange coupling and carry heat and spin
currents in response to applied temperature or magnon chem-
ical potential differences. For circularly polarized magnons,
conservation of spin forbids magnon tunneling in the antipar-
allel configuration. We find that anisotropies and dissipation,
both of which break spin conservation, lead to tunneling
currents even in the antiparallel configuration. The difference
between circular and elliptical case has no straightforward
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FIG. 1. Illustration of a magnetic junction consisting of two
ferromagnetic insulators, which interact with each other with weak
exchange coupling U . The left (right) insulator has temperature
TL (TR) and spin accumulation μL (μR ). The layer in green is a
nonmagnetic insulator and is thin enough for the magnons to tunnel
across it. The left insulator is the fixed layer, with the red arrow
denoting an up spin, while the right insulator is a free layer in
which the magnetization can be tuned from a parallel configuration
(denoted with the red arrow) to an antiparallel configuration (denoted
with the blue arrow).

analog in electronic spin valves, as in these latter systems
the spin of the electrons at the Fermi level is usually approxi-
mately conserved, and tunneling current is determined by their
spin-dependent density of states. Our result therefore shows
that the difference between magnon currents in the parallel
and antiparallel configuration is governed by different physics
than for metallic structures, which may be useful in designing
devices that exploit the tunability of the tunneling current.

The remainder of the paper is organized as follows: In
Sec. II, we introduce the model that we use for our setup. The
magnon tunneling currents in the presence of both precession
ellipticity and Gilbert damping for both parallel and antipar-
allel configurations are calculated in Sec. III. In Sec. IV, we
numerically calculate the tunneling conductances and discuss
their dependencies on the ellipticity and dissipation. Section V
summarizes our main findings and conclusions. Lastly, the
Appendix outlines the derivation of the tunneling currents
using rate equations.

II. MODEL HAMILTONIAN

A. Lead Hamiltonians

The magnetization dynamics in the bulk of each insulating
lead is modeled by the Hamiltonian

HX = − 1

2

∑
i j

JX,i jSX,i · SX, j − h̄γX μ0HX

∑
i

Sz
X,i

− 1

2

∑
i

[
KX,x

(
Sx

X,i

)2 + KX,y
(
Sy

X,i

)2]
, (1)

where X = L/R denotes the left/right lead and i, j label
the lattice sites. Here, JX,i j are nearest-neighbor exchange
interactions with strength JX > 0, whereas KX,x and KX,y are
anisotropy constants. Lastly, μ0HX are the magnetic fields in
the bulk of the leads with gyromagnetic ratio γX .

The spin operators SX,i are bosonized via a Holstein-
Primakoff transformation [21]. For HX > 0 we assume that
the magnetic order parameter points in z direction, so that

S+
X,i = Sx

X,i + iSy
X,i =

√
2SX

[
bX,i + O

(
S−1

X

)]
, (2a)

Sz
X,i = SX − b†

X,ibX,i, (2b)

where SX is the spin quantum number of the magnetic mo-
ments in lead X , and bX,i and b†

X,i are the magnon annihilation
and creation operators that satisfy the bosonic commutation
relations [bX,i, b†

X ′, j] = δX,X ′δi, j . Conversely, for HX < 0 we
assume that the magnetic order parameter points in −z direc-
tion and apply the following Holstein-Primakoff transforma-
tion:

S+
X,i = Sx

X,i + iSy
X,i =

√
2SX

[
b†

X,i + O
(
S−1

X

)]
, (3a)

Sz
X,i = −SX + b†

X,ibX,i. (3b)

In the bulk of each lead, we may expand the magnon operators
in a Fourier series as

bX,i = 1√
NX

∑
k

eik·Ri bX,k, (4)

where NX denotes the number of magnetic moments in the
lead X . Then the spin Hamiltonian (1) becomes

HX =
∑

k

[
AX,kb†

X,kbX,k + BX

2

(
b†

X,kb†
X,−k + H.c.

)]
, (5)

where we dropped a constant contribution to the ground state
energy as well as O(S−1/2

X ) corrections containing higher
powers of the magnon operators. The coefficients of the
Hamiltonian (5) are given by

AX,k = h̄γX μ0|HX | + JX SX a2
X k2 − SX

2

(
KX,x + KX,y

)
, (6a)

BX = −SX

2
(KX,x − KX,y), (6b)

regardless of whether we assume HX > 0 or HX < 0 and
employ the respective Holstein-Primakoff transformation (2)
or (3). In writing down Eq. (6a), we furthermore assumed that
only long-wavelength magnons with aX |k| � 1 are relevant,
where aX is the lattice constant of lead X . The quadratic
magnon Hamiltonian (5) is diagonalized via a Bogoliubov
transformation:(

bX,k

b†
X,−k

)
=

(
uX,k −vX,k

−vX,k uX,k

)(
βX,k

β
†
X,−k

)
, (7)

where

uX,k =
√

AX,k + EX,k

2EX,k
, (8a)

vX,k = BX

|BX |

√
AX,k − EX,k

2EX,k
, (8b)
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FIG. 2. Semiclassical depiction of a spin S that precesses ellipti-
cally around a magnetic field H . The solid blue line is the elliptical
precession, whereas the dashed gray line corresponds to a circular
precession. Because the length of the spin is conserved, its projection
onto the direction of the magnetic field is not constant during the
elliptical precession. Therefore, this spin projection is no longer a
good quantum number for elliptical magnons.

where

EX,k = √
(AX,k + BX )(AX,k − BX ). (9)

The operators βX,k and β
†
X,k create and destroy Bogoli-

ubov quasiparticles and obey the bosonic commutation rela-
tions [βX,k, β

†
X ′,k′] = δX,X ′δk,k′ . Semiclassically, a Bogoliubov

quasiparticle created by β
†
X,k corresponds to an elliptical spin

wave; in contrast, a magnon created by b†
X,k corresponds

to a circular spin wave. The Bogoliubov quasiparticles are
often also referred to as magnons, or as elliptical or squeezed
magnons [19,20]. For an elliptical spin wave, the z component
of the spin is not conserved and hence not a good quantum
number, unlike for a circular spin wave. This is illustrated
semiclassically in Fig. 2. With the Bogoliubov transforma-
tion (7), the magnon Hamiltonian (5) becomes

HX =
∑

k

[
EX,kβ

†
X,kβX,k + 1

2
(EX,k − AX,k)

]
. (10)

Note that this Hamiltonian is only valid as long as the
quasiparticle dispersion (9) is real, i.e., for h̄γX μ0|HX | >

SKX,x, SKX,y. If this is not satisfied, our original assumption
that the magnetic order points in ±z direction is not correct
and we have to expand around a different ground state.
However, for the remainder of this work we will assume that
h̄γX μ0|HX | > SKX,x, SKX,y, so that the quasiparticle Hamilto-
nian (10) is stable.

B. Tunneling Hamiltonian

The tunneling between the leads is facilitated by a lead-
lead exchange interaction of the form

HT = −
∑

i j

Ui jSL,i · SR, j, (11)

where the exchange coupling Ui j is assumed to be small com-
pared to the bulk energy scales and only finite for i, j close
to the interface. The microscopic origin of such an interaction
could either be direct exchange mediated by the conduction
electrons in the normal metal or an indirect superexchange
interaction via the ions in the nonmagnetic spacer layer.

1. Parallel configuration

In the parallel configuration, we take the form (2) for both
leads. Then the tunneling Hamiltonian (11) becomes

HP
T = −√

SLSR

∑
i j

Ui j (b
†
L,ibR, j + b†

R, jbL,i ), (12)

where we dropped constants and higher order magnon cor-
rections as before, as well as an on-site energy shift for the
magnons in each lead. This is justified by our assumption
that the lead-lead exchange is small compared to the bulk
energy scales. After applying both Fourier and Bogoliubov
transformations, Eqs. (4) and (7), respectively, we find

HP
T = −

√
SLSR

NLNR

∑
kk′

× (
V (n)

k,k′β
†
L,kβR,k′ − V (a)

k,k′β
†
L,kβ

†
R,−k′ + H.c.

)
, (13)

where

V (n)
k,k′ = Uk,−k′ (uL,kuR,k′ + vL,kvR,k′ ), (14a)

V (a)
k,k′ = Uk,−k′ (uL,kvR,k′ + vL,kuR,k′ ) (14b)

are the normal (n) and anomalous (a) tunneling amplitudes,
with the Fourier transform of the lead-lead exchange cou-
pling Uk,k′ = (U−k,−k′ )∗ = ∑

i∈L

∑
j∈R e−ik·Ri−ik′·R jUi j . Note

that the anomalous coupling (14b) is only finite when the
magnon ellipticity is finite, leading to qualitatively new
physics in this case.

2. Antiparallel configuration

In the antiparallel configuration, we take the Holstein-
Primakoff transformations (2) for the left and (3) for the right
lead, yielding

HAP
T = −√

SLSR

∑
i j

Ui j (b
†
L,ib

†
R, j + bL,ibR, j ), (15)

within the same approximations as for the parallel configu-
ration considered in the preceding Sec. II–B–1. As before,
we apply the Fourier and Bogoliubov transformations given,
respectively, in Eqs. (4) and (7) to obtain

HAP
T = −

√
SLSR

NLNR

∑
kk′

× (
V (n)

k,k′β
†
L,kβ

†
R,−k′ − V (a)

k,k′β
†
L,kβR,k′ + H.c.

)
. (16)

Note that from the comparison of the magnon tunnel-
ing Hamiltonian between the parallel and antiparallel case,
Eqs. (12) and (15), respectively, it is clear that these two
situations differ qualitatively. In the parallel case, one deals
with a tunneling Hamiltonian that is also encountered in
the electron transport, whereas in the antiparallel case, the
tunneling corresponds to creation or destruction of a pair of
circular magnons. We also stress that the magnon ellipticity,
being related to the breaking of magnon number, i.e., spin
conservation, has no analog in electronic systems, where the
electron number is always conserved. Therefore, the effects
discussed here have no direct analog in electronic valves.
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From Eq. (15) it is furthermore obvious that there is no spin
transport in the antiparallel configuration without breaking of
the total spin conservation, either by anisotropies or damping.
In this respect, the undamped, circular magnon spin valve re-
sembles a half-metallic system that only transmits spin when
the magnetizations of the two magnets are aligned parallel.

III. TUNNELING CURRENTS

The tunneling currents can be obtained from the rate
equations for the distribution function of the Bogoliubov
quasiparticles in each lead,

nX,k = 〈β†
X,kβX,k〉 = fB

(
EX,k − μX

kBTX

)
, (17)

where fB(x) = 1/(ex − 1) is the Bose function, and the sec-
ond equality holds in a steady state in which lead X is kept at
temperature TX and chemical potential μX . To allow for finite
damping in each lead, we recast the steady state distribution
function (17) as

nX,k =
∫ ∞

−∞
dε δ(ε − EX,k) fB

(
ε − μX

kBTX

)
. (18)

Within the Gilbert damping phenomenology, we may then add
dissipation by broadening the Dirac distributions according to
[14,22]

δ(ε − EX,k) → A(ε − EX,k) ≡ 1

π

αε

(ε − EX,k)2 + (αε)2 ,

(19)
where α is the bulk Gilbert damping parameter.

Details of the derivation of the tunneling currents from
kinetic equations for the quasiparticle distribution functions
can be found in the Appendix; here we only state the results.
Labeling the parallel/antiparallel configurations with Y =
P/AP, we find the following expressions for the energy current

IY
E = 2π

h̄

∫ ∞

−∞
dε ε

{
DY

E (ε)

[
fB

(
ε − μL

kBTL

)
− fB

(
ε − μR

kBTR

)]

+ D̃Y
E (ε)

[
fB

(
ε − μL

kBTL

)
− fB

(
ε + μR

kBTR

)]}
(20)

and the spin current

IY
S = 2π

∫ ∞

−∞
dε

{
DY

S (ε)

[
fB

(
ε − μL

kBTL

)
− fB

(
ε − μR

kBTR

)]

+ D̃Y
S (ε)

[
fB

(
ε − μL

kBTL

)
− fB

(
ε + μR

kBTR

)]}
, (21)

flowing from the left to the right lead. Here, DP/AP
E/S (ε) are the

normal tunneling densities of state, explicitly given by{
DP/AP

E (ε)

DP/AP
S (ε)

}
= SLSR

NRNL

∑
kk′

∣∣V (n/a)
k,k′

∣∣2
{

1(
u2

R,k′ + v2
R,k′

)}

× A(ε − EL,k)A(ε − ER,k′ ). (22)

Note that their contributions to currents (20) and (21) vanish
if both leads are at the same temperature and chemical po-
tential. On the other hand, D̃P/AP

E/S (ε) are anomalous tunneling
densities of state that arise because the Gilbert damping breaks
the number conservation of the Bogoliubov quasiparticles.
Hence it gives rise to a spin current even when both leads are
at the same temperature and chemical potential; it vanishes
only if both leads are in true thermal equilibrium at the
same temperature and vanishing chemical potential. These
anomalous tunneling densities of state are{

D̃P/AP
E (ε)

D̃P/AP
S (ε)

}
= SLSR

NRNL

∑
kk′

∣∣V (a/n)
k,k′

∣∣2
{

1(
u2

R,k′ + v2
R,k′

)}

× A(ε − EL,k)A(ε + ER,k′ ). (23)

It is instructive to consider the limit of conserved quasi-
particles (α = 0+) as well as the limit of circular magnons
in more detail. If there is no dissipation, the anomalous con-
tributions to the currents vanish because energy conservation
strictly demands EL,k + ER,k′ = 0, which can never be satis-
fied since both of these energies are positive. Finite damping
softens this restriction by allowing energy (and spin) transfer
to a thermal bath, thereby opening up another channel for
energy and spin transfer between the leads. In the limit of cir-
cular magnons, i.e., when there are no anisotropies that break
rotation symmetry around the z direction, we may set uX,k =
1 and vX,k = 0; see Eqs. (8). Then D̃P

E/S (ε) = 0 = DAP
E/S (ε).

This reflects the conservation of the total spin Sz
L + Sz

R in the
absence of anisotropies. In the parallel configuration, tunnel-
ing is in this case only allowed for the process in which a
magnon carrying spin −h̄ is destroyed in one lead and another
magnon carrying spin −h̄ is created in the other lead. Con-
versely, in the antiparallel configuration magnons carry spin
−h̄ in the left lead and +h̄ in the right lead. Thus spin con-
servation only allows anomalous processes in which magnon
pairs in the left and right lead are simultaneously destroyed or
created. As this process violates energy conservation, it is only
possible in the presence of dissipation. Therefore, there are
no energy and spin currents in the antiparallel configuration
without either damping (enabling pair creation/annihilation
processes) or breaking of spin conservation (enabling normal
hopping). This is further illustrated in Fig. 3.

Tunneling conductances

If the biasing is sufficiently small, i.e., �T = TL − TR �
T , where T = 1

2 (TL + TR) is the average temperature, and
μL/R � EL/R,k=0, we may linearize the Bose functions ap-
pearing in the currents (20) and (21), yielding

IY
E = κY �T + 
Y (μL − μR) + γ Y

E (μL + μR), (24)

IY
S = LY �T + σY (μL − μR) + γ Y

S (μL + μR). (25)
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FIG. 3. Tunneling processes allowed by spin conservation for
circular magnons. (a) Hopping of a magnon carrying spin −h̄ from
the right to the left lead in the parallel configuration. The inverse
process of hopping from left to right lead is also possible. (b) Pair
creation of a magnon carrying spin −h̄ in the left lead and a magnon
carrying spin +h̄ in the right lead in the antiparallel configuration.
The inverse process of pair annihilation is also allowed. However,
while allowed by spin conservation, both pair creation and annihi-
lation processes are forbidden by energy conservation if there is no
dissipation. The spin currents in (a) and (b) are polarized in the z
direction. For the inverse processes, the spin currents flow in the
opposite direction. The blue (red) arrows indicate the spin change
associated with the creation (annihilation) of a circular magnon.

Here,

κY = π

2h̄kBT 2

∫ ∞

−∞
dε

ε2

sinh2
(

ε
2kBT

) [
DY

E (ε) + D̃Y
E (ε)

]
(26a)

is the thermal conductance,

LY = π

2kBT 2

∫ ∞

−∞
dε

ε

sinh2
(

ε
2kBT

) [
DY

S (ε) + D̃Y
S (ε)

]
(26b)

is the spin Seebeck conductance,


Y = π

2h̄kBT

∫ ∞

−∞
dε

ε

sinh2
(

ε
2kBT

)DY
E (ε) (26c)

is the spin Peltier conductance, and

σY = π

2kBT

∫ ∞

−∞
dε

1

sinh2
(

ε
2kBT

)DY
S (ε) (26d)

is the spin conductance. Lastly,

γ Y
E = π

2h̄kBT

∫ ∞

−∞
dε

ε

sinh2
(

ε
2kBT

) D̃Y
E (ε), (26e)

γ Y
S = π

2kBT

∫ ∞

−∞
dε

1

sinh2
(

ε
2kBT

) D̃Y
S (ε) (26f)

are the additional energy and spin loss or gain terms arising
because the finite damping breaks the number conservation
of Bogoliubov quasiparticles. Since they do not vanish when
both leads are mutually equilibrated, these terms are not part
of the transport current and should rather be identified with
the spin and energy lost to or gained from the thermal bath that
provides the dissipation, which is ultimately the crystal lattice.
Microscopically, they correspond to the simultaneous creation
or annihilation of a magnon in the left and a magnon in
the right lead; the required energy and angular momentum is

provided by the lattice. Therefore, these terms describe energy
and spin currents flowing from the lattice to both leads, instead
of currents flowing from one lead to the other. Because the
total angular momentum of spins and lattice is conserved, this
additional spin transfer should be experimentally detectable
as torques on the whole sample.

Note also that the spin Seebeck and Peltier conductances,
Eqs. (26b) and (26c), respectively, are not Onsager recip-
rocals of each other, h̄
Y �= T LY . There are two indepen-
dent reasons for this: the breaking of time-reversal sym-
metry by the dissipation and the breaking of spin conser-
vation by the anisotropies. While the former opens up a
new channel for bath-assisted energy transfer, namely the
pair creation/annihilation processes contained in D̃Y

E/S (ε),
the latter allows for changes in spin without accompa-
nying changes in energy, resulting in DY

E (ε) �= DY
S (ε) and

D̃Y
E (ε) �= D̃Y

S (ε).

IV. NUMERICAL RESULTS AND DISCUSSION

In realistic systems, the interfaces between layers of differ-
ent materials are usually rough. Such rough interfaces break
the momentum conservation of incident particles, effectively
randomizing the momenta of the scattered particles. There-
fore, we approximate the interface coupling as Uk,k′ ≈ U =
const. Furthermore, we work in the thermodynamic limit
where 1

NL

∑
k = ( aL

2π
)3 ∫

d3k and 1
NR

∑
k′ = ( aR

2π
)3 ∫

d3k′, and
take both leads to be of the same material, so that we can
drop the L/R label. Then D̃P/AP

E (ε) = D̃P/AP
E (−ε), resulting

in γ
P/AP
E = 0 [see Eqs. (23) and (26e)]; i.e., there is no addi-

tional energy transfer to the lattice. In keeping with the long-
wavelength expansion used in Sec. II A, we only consider low
temperatures T � JS/kB. For yttrium iron garnet [23], this
means T � 40 K.

The tunneling conductances (26) are displayed in Fig. 4
as functions of the in-plane anisotropy, i.e., of the spin-wave
ellipticity. In the parallel configuration shown in Fig. 4(a),
all conductances depend only weakly on the magnitude of
the anisotropy. With the exception of the dissipation-assisted
spin conductance γ P

S , they decrease for hard-axis (Ky < 0)
and increase for easy-plane (Ky > 0) anisotropy. This can
be attributed to the magnon gap increasing or decreasing,
respectively, which increases or decreases the overall magnon
population. The strong increase and eventual divergence of the
spin conductance for Ky → h̄γμ0H signifies the divergence
of the Bose distribution for vanishing spin-wave gap, and
is a precursor to the magnetic reorganization transition in
which the magnetization tilts into the anisotropy plane. The
additional dissipation-assisted spin conductance γ P

S mirrors
this behavior, but also increases for hard-axis anisotropies, in
contrast to all other conductances. The reason for this is that
it is an off-resonance process that is less sensitive to the exact
value of the gap than the resonant ones, whereas its magnitude
is determined by the strength of the anisotropies. Because of
this, it is also three to four orders of magnitude smaller than
the other conductances. Also, note that the breaking of the On-
sager reciprocity of spin Seebeck and Peltier conductances by
the spin-wave ellipticity and the Gilbert damping is negligible
in the parallel configuration.
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FIG. 4. Tunneling conductances (26) in the (a) parallel and (b) antiparallel configurations as functions of in-plane anisotropy Ky, for Kx = 0,
temperature kBT = 10 × h̄γμ0H , and Gilbert damping parameter α = 10−2. The conductances are rescaled by the dimensionful prefactors

κ0 = U 2
√

Sk3
BT/h̄2J3, σ0 = γ0 = h̄κ0/k2

BT , L0 = h̄κ0/kbT , and 
0 = T L0/h̄. With this rescaling, spin Seebeck and Peltier conductances, L/L0

and 
/
0, respectively, lie almost perfectly on top of each for most values of anisotropy Ky, reflecting Onsager reciprocity.

In the antiparallel configuration displayed in Fig. 4(b), on
the other hand, the anisotropy dependence of the conduc-
tances is more pronounced. In agreement with the discussion
in Sec. III, spin and spin Peltier conductances are in this
case both zero if there is no anisotropy. However, chemical-
potential driven spin transfer is still possible in this case
because the dissipation-assisted spin conductance γ AP

S is finite
for Ky = 0. Apart from γ AP

S , which decreases for Ky < 0, all
conductances increase away from Ky = 0, although they stay
small compared to the conductances in the parallel configura-
tion shown in Fig. 4. Note that, as the spin-wave gap closes,
the spin conductance diverges and the breaking of Onsager
reciprocity becomes visible.

To quantify the effect of Gilbert damping and spin-wave el-
lipticity on the magnon spin valve, we introduce magnetother-
mal conductance (MTC), magnetospin conductance (MSC),
magneto-Seebeck conductance (MLC), and magneto-Peltier
conductance (MPC) ratios as follows:

MTC = κP − κAP

κP
, (27a)

MSC = σ P + γ P
S − σ AP − γ AP

S

σ P + γ P
S

, (27b)

MLC = LP − LAP

LP
, (27c)

MPC = 
P + γ P
E − 
AP − γ AP

E


P + γ P
E

. (27d)

In the absence of dissipation and spin-wave ellipticity there
are no currents in the antiparallel configuration; hence these
ratios reduce to 1. Their deviation from 1 thus measures the
magnitude of dissipation and spin-wave ellipticity effects on
the magnon spin valve. The additional energy and spin cur-
rents γ

P/AP
E and γ

P/AP
S are included in the ratios (27) because

they affect the conductance ratios that will be measured in an
experiment, even though they originate from the lattice and
not from the magnons in the other lead.

As shown in Fig. 5(a), the in-plane anisotropy affects the
MTC ratio only negligibly. In the presence of large Gilbert
damping, on the other hand, the MTC ratio can deviate
from 1 by up to 10%. Responsible for this decrease are the

dissipation-assisted pair creation and annihilation processes
that enable energy transfer in the antiparallel configuration
even when there is no spin-wave ellipticity. The MSC ratio,
displayed in Fig. 5(b), behaves similarly for most values of the
anisotropy; when the magnon gap closes for Ky → h̄γμ0H ,
however, it rapidly decreases because of the divergence of the
spin conductance.

The magneto-Seebeck and Peltier conductance ratios,
shown in Figs. 5(c) and 5(d), respectively, display an opposite
behavior: they are sensitive to the anisotropy, but only slightly
affected by the Gilbert damping. They show a decrease of the
order of 1% when the magnon gap closes for Ky → h̄γμ0H ,
and also decrease, albeit more slowly, for increasing hard
axis anisotropy; this reflects the increasing strength of the
spin-conservation breaking in both cases. Unlike the MTC and
MSC ratios, the MLC and MPC ratios are actually increased
by the Gilbert damping for larger values of the anisotropy.
Note also that the Seebeck and Peltier ratios are both qualita-
tively and quantitatively almost identical; the breaking of the
Onsager reciprocity is only apparent in the stronger decrease
of the MLC ratio for Ky → h̄γμ0H .

V. CONCLUSIONS

We have studied the tunneling current in a magnon spin
valve device. By applying the Holstein-Primakoff transforma-
tion to the Heisenberg Hamiltonian, we derived the magnon
Hamiltonian, in which transverse anisotropies introduce ellip-
ticity of the magnons. We have also added Gilbert damping to
the magnon spectral function to study the effects of dissipation
on the magnon tunneling. Both precession ellipticity and
Gilbert damping are found to open new, Onsager-reciprocity
breaking channels for heat and spin transport across the junc-
tion, resulting in finite currents even when the magnetizations
of both leads are aligned antiparallel. We have not only
found that dissipation and spin-wave ellipticity decrease the
spin and heat conductance ratios, but have also revealed a
clear difference in the sensitivity of heat and spin currents to
these two quantities. We hope that our results provide useful
guidance for the design and understanding of magnon spin
valve devices.
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FIG. 5. (a) Magnetothermal, (b) magnetospin, (c) magneto-Seebeck, and (d) magneto-Peltier conductance ratios as defined in Eqs. (27) as
functions of in-plane anisotropy Ky, for Kx = 0, temperature kBT = 10 × h̄γμ0H , and various values of the Gilbert damping parameter α.
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APPENDIX: DERIVATION OF THE
TUNNELING CURRENTS

In this Appendix, we outline the derivation of the tunneling
currents given in Sec. III. The total energy current from the left
to the right lead is given by

IP/AP
E = ∂t 〈HR〉 (A1)

=
∑

k′
ER,k′∂t nR,k′ , (A2)

whereas the spin current from the left to right lead is

IP
S = −∂t

∑
j

h̄
〈
Sz

R, j

〉
(A3)

= h̄
∑

k′

(
u2

R,k′ + v2
R,k′

)
∂t nR,k′ (A4)

in the parallel configuration or

IAP
S = ∂t

∑
j

h̄
〈
Sz

R, j

〉
(A5)

= h̄
∑

k′

(
u2

R,k′ + v2
R,k′

)
∂t nR,k′ (A6)

in the antiparallel configuration. Using Fermi’s golden
rule [24], we find the following kinetic equations for
the quasiparticle distribution functions in the parallel
configuration:

∂t nL,k = 2πSLSR

h̄NLNR

∑
k′

[|Uk,−k′ |2(uL,kuR,k′ + vL,kvR,k′ )2δ(EL,k − ER,k′ )(nR,k′ − nL,k)

+ |Uk,k′ |2(uL,kvR,k′ + vL,kuR,k′ )2δ(EL,k + ER,k′ )(1 + nL,k + nR,k′ )], (A7a)

∂t nR,k′ = 2πSLSR

h̄NLNR

∑
k

[|Uk,−k′ |2(uL,kuR,k′ + vL,kvR,k′ )2δ(EL,k − ER,k′ )(nL,k − nR,k′ )

+ |Uk,k′ |2(uL,kvR,k′ + vL,kuR,k′ )2δ(EL,k + ER,k′ )(1 + nL,k + nR,k′ )]. (A7b)

The corresponding expressions in the antiparallel configuration can be obtained from Eq. (A7) by exchanging the Bogoliubov-
coefficient prefactors according to (uL,kuR,k′ + vL,kvR,k′ )2 ↔ (uL,kvR,k′ + vL,kuR,k′ )2. The energy and spin currents (20) and (21)
are obtained by inserting the kinetic equations (A7) into their respective definitions (A2) and (A4) or (A6), assuming a steady
state as in Eq. (18), and broadening the Dirac distributions with finite dissipation according to Eq. (19).
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