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Black holes have turned into cosmic laboratories to search for ultralight scalars by virtue of the
superradiant instability. In this paper we present a detailed study of the impact of the superradiant evolution
on the black hole shadow and investigate the exciting possibility to explore it with future observations of
very long baseline interferometry. We simulated the superradiant evolution numerically, in the adiabatic
regime, and derived analytic approximations modeling the process. Driven by superradiance, we evolve the
black hole shadow diameter and (i) find that it can change by a few μas, just below the current resolution of
the Event Horizon Telescope, albeit on timescales that are longer than realistic observation times; (ii) show
that the shadow diameter can either shrink or grow; and (iii) explore in detail how the shadow’s end state is
determined by the initial parameters and coupling.
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I. INTRODUCTION AND MAIN RESULTS

We have entered an exciting era in gravitational physics
in which we observe black holes—among the most
fascinating predictions of Einstein’s theory of gravity—
on a regular basis. These observations range from the
“drumbeat” of stellar-mass black hole collisions as detected
by ground-based gravitational-wave detectors [1–3]1 to the
impressive images of the shadow of the supermassive black
hole lurking at the center of galaxy M87 taken by the Event
Horizon Telescope (EHT) [4,5].
They have opened up novel paths to address long-

standing puzzles in modern physics. The present paper
revolves around the exciting possibility to employ black
holes as cosmic particle detectors for ultralight fundamental
fields [6–9], some of which have become popular dark
matter candidates [10]. This is possible because of the
superradiant instability of black holes.2 In a nutshell, low-
frequency bosonic waves scattering off a rotating black
hole can be superradiantly amplified at the expense of the
black hole mass and angular momentum if

ωR < mΩH; ð1Þ

where ωR is the wave’s oscillation frequency, m is its
spin quantum number, and ΩH is the angular velocity
of the black hole’s event horizon [14–17]. If, addition-
ally, the field is confined around the black hole, it
grows exponentially and the system becomes unstable
[18–21]. This original gedanken experiment of a “black
hole bomb” [18] can be realized in the presence of light
bosons with mass mB ¼ μc−2 for states that satisfy
ωR ≲ μ [21–25].3 Here, μ is the boson’s rest-mass
energy.
The superradiant instability is strongest, i.e., growth rates

are largest, if the black hole is initially highly spinning and
the gravitational coupling α ¼ rg

λC
¼ 1010 M

M⊙

μ
eV ∼ 0.42

[25,29]. To get a back-of-the-envelope estimate on the
boson masses that we are sensitive to, we rewrite the latter
relation as μ

eV ¼ 10−10αð M
M⊙

Þ−1. If we consider the popula-

tion of astrophysical black holes, i.e., the mass range
5 M⊙ ≲M ≲ 1010 M⊙, and focus on α ∼Oð0.1Þ, we
realize that we can probe ultralight bosons in the mass
range 10−12 eV≳ μ≳ 10−21 eV. This range includes the
QCD axion [30], axionlike particles proposed in the string-
axiverse [6], and popular (fuzzy) dark matter candidates
[10]. That is, black holes and their observations provide a
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1The gravitational-wave detector network has now reached

truly global scales with the LIGO detectors in the United States,
Virgo in Italy, and, as of the beginning of March 2020, KAGRA
in Japan.

2The effect of superradiance is, in fact, not owned by black
holes: it has first been conceived by Zel’dovich [11,12] who
proposed scattering of electromagnetic waves off a rotating
cylinder, and it has been observed in an analogue gravity
experiment [13].

3Note that asymptotically anti–de Sitter (AdS) spacetimes
provide another natural scenario that yields the superradiant
instability. Although interesting in its own right, the present paper
focuses on massive fields in asymptotically flat spacetimes only
and refers the interested reader to Refs. [26–28].
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powerful tool to do (beyond–standard model) particle
physics in regimes that are inaccessible by traditional
colliders or direct detection experiments [7].
Therefore, the superradiant instability of black holes has

been studied extensively including (i) rigorous mathemati-
cal proofs [31,32]; (ii) perturbative calculations in the
frequency [23–25,33–39] and time domains [29,40,41];
(iii) time evolution in the adiabatic approximation [8,42]
and in full general relativity [43–45]; and (iv) studies
including axion potentials that yield “bosenova”-type
instabilities [46]. Black hole superradiance has also been
instrumental in identifying novel, hairy black hole solutions
that are endowed with complex bosons and can, thus,
circumvent classical no-hair theorems [47–49]. More
recently, superradiance has been explored in the context
of compact binaries [50–57]. In particular, a small object
perturbing the “gravitational atom” yields level transitions
and different types of resonances [58].
Most observational constraints on ultralight fields rely on

a specific coupling between the QCD axion and standard
model particles [7,59]. Instead, the present scenario only
uses minimal coupling to gravity. Current and future
gravitational wave detections have the potential to probe
for or place stringent constraints on ultralight bosons
[53,60,61]. In particular, bosons in the mass range 10−14 ≲
μ=eV≲ 10−11 are highly constrained by LIGO observa-
tions, and we expect constraints in the range 10−19 ≲
μ=eV≲ 10−16 from the future space-based LISA mission
[39,62–65].
In the present paper we focus on a different avenue and

explore potentially observable signatures of ultralight fields
in the shadow of black holes. In Refs. [66,67] the authors
focused on the end state of the superradiant instability, i.e.,
after the formation of a long-lived bosonic cloud that only
slowly dissipates. They studied, in particular, the impact
of the black hole–bosonic cloud system on geodesics,
i.e., how the shadow would be affected by the changed
gravitational potential.
We, instead, focus on a complementary aspect repre-

sented by the superradiant evolution. As the black hole
undergoes the superradiant evolution, its mass and angular
momentum reduce as they are transferred to the bosonic
condensate. Since the shadow is determined by the black
hole’s parameters, it may follow the superradiant evolution
as well. To quantify this statement we have combined the
computation of the superradiant evolution (in a quasiadia-
batic approximation) with that of the shadow of a Kerr
black hole in a wide range of parameters. To cleanly
understand the effects of superradiant evolution, we fixed
the distance of the source ro to that of the present day value,
and leave a more detailed analysis that takes the cosmo-
logical evolution into account for future work. We iden-
tified two competing effects: growth of the shadow due to
the reduction of the spin, also identified in Refs. [68,69],
and shrinking of the shadow due to the decrease of the

black hole mass. The shadow’s angular diameter exhibits
qualitatively different behavior depending on the gravita-
tional coupling and initial black hole spin. In particular, the
black hole shadow grows due to the superradiant evolution
if the coupling α is small, whereas large couplings lead to a
decrease of the shadow diameter. The change of the
shadow’s diameter can be as large as a few μas, just below
the resolution currently achievable with the EHT, although
the precise value depends on the initial black hole spin
and the gravitational coupling.
Throughout this paper, we focus on the gravitational

interaction between massive scalars and rotating black
holes, and its impact on the black hole shadow. We neglect
the effect of accretion by the black hole, not because its
effects are small but because we wish to separate it from the
signal induced by superradiance only.

II. A BRIEF REVIEW ON THE GRAVATOM

A. Setting the stage

The “gravatom,” or “gravitational atom,” refers to a Kerr
black hole surrounded by a long-lived cloud composed of
ultralight bosonic fields. This cloud develops as a conse-
quence of the superradiant instability: low-frequency
bosonic fields that meet condition (1) are superradiantly
amplified at the expense of the black hole’s mass and
angular momentum. These fields are massive with mass
mB ¼ μc−2, and they can be trapped in the vicinity of the
black hole if ωR ≲ μ (see below) and grow exponentially
until the superradiant condition (1) is saturated.
Here, we focus on massive scalar fields Φ ∼

e−{ωtRðrÞYlmðθ;φÞ that satisfy the Klein-Gordon equation
in a Kerr background, and give a brief review of its key
features. The precise superradiant evolution crucially
depends on the dimensionless gravitational coupling

α ¼ GM
c2

μ

cℏ
¼ rg

λC
≃ 1010

�
M
M⊙

��
μ

eV

�
; ð2Þ

where M is the black hole mass and μ ¼ mBc2 the scalar
field’s rest-mass energy. The gravitational coupling is
determined by the ratio between the black hole’s gravita-
tional radius rg ¼ GM

c2 and the field’s reduced Compton
wavelength λc ¼ ℏ

mBc
¼ ℏc

μ . In the following we will use
Planck units G ¼ 1, c ¼ 1, ℏ ¼ 1.
To explore the phenomenology of massive scalars

around rotating black holes one solves the Klein-Gordon
equation in the Kerr spacetime [25]. In the limit α ≪ 1 this
calculation simplifies to a Schrödinger-type equation that
we can solve analytically for the scalar’s complex (or
quasinormal mode) frequency ω ¼ ωR þ {Γ [24]. The
spectrum of oscillation frequencies for modes ðnlmÞ is

ωR;nlm ¼ μ

�
1 −

1

2

�
α

nþ lþ 1

�
2
�
∼ μ; ð3Þ
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where n ¼ 0; 1;…, l ¼ 0; 1;…, and −l ≤ m ≤ þl are the
scalar’s principal, azimuthal, and spin quantum numbers.
Note that it resembles the spectrum of a hydrogen atom
and, thus, inspired the terminology “gravatom.” In contrast
to the hydrogen atom, however, the frequency is complex
and its imaginary part determines the scalar’s growth
(Γ > 0) or decay (Γ < 0) rate on e-folding timescales
τSR ¼ 1=jΓj. For each mode ðnlmÞ, it is given by

Γnlm ¼ −2
rþ
rg

ðμ −mΩHÞα4lþ5σnlm; ð4Þ

where ΩH ¼ χ
2rþ

is the angular velocity of the black hole’s

horizon at radius rþ ¼ rgð1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ2

p
Þ, χ ≡ J=M2 the

dimensionless spin, and

σnlm ≡ 24lþ1ð2lþ nþ 1Þ!
ðlþ nþ 1Þ2lþ4ðn!Þ

�
l!

ð2lÞ!ð2lþ 1Þ!
�
2

×
Yl
k¼1

½k2ð1 − χ2Þ þ 4r2þðμ −mΩHÞ2�: ð5Þ

If ωR ∼ μ < mΩH,
4 the imaginary part of the frequency

becomes positive [see Eq. (4)] and the scalar fields grow
exponentially. Equation (4) furthermore implies that the
fastest growing mode corresponds to the lowest-lying value
of the orbital quantum number l and m ¼ l > 0. For
massive scalar fields this is the dipole mode l ¼ m ¼ 1.
We remark that only sufficiently rapidly rotating black

holes develop the superradiant instability. Combining the
superradiant condition (1) and the relation ωR ≃ μ, Eq. (3),
we find that only black holes with a dimensionless spin,

χ ≥ χcrit ¼
4mα

m2 þ 4α2
; ð6Þ

undergo superradiant scattering. Note that the derivation
assumed MωR ∼Mμ ¼ α ≠ 0 so the limit α → 0 is not
well-defined.

B. Quasiadiabatic evolution

We are interested in the effect of the superradiant
evolution on the time development of the black hole
shadow which, in turn, is determined by the evolution of
the hole’s mass and spin. The key phases of the super-
radiant evolution are
(0) Superradiant evolution starts for a black hole of

initial mass M0 and initial spin χ0, surrounded by a
scalar condensate of initial total mass Mc;0. The
scalar field condensate grows at the expense of the
black hole’s energy and angular momentum.

(I) The superradiant evolution continues until condition
(1) is saturated. We refer to phase I as the phase in
which the black hole parameters have the largest
gradients in time.

(II) Quasistationary state of the gravatom, during which
the black hole of (final) mass MII and spin χII is
surrounded by a long-lived scalar condensate that
now has a total mass Mc;II

5;
(III) Dissipation of the bosonic cloud due to gravitational

wave emission.
We define the onset of phase I as the time tI where the scalar
cloud has acquired a mass McðtIÞ ¼ Mc;0 þ ZM0. The
coefficient Z has an appropriately chosen, fixed value. In
particular, we specify Z ¼ 10−5 (Z ¼ 10−4) for small
(large) scalar cloud seeds. We give an explicit expression
for tI in Sec. VA, based on the analytic approximation
presented in Sec. IV.
Following Refs. [8,42], we work in the small coupling

regime, α ≪ 1, and evolve the black hole–cloud system in a
quasiadiabatic approximation. We are interested in the
evolution of the black hole’s parameters that have a direct
impact on the shadow and that can change during the
superradiant buildup of the bosonic condensate, i.e.,
phases 0 to II. The black hole remains unaffected by the
dissipation of the cloud in phase III [8,42]. Furthermore, the
cloud decays due to gravitational wave emission on time-
scales τGW much larger than the superradiance timescale
τSR ¼ 1

Γ [9,70].
Before we review the quasiadiabatic evolution, let us

quantify the latter statement. The gravitational wave energy
flux can be approximated by [70]

dEGW

dt
¼ Cnl

�
Mc

M

�
2

α4lþ10; ð7Þ

where Mc and M are, respectively, the cloud and the black
hole mass, α ¼ Mμ the gravitational coupling, and6

Cnl ¼
16lþ1lð2l − 1ÞΓ½2l − 1�2Γ½nþ 2ðlþ 1Þ�2

ðnþ lþ 1Þ4lþ8ðlþ 1ÞΓ½lþ 1�4Γ½4lþ 3�Γ½nþ 1�2 :

ð8Þ

At this stage, the system’s evolution is dominated by
transforming energy from the cloud into gravitational
radiation that leaves the black hole parameters essentially
unchanged. We can then use the energy conservation
relation

4In the following we suppress subscripts ðnlmÞ unless they are
needed explicitly.

5Here, we focus on real scalar fields that slowly decay over
time. Complex scalars can give rise to nonlinear, hairy black hole
solutions that appear at the onset of the superradiant instability
[47,48].

6Note that the authors of Ref. [70] use n ¼ lþ 1þ nr,
nr ¼ 0; 1;…. In our convention n ¼ nr ¼ 0; 1;…, and we have
redefined the coefficient accordingly.
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dEGW

dt
¼ −

dMc

dt

to integrate Eq. (7) to

McðtÞ ¼ Mc;II

�
1þ t

τGW

�
−1
; ð9Þ

where Mc;II is the mass of the cloud in phase II, i.e., after
the superradiant evolution but before gravitational wave
emission becomes effective. We introduced the gravita-
tional wave emission timescale τGW

τGW ¼ mM0

χ0Cnl
α−ð4lþ11Þ

¼ 1.25 × 105 yr

�
M0

M⊙

��
χ0
0.8

�−1� α

0.1

�−15
; ð10Þ

where we used the approximation Mc;II ∼
ωR
m J0 ∼

αM0χ0
m

[63], and in the second line we provide an estimate
for the dominant mode l ¼ m ¼ 1. This result is in good
agreement with numerical computations of the superradiant
evolution that include gravitational wave emission [8,42].
Finally, the ratio of the gravitational wave timescale τGW
and the superradiance timescale τSR is

τGW
τSR

¼ −
2mrþ
χ0

σnlm
Cnl

ðμ −mΩHÞα−6: ð11Þ

For a dipole (l ¼ m ¼ 1) scalar cloud with coupling
α ¼ 0.1 around a black hole with initial dimensionless
spin χ0 ¼ 0.8, this ratio is τGW

τSR
∼ 107. It is comparable for

other spin values and increases as we decrease the gravi-
tational coupling. As the order of magnitude indicates, the
depletion of the cloud is not significant in the evolution of
the shadow until very late times. Hence, we conclude that
the gravitational wave emission period does not interfere
with the superradiance evolution, and so we can safely
ignore this effect for present purposes.
If, additionally, we neglect external processes such as

accretion of ordinary matter whose effects have been found
to be subdominant [8], we can describe the superradiant
evolution by

dJ
dt

¼ −
dJc
dt

; ð12aÞ

dM
dt

¼ −
dMc

dt
; ð12bÞ

dJc
dt

¼ m
μ

dMc

dt
: ð12cÞ

The first two equations correspond to energy and
momentum conservation, whereas the last one can be

understood as a balance equation between angular momen-
tum (“quanta” with momentum ℏm) and energy (quanta
with energy ℏω ∼ ℏμ) due to perturbations. A detailed
derivation can be found in Ref. [21]. The energy of the
cloud evolves as [8]

dMc

dt
¼ 2ΓnlmMc: ð13Þ

Now we can solve the system of differential equations
numerically, given suitable initial data. While our com-
putations are valid for a wide range of black hole param-
eters, we exemplarily present our results for a M87-like
black hole and set the initial mass to M0 ¼ MM87 ¼
6.5 × 109 M⊙. For the scalar field we choose either a
small seed Mc;0 ¼ 10−9M0 that mimics small (“quantum”)
fluctuations or a large seed ofMc;0 ¼ 0.025M0 that may be
present after the merger of two gravitational atoms or
toward the end of the superradiant evolution [8,42,43]. We
consider an ultralight scalar with mass μ ¼ 1 × 10−21 eV,
so the gravitational coupling is α ∼ 0.05. We have simu-
lated the superradiant evolution for different values of the
initial spin χ0 and the dominant superradiant mode of the
scalar, i.e., l ¼ m ¼ 1. Exemplarily, we present the evo-
lution for a system with χ0 ¼ 0.8 and both types of seeds in
Fig. 1. This enables us to verify our simulations against
results available in the literature [8,42].
Additionally, it is useful to derive exact analytic expres-

sions for the black hole’s parameters at the end of the
superradiant evolution indicated by phase II. This is
signaled by the saturation of the superradiant condition
(1). At this stage, the final black hole spin χII ¼ χcrit with
the critical spin given in Eq. (6). The change of the black
hole mass M and spin J ¼ χM2 are related via

MII −M0 ¼
μ

m
ðJII − J0Þ ¼

4α2IIMII

m2 þ 4α2II
−
αχ0M0

m
; ð14Þ

where αII ¼ MIIμ and we used Eq. (6). Note that αIIα ¼ MII
M0
,

and we denoted here α ¼ α0 to avoid too many subscripts.
In fact, we use throughout the text the notation that α
denotes the initial coupling, unless stated otherwise or
clear from the context. Solving the polynomial for MII
yields

MII

M0

¼ m3

8α2ðm − αχ0Þ
�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

16α2ðm − αχ0Þ2
m4

r �

≃ 1 − α
χ0
m

þOðα2Þ; ð15Þ

where in the last expression we imposed the small
coupling approximation. Using this, we can rewrite the
formula for the final spin in terms of the initial spin and
coupling. One finds
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χII ¼
4mðMII

M0
Þα

m2 þ 4ðMII
M0
Þ2α2 ; ð16Þ

where one plugs in (15) as a function of χ0 and α. It is then
an easy exercise to show that χII ≥ χ0 as it should indeed.
We find excellent agreement of these analytical formulas
with the numerical result with ≲0.0015% relative error.

III. SHADOW AND SUPERRADIANCE

A. Review and definitions

Gravitational lensing is the phenomenon by which light
gets deflected due to the gravitational influence of a
massive body. Such deflection of electromagnetic radiation,
e.g., emitted by the accretion disk surrounding a black hole,
gives rise to what we call the black hole “shadow.”
The strategy for studying gravitational lensing consists

of computing the geodesics of photons reaching the
observer. The specific shape of the observed shadow
depends on a variety of parameters such as the orientation
to the observer and the black hole’s mass and spin. We
denote the orientation of an observer facing the equatorial
plane as θo ¼ 0 (face-on) and the orientation of an observer
lying in the equatorial plane as θo ¼ π=2 (edge-on); see
illustration in Fig. 16.

For rapidly rotating black holes prograde photons are
deflected closer to the black hole horizon than retrograde
photons and yield a highly asymmetric shadow, whereas
slowly rotating black holes exhibit a (nearly) spherical
shadow as illustrated in Fig. 2. To derive the location r̄ of
the inner edge (or “maximum approach distance”) of the
black-hole shadow we have to solve the constants of
motion in a Kerr spacetime, together with the equation
for the Carter constant. We provide the detailed derivation
in Appendix B and here only present the results. For
simplicity, we focus on an observer oriented edge-on.
The shadow is determined by the parametric curve
ðθαðr̄Þ; θβðr̄ÞÞ, where θα=βðr̄Þ is the angular separation in
observer sky coordinates as depicted in Fig. 2. As a mea-
sure for the shadow size and because it changes most signi-
ficantly along θβ ¼ 0, we define its (angular) diameter as

dsh ≡ jθαðr̄þÞj þ jθαðr̄−Þj; ð17Þ

with r̄þ (r̄−) being the maximum approach distance for
prograde (retrogade) photons. Since r̄� cannot be
expressed in a simple way (at least for arbitrary values
of the spin, mass, and observer inclination) we have
computed it numerically. In order to gain a better under-
standing of how the shadow changes with spin and
orientations we will fix one of them and vary the other.

FIG. 1. Superradiant evolution of an ultralight scalar with μ ¼ 10−21 eV surrounding a black hole with initial mass
M0 ¼ MM87 ¼ 6.5 × 109 M⊙. We consider both a small and a large scalar seed, i.e., Mc;0 ¼ 10−9M0 (purple, dashed curves) and
Mc;0 ¼ 0.025M0 (red, solid curves). We indicate, qualitatively, phases 0–II of the superradiant evolution. Left: Evolution of the black
hole’s spin (top) and mass (bottom). Right: Evolution of the scalar cloud angular momentum (top) and cloud mass (bottom) normalized
by the initial black hole mass.
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1. Fixing the orientation

As illustrated in Fig. 2, the shadow diameter dsh depends
on the spin of the central black hole. We show this
dependence in more detail in Fig. 3 where we present
the shadow diameter, exemplarily for a M87-like black
hole with mass M ¼ 6.5 × 109 M⊙, as a function of the
dimensionless spin and for different fixed orientations θo
of the observer. We see that, due to the axial symmetry,
the diameter seen by an observer facing the pole θo ¼ 0
(i.e., face-on) changes less than the diameter seen by an
equatorial observer (i.e., edge-on), where the deformation

is maximal. Apart from θo ¼ 0, intermediate orientations
are close to the equatorial case.

2. Fixing the spin

We illustrate the dependence of the angular diameter dsh
as a function of the observer’s orientation θo for various
fixed values of the spin in Fig. 4. We observe that the
shadow diameter depends more strongly on the observer’s
angle as the black hole spin increases. This is not sur-
prising since small spins yield almost spherically shaped
shadows, whereas high spins lead to asymmetric shapes.
Furthermore, the angular diameter of a shadow is degen-
erate for different values of the black hole spin and
orientation. That is, even after fixing the black hole’s mass
and distance, the same dsh could correspond to different
pairs ðχ; θoÞ. To break this degeneracy, we need indepen-
dent measurements of the orientation or of the black hole
spin, e.g., using the methods reviewed in [71–73].

B. Shadow time evolution

As we have seen, the shadow’s shape and angular
diameter depend on the mass and spin of the central black
hole. Here, we explore how the superradiant evolution
affects the black hole shadow. There are two competing
influences at play: the decrease of the mass of the black
hole would lead to a decrease of the angular diameter, i.e.,
ddsh=dM > 0; the decrease of the black hole spin would
lead to an increase of the angular diameter, i.e.,
ddsh=dJ < 0. To understand this behavior in more detail,
we have modeled the time development of the shadow
diameter as driven by the formation of the gravatom
numerically by solving Eqs. (12), (13), (B8), and (B9)
(see Appendix B 2 for details). For simplicity, we set the
observer orientation to θo ¼ π=2. As initial setup we
choose scalar cloud seeds with Mc;0 ¼ 10−9M0 and
Mc;0 ¼ 0.025M0. Exemplarily, we focus on black holes

FIG. 2. Inner edge of the shadow dsh and the outer horizon rþ
of a Kerr black hole with dimensionless spins χ ¼ 0.2 (purple
dotted curve), χ ¼ 0.8 (blue dashed curve), and χ ¼ 0.998 (green
long-dashed curve) as seen edge-on. Exemplarily, we set the mass
M ¼ 6.5 × 109 M⊙ and distance ro ¼ 16.8 Mpc, i.e., parameters
corresponding to M87.

FIG. 3. Angular diameter dsh as a function of the (dimension-
less) black hole spin χ for different observer orientations θo. Due
to axial symmetry, all orientations θo > π=2 can be recovered
from the interval 0 ≤ θo ≤ π=2. Exemplarily, we set M ¼ 6.5 ×
109 M⊙ and ro ¼ 16.8 Mpc.

FIG. 4. Shadow diameter dsh as a function of the orientation θo
toward an observer for different values of the dimensionless black
hole spin χ.
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with their initial masses corresponding to the EHT’s
prime targets SgrA�, M0 ¼ 4.2 × 106 M⊙, and M87,
M0 ¼ 6.5 × 109 M⊙. We fixed the gravitational coupling
(2) to α ¼ 0.05. That is, we probe for ultralight bosons
with, respectively, μ ¼ 1.5 × 10−18 eV and μ ¼ 10−21 eV.
We present the resulting evolution of the shadow’s diameter
dsh for different initial spins in Figs. 5 and 6.
We observe that the angular diameter of the shadow

increases during the superradiant evolution, with the
change depending on the initial black hole spin, until it
reaches a peak. Afterwards it decreases and settles to a new
(constant) value at the end of the superradiant evolution.
The peak is determined by

0 ¼ ddsh
dt

¼ dM
dt

ddsh
dM

þ dJ
dt

ddsh
dJ

¼ −2ΓnlmMc

�
ddsh
dM

þm
μ

ddsh
dJ

�
; ð18Þ

where we used Eqs. (12) and (13). Let us now inspect the
different terms more carefully. In phase I, i.e., during the
superradiant evolution, the imaginary part of the frequency
Γnlm > 0, so for the shadow to grow the term in the brackets
has to be negative. This implies the condition

μ

m
ddsh
dM

< −
ddsh
dJ

;

(a) (b)

FIG. 5. Evolution of the shadow diameter dsh for a SgrA�-type black hole with initial mass M0 ¼ 4.2 × 106 M⊙ and different initial
spins χ0, at a distance of ro ¼ 8.2 kpc. The gravitational coupling is α ¼ 0.05 so that the scalar condensate is composed of particles with
mass μ ¼ 1.5 × 10−18 eV. The initial cloud mass isMc;0 ¼ 10−9M0 (left) orMc;0 ¼ 0.025M0 (right). Here we show the different stages
(see Sec. II) exemplarily for the case of χ0 ¼ 0.95.

(a) (b)

FIG. 6. Evolution of the shadow diameter dsh for a M87-type black hole with initial mass M0 ¼ 6.5 × 109 M⊙ and different initial
spins χ0, at a distance of ro ¼ 16.8 Mpc. The gravitational coupling is α ¼ 0.05; i.e., the scalar condensate is composed of particles with
mass μ ¼ 10−21 eV. The initial cloud mass is Mc;0 ¼ 10−9M0 (left) or Mc;0 ¼ 0.025M0 (right).

EVOLUTION OF BLACK HOLE SHADOWS FROM … PHYS. REV. D 101, 124051 (2020)

124051-7



where ddsh
dJ < 0. That is, the evolution of the shadow

diameter is dominated by the spin-down of the central
black hole rather than its change in mass. At the peak itself
there are two possibilities: either Γnml ¼ 0 which corre-
sponds to the end of the superradiant evolution or the term
in the bracket of Eq. (18) vanishes, i.e.,

μ

m
ddsh
dM

¼ −
ddsh
dJ

:

Comparing the evolution of the shadow in Figs. 5 and 6 to
that of the gravatom in Fig. 1, we see that the turning point
corresponds to the latter condition.
Now the evolution of the shadow’s angular diameter is

dominated by its dependency on the mass,

μ

m
ddsh
dM

> −
ddsh
dJ

:

Since we are still in the superradiant regime (1), where
Γnlm > 0, relation (18) indicates that the shadow diameter
should decrease. This is indeed what we observe in Figs. 5
and 6.
This brief postpeak phase is succeeded by phase II, i.e.,

the new, quasistationary gravatom after the superradiant
evolution. Here, the cloud is slowly decaying Γnlm ≲ 0,
whereas the black hole parameters no longer change and its
shadow remains (almost) constant as can be seen in Figs. 5
and 6.
We further note that the significant exponential growth

of the scalar cloud and superradiant reduction in the
black hole mass and spin, phase I in Fig. 1, takes place
about 107 � � � 1011 years after the beginning of the (super-
radiant) evolution. From here on we will refer to this as tI.

The precise value depends on the details of the superradiant
evolution. Note that here we neglected the accretion of
ordinary matter. This process would move the black hole
into the superradiant regime through the transfer of mass
and angular momentum onto it, the process appears to not
further impact the superradiant evolution itself on the
relevant timescales [8]. We leave a more detailed study
of this effect for future work.

IV. ANALYTIC APPROXIMATION

As we have seen in the previous sections, the super-
radiant evolution as well as the angular diameter of the
black hole shadow are in general determined numerically.
Although the tools fall into the realm of “soft numerics,” an
analytic description would greatly enhance our under-
standing of the evolution and enable us to cover a wider
range of parameters at once. Therefore, we have derived a
set of fitting formulas for both the superradiant evolution
and the dependence of the black shadow on the black
hole spin. Details of the derivation can be found in
Appendixes A and B.

A. Modeling the superradiant evolution

Here we derive approximate formulas that allow us to
model the superradiant evolution discussed in Sec. III
analytically. The first ansatz, labeled squared fit, attempts
to emulate the time dependence of the black hole param-
eters directly. Instead, the gamma fit and improved gamma
fit promote the growth or decay rate Γ to a time dependent
quantity. Since the rate depends on the evolving black
hole’s mass and spin, the latter captures their time depend-
ence. The details of the derivation are given in Appendix A.
In Fig. 7 we present a comparison between the numerically

(a) (b)

FIG. 7. Evolution of the black hole spin χ for a M87-type black hole with initial mass M0 ¼ 6.5 × 109 M⊙ and initial spin χ0 ¼ 0.8.
The gravitational coupling is α ¼ 0.05 so that the scalar condensate is composed of particles with μ ¼ 1 × 10−21 eV. The initial cloud
mass is Mc;0 ¼ 10−9M0 (left) or Mc;0 ¼ 0.025M0 (right). We compare the performance of the different approximation methods to the
adiabatic, i.e., numerical, evolution (solid blue line). For large initial seeds all fits reproduce the superradiant evolution reasonably well
(right panel), whereas approximating the evolution of small initial seeds is more challenging (left panel).
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computed adiabatic evolution and the different approxi-
mation schemes. In particular, we present the time evolu-
tion of the dimensionless black hole spin for small and
large initial scalar clouds. The fits appear to perform better
for large initial clouds, where the time gradients are less
steep. Overall, the improved gamma fit performs best. In
Appendix A we include an additional approximation that
performs well for small seeds, but needs to be fine-tuned for
the specific initial conditions.

1. Squared fit

The squared fit consists of an exponential ansatz for the
black hole’s and the scalar cloud’s parameters and has the
form

pðtÞ ¼ pII þ ðp0 − pIIÞ exp ½−γt − βt2�; ð19Þ

where p is a placeholder for the time dependent quantities
ðM; J;Mc; JcÞ and the subscripts 0 and II refer to their
values at the beginning (phase 0) and end (phase II) of the
superradiance instability (see Sec. II B), respectively. The
exponents are determined by

γ ¼ 2Γ0

Mc;0

M0 −MII
; β ¼ ln 2

t2�
−

γ

t�
; ð20Þ

where Γ0 ≡ Γðt ¼ 0Þ is the initial growth rate given in
Eq. (4) and

t� ¼
2

γ

Mc;0

Mc;0 þMc;II
ð21Þ

refers to the time when the system’s variables have reached
their mean value p� ≡ pðt�Þ ¼ p0þpII

2
.

As we see in Fig. 7, this approximation seems to perform
well if the scalar cloud seed is of a few percent of the black
hole mass. Small seeds, however, are not modeled well, and
one would have to include higher powers in t to capture the
steeper gradients during their evolution. Technically, this
approach would render the system of equations under-
determined for a finite number of additional powers.

2. Gamma fit

To circumvent these shortcomings of the squared fit, the
following approximations follow a different avenue: we
consider the exponential of an exponential (instead of a
power-law) function, and we promote the growth rate Γ to a
time dependent variable. In particular, we take the ansatz

ΓðtÞ ¼ Γ0 exp ½−γt�; ð22Þ

where the initial growth rate Γ0 is given in Eq. (4).
Substituting this ansatz into the evolution equations (12)
and (13) we obtain

McðtÞ ¼ Mc;0 exp

�
2Γ0

γ
ð1 − e−γtÞ

�
;

MðtÞ ¼ M0 −Mc;0

�
exp

�
2Γ0

γ
ð1 − e−γtÞ

�
− 1

�
;

JðtÞ ¼ J0 −Mc;0
m
μ

�
exp

�
2Γ0

γ
ð1 − e−γtÞ

�
− 1

�
; ð23Þ

and the exponent reads

γ ¼ 2Γ0

lnðMc;II

Mc;0
Þ : ð24Þ

As illustrated in Fig. 7, the gamma fit is comparable to the
squared fit for large scalar cloud seeds, but seems to
perform significantly better for small seeds.

3. Improved gamma fit

We now propose a more sophisticated ansatz for the
superradiance rate given by

ΓðtÞ ¼ Γ0 exp ½1 − eγt�; ð25Þ

where Γ0 is the initial growth rate; see Eq. (4). The
evolution of the scalar cloud is described by

McðtÞ ¼ Mc;0 exp

�
2Γ0e
γ

ðE½−eγt� − E½−1�Þ
�
; ð26Þ

where the exponent is

γ ¼ −
2Γ0E½−1�e
lnðMc;II

Mc;0
Þ ð27Þ

and E½x� the exponential integral is defined as

E½x� ¼ −
Z

∞

−x

e−t

t
dt:

In particular, E½−1� ¼ −0.219384. The evolution of the
black hole’s mass and spin is determined by

MðtÞ ¼ M0 −Mc;0

�
exp

�
2Γ0e
γ

ðE½−eγt� − E½−1�Þ
�
− 1

�
;

ð28aÞ

JðtÞ ¼ J0 −
m
μ
Mc;0

�
exp

�
2Γ0e
γ

ðE½−eγt� − E½−1�Þ
�
− 1

�
:

ð28bÞ

The improved gamma fit performs better than the
squared or gamma fit; see Fig. 7. However, it still involves
solving the exponential integral numerically.
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4. Regime of validity

We compare the different approximation schemes to
the numerical computation in Fig. 7 exemplarily for the
evolution of the black hole spin. This figure focuses on a
specific set of initial parameters, namely χ0 ¼ 0.8 and
α ¼ 0.05. Here we investigate the range of validity of fits in
more detail. We focus on the gamma and improved gamma
fits that reproduce the numerical evolution best.
We vary the initial black hole spins χ0 ¼ 0.5;…; 0.99

that are representative values well within the superradiant
regime (6), and we vary the gravitational coupling between
α ¼ 0.01;…0.1. The maximal value denotes the break-
down of the small-coupling approximation. At that point
the numerical evolution itself becomes invalid. We con-
centrate on small and large scalar cloud seeds as extreme
cases in the Mc;0 range.
We find that the error is generally smaller for smaller

values of the initial black hole spin. The smaller the
gravitational coupling, the smaller is the relative error in
the black hole mass but the larger the error in the black hole
spin. In the case of the black hole mass MðtÞ, the analytic
approximation agrees with the numerical data within ≲1%
(≲7%) for large (small) scalar cloud seeds and the entire
spin-coupling parameter range. The evolution of the spin,
however, is more sensitive to the chosen parameters. While
the approximation is not valid for small scalar cloud seeds,
it describes the spin evolution within better than ∼20%
(α ¼ 0.05, χ0 ¼ 0.99) and better than ∼15% (α ¼ 0.1,
χ0 ¼ 0.99). The deviation reaches ≲10% for spins χ0 ≲
0.8 and couplings α≳ 0.05.

B. Modeling the shadow

Relating the black hole shadow to its spin is, in general, a
nontrivial task that needs to be solved numerically. Here we
derive an analytic formula, fitted to our numerical results
presented in Sec. III. Specifically, we take a power-law
ansatz of the form

dsh ¼ Aþ Bð1 − χ2Þδ; ð29Þ

where the choice χ2 enforces the symmetry under χ → −χ.
We determine the parameters ðA; B; δÞ by evaluating the
full expression for three different values of the dimension-
less spin under the simplifying assumption that the observer
is located in the equatorial plane; see Appendix B. The
coefficients are

A ¼ 9M
ro

; B ¼ 3ð2 ffiffiffi
3

p
− 3ÞM

ro
; ð30aÞ

δ ¼
lnð 2

ffiffi
3

p
−3

2
ffiffi
3

p
S−3

Þ
lnð4=3Þ ∼ 0.4; ð30bÞ

where M is the black hole mass, ro is its distance to the
observer, and we introduced S ¼ sin π

9
þ sin 2π

9
. Then, the

shadow diameter can be approximated as

dsh ¼
3M
ro

½3þ ð2
ffiffiffi
3

p
− 3Þð1 − χ2Þδ�: ð31Þ

In Fig. 8 we compare this analytic formula with our
numerical data. We find excellent agreement within
≲0.5% for high spins and better for small spins. We can
now directly relate the measured shadow diameter to the
black hole spin (assuming we have determined the black
hole mass and distance to the observer independently) by
inverting Eq. (31). We find

χ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

� rodsh
3M − 3

2
ffiffiffi
3

p
− 3

�1=δ
s

: ð32Þ

Furthermore, we approximate the development of the
shadow diameter dsh due to the superradiant evolution
by promoting M → MðtÞ and χ → χðtÞ in Eq. (31). We
model them with the improved gamma fit, Eq. (28), since
they best approximate the gravitational atom. In Fig. 9 we
compare the numerical and analytic data for the evolution
of the shadow diameter of a black hole with an initial mass
M0 ∼MM87 ¼ 6.5 × 109 M⊙ and spin χ0 ¼ 0.8 for small
and large scalar cloud seeds. The shadow diameter obtained
with the analytic approximation agrees within ≲2%
(≲0.5%) for small (large) seeds with the numerical com-
putation; cf. Fig. 9. The magnitude of the uncertainty,
especially when compared to deviation of the spin evolu-
tion shown in Fig. 7 can be understood by studying the
propagation of errors. Applying it to Eq. (31) and inserting
the uncertainty in the black hole mass and spin quoted in
the previous section, we find a relative error of a few

FIG. 8. Shadow’s angular diameter dsh as a function of the
dimensionless black hole spin χ for a black hole of massMM87 ¼
6.5 × 109 M⊙ at a distance ro ¼ 16.8 Mpc. We compare the
analytic approximation (31) (green dashed line) to its numerical
evaluation (blue solid line) and find agreement within ≲0.5%.
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percent. That is, it is consistent with the direct comparison
shown in Fig. 9.

V. IMAGING THE SUPERRADIANT EVOLUTION

The shadows of black holes with synchronized scalar
hair—that is, the final state of the superradiant evolution of
complex ultralight bosons—have received broad attention
in the literature. In particular, tracing out the light rays
around such solutions revealed an intricate structure of
their shadows [66,68,74] although the recent observations
of M87 by the EHT place only weak constraints on these
spacetimes [67].
Here we focus on a different question: can one detect the

formation of these hairy black holes; i.e., can one “record”
the superradiant evolution itself within a few decades of
observations? To address this question we focus on phase I
of the evolution (cf. Fig. 1) during which the black
hole parameters and, consequently, the shadow diameter
undergo the largest changes. In this section we investigate
three items in particular: (i) How long would it take to reach
phase I? (ii) Assume we can measure a change in the
shadow; how can we infer the boson’s mass? (iii) How does
the shadow change? (iv) How large would this change be
over relevant observation timescales? Unless stated other-
wise, we assume an observation time of about 30 years.

A. Time to reach phase I

The largest changes in the shadow occur during phase I
(see Fig. 1), so it provides the best-case scenario to detect
(or constrain) the superradiant evolution. To estimate the
time tI it would take to reach this stage after the onset of the
superradiant instability, we start from the definition of tI

given in Sec. II B and use the gamma fit approximation
presented in Sec. IVA 2. Starting from Eq. (23) we find

tI ¼ −
lnðMc;f

Mc;0
Þ

2Γ0

ln

 
1 −

ln ðZ M0

Mc;0
þ 1Þ

lnðMc;f

Mc;0
Þ

!
: ð33Þ

Here, Mc;II is determined by MII ¼ M0 þMc;0 −Mc;II and
MII by Eq. (15). We find results consistent with the
numerics if we choose Z ¼ 10−4 (Z ¼ 10−5) for large
(small) scalar seeds. For example, for M87 and SgrA� (and
exemplarily setting χ0 ¼ 0.8), we get tM87

I 0.025M0
¼

1 × 108 yr, tM87
I 10−9M0

¼ 3.3 × 1011 yr and tSgrA�I 0.025M0
¼

8.7 × 104 yr, tSgrA�I 10−9M0
¼ 2.9 × 108 yr. The time to

reach phase I depends on the mass of the seed and the
black hole. Generically, small seeds lead to larger tI. For
larger seeds, of the order of 2.5% of the initial black hole
mass, one finds timescales varying between a few ten
thousand years and 100 million years for supermassive
black holes such as SgrA* and M87, respectively. For
stellar size black holes, this can be much faster, of the order
of magnitude of a year or even months for large seeds. In
Table I we present concrete values for the coupling
α ¼ 0.05. Larger values of the gravitational coupling
constant seem to reduce the timescales substantially, but
the small-coupling approximation is less reliable.
To reconnect to observations of the black hole shadow,

let us assume that the EHT (or a follow-up mission thereof)
is operational for the next couple of decades. Are there any
gravitational atoms that would form within that time
window, and what would their parameters be? This is
illustrated in Fig. 10, where we show all configurations in
the black hole mass M—boson mass μ phase space that

FIG. 9. Relative error of the shadow diameter dsh as a function
of time obtained with the approximation (31) as compared to the
numerical evolution. We set the initial black hole mass M0 ¼
6.5 × 109 M⊙ and spin χ0 ¼ 0.8, and the coupling α ¼ 0.05. The
initial cloud mass is Mc;0 ¼ 10−9M0 (green dotted curve) or
Mc;0 ¼ 0.025M0 (blue solid curve). The end of the solid curve
corresponds to the end of the superradiant evolution.

TABLE I. Summary of black hole parameters mass M, dimen-
sionless spin χ, distance ro, orientation θo, and their angular
resolution R. To determine the changes Δdsh and the timescale tI
to reach phase I we fixed the gravitational coupling α ¼ 0.05
which corresponds to values of the boson mass μ given in the
table. The superscripts L (S) refer to large (small) scalar cloud
seeds. The orientation of GW170729 and SgrA� are unclear, so
we exemplarily set it to π=2.

Cyg-X1 GW170729 SgrA� M87

MðM⊙Þ 14.8 80 4.2 × 106 6.5 × 109

χ 0.95 [75] 0.81 0.65 [76] 0.9 [77]
ro 1.9 kpc 2750 Mpc 8.2 kpc 16.8 Mpc
θo 3π=20 π=2 π=2 17π=180
Rðlog10½μas�Þ −4 −9 þ1 þ1
μ [eV] 5 × 10−13 8 × 10−14 1.5 × 10−18 10−21

tLI [yr] 0.2 1.2 8 × 105 8.7 × 107

ΔdLsh [μas] 2 × 10−5 1.5 × 10−11 2 × 10−6 3 × 10−9

tSI [yr] 591 4040 2.8 × 108 2.8 × 1011

ΔdSsh [μas] 1 × 10−6 3 × 10−13 4 × 10−8 5 × 10−11
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would reach phase I within tI ≲ 10 yr after the onset
of the instability. The plot depicts a collection of curves
that corresponds to broad ranges in parameter space.
Specifically, we varied the gravitational coupling 0 < α <
0.5 and the initial black hole spin 0.5 ≤ χ0 ≤ 0.99, included
small- and large-seed scalar field initial data and considered
scalars with an initial l ¼ m ¼ 1 mode (blue curves) or
l ¼ m ¼ 2 modes (red curves).
As can be seen in Fig. 10, in principle one might be able

to probe for the formation of bosonic condensates of mass
parameter 10−20 ≲ μ=eV≲ 10−11 for black holes in the
range 1≲M=M⊙ ≲ 109. More massive black holes would
require a longer time tI to reach phase I.

B. Measuring the boson mass

We now derive a relation that allows us to estimate
the gravitational coupling α from the measured change
in the shadow diameter dsh. To simplify the derivation, we
fix the observer’s orientation and distance ro to the source.
Since the superradiant evolution affects the black hole mass
M and spin J, we can write the shadow’s change in time as
[cf. Eq. (18)]

ddsh
dt

¼ dM
dt

�∂dsh
∂M þm

μ

∂dsh
∂J
�
; ð34Þ

where we used Eq. (12). We use the shadow fitting formula,
Eq. (31), to derive

∂dsh
∂M ¼ dsh

M
þ 12δχ2

ro
ð2

ffiffiffi
3

p
− 3Þð1 − χ2Þδ−1; ð35aÞ

∂dsh
∂J ¼ −

6δχ

Mro
ð2

ffiffiffi
3

p
− 3Þð1 − χ2Þδ−1; ð35bÞ

where χ ¼ J=M2 and the exponent is δ ¼ lnð 2
ffiffi
3

p
−3

2
ffiffi
3

p
S−3

Þ
lnð4=3Þ with

S ¼ sin π
9
þ sin 2π

9
. Let us assume that the black hole

parameters, the variation of the black hole mass, dM
dt , and

the change ddsh
dt of its shadow can be measured independ-

ently. Then, the gravitational coupling is determined by

α

m
¼ Mμ

m
¼ M∂dsh=∂J

ðddsh=dtÞðdM=dtÞ−1 − ∂dsh=∂M ; ð36Þ

as follows from Eq. (34) and where the coefficients
are given in Eq. (35). This provides a way to measure
the boson mass μ and by multiplying with M, the
gravitational coupling α.

C. Observing evolving shadows

To understand better the observational prospects, we
here investigate the magnitude of the changes in the
black hole shadow due to the superradiant evolution. We
focus on representative stellar-mass and supermassive
black holes, in particular (i) Cygnus X-1, historically
the first black hole candidate; (ii) GW170729, one of the
most massive gravitational events in LIGO-Virgo’s sec-
ond observation run O2 [3]; (iii) SgrA�, the supermassive
black hole at the center of the Milky Way; and (iv) M87,
the supermassive black hole whose shadow has been
observed with the EHT. We summarize their properties
and resulting shadow parameters in Table I, where we
determine for instance Δdsh, the change in the shadow
from tI , the start of phase I, to tI þ 30 yr. We focus on
each type, stellar-mass and supermassive black holes, in
more detail.

1. Stellar-mass black holes

The angular resolution necessary to resolve a black
hole’s shadow is roughly determined by the ratio M=ro
between its mass and distance to the observer; see
Eq. (31). For example, Cyg X-1, a black hole candidate
of about 15 M⊙ in our galactic neighborhood at a distance
of about 1.9 kpc would require an angular resolution of
∼8 × 10−4 μas. This is out of reach for the EHT. Therefore,
observing the shadow of stellar-mass black holes—let
alone its evolution—is not feasible.

FIG. 10. Configurations in the black hole mass—boson mass
phase space that could reach phase I within tI ≲ 10 yr. The
collection of curves corresponds to gravitational coupling in the
range 0 < α < 0.5 and initial black hole spin 0.5 ≤ χ0 ≤ 0.99
for both small and large initial scalar seeds. We considered
scalars composed of an l ¼ m ¼ 1 mode (blue curves) and l ¼
m ¼ 2 mode (red curves). We denote α ¼ 0.5 (green dashed
line) and the (approximate) small coupling regime α≲ 0.1
(orange dotted line).
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2. Supermassive black holes

Therefore, let us focus on supermassive black holes.
They have two advantages: their shadow diameter is
sufficiently large to be observable by the EHT as was
shown by the images of M87, and our results in Sec. III B
indicate that the change of the shadow diameter during the
entire superradiant evolution is of the order of a few μas so
may be detectable with future very long baseline interfer-
ometry (VLBI) instruments.
We illustrate the evolution of the shadow diameter of

SgrA� and M87 in Figs. 11 and 12, respectively. In
particular, we consider black holes with an initial spin of
χ0 ¼ 0.95 surrounded by scalar field fluctuations whose
total initial mass is 10−9M0 of the (initial) black hole mass.
We present snapshots of the shadow diameter at different
stages of the entire superradiant evolution. The last snap-
shot, corresponding to the end state of the evolution,
superposes the initial (dashed lines) and final (solid lines)
shadow. We observe that during the superradiant evolution
the shadow diameters change by a few μas while their
morphology changes from oblate due to high initial spin to
a more spherical shape due to the low spin of the final black
hole. While this may give hope to observe a black hole
undergoing a superradiant evolution, we observe that the
timescales of said evolution are 108 � � � 1011 yr. So, how
large is the change in the shadow diameter within a

reasonable observation time of, say, a decade? We
addressed this question in the most promising regime,
namely phase I of the superradiant evolution where the
black hole parameters and, hence, its shadow change most
rapidly. We summarize our results in Table I for different
values of the initial boson cloud. Even in this most
optimistic scenario, the change in the shadow diameter
would be of Oð10−6 μasÞ, well below the sensitivity of
current or future instruments. We remark that this con-
clusion is based on computation for fixed gravitational
couplings α ¼ 0.05 and may differ outside the small-
coupling approximation. In the following section we
explore more generally how the shadow evolution and
its final state depends on the coupling.

D. Shadow evolution parameter space

So far we have studied the superradiance-driven evolu-
tion of the black hole shadow for a fixed value of the
gravitational coupling, namely α ¼ 0.05. We observed that
the final shadow (i.e., the shadow at the end of the
superradiant evolution) is larger as compared to its initial
value. Although in Sec. III we have discussed and justified
this behavior, we left one question unanswered: does the
shadow diameter always increase? We know that the
(initial) parameters of the black hole and of the scalar
condensate play a crucial role in the evolution, and so
determine the shape of the shadow.

FIG. 11. Snapshots of the evolution of the shadow diameter, as seen by an equatorial observer, of a SgrA�-type black hole with mass
M0 ¼ 4.2 × 106 M⊙ and α ¼ 0.05. Exemplarily, we set the initial spin χ0 ¼ 0.95 and scalar cloud mass Mc;0 ¼ 10−9M0. The top left
plot corresponds to the beginning of phase I, i.e., t − tI ¼ 0. For comparison, we show the initial shadow diameter at the end of the
superradiant evolution (bottom right) as a dashed line.
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In order to study the end state of the black hole shadow,
and its dependence on the initial configurations, let us
define the change of the angular diameter Δdsh ¼
dsh;II − dsh;0, where dsh;II denotes the final state in
phase II and dsh;0 the initial one; see Sec. II B. Using
Eq. (31) the change in the shadow is determined by

Δdsh ¼
9

ro
ðMII−M0Þ

þ 3ð2 ffiffiffi
3

p
− 3Þ

ro
½MIIð1− χ2IIÞδ −M0ð1− χ20Þδ�: ð37Þ

This clearly indicates that the change in the shadow can be
negative, zero, or positive. The specific case, Δdsh ⪋ 0, is
determined by the condition

MIIð1 − χ2IIÞδ −M0ð1 − χ20Þδ
M0 −MII

⪋ 3

2
ffiffiffi
3

p
− 3

; ð38Þ

as follows from Eq. (37). We can relate the condition to the
initial black hole parameters ðM0; χ0Þ and the gravitational
coupling by using Eqs. (15) and (16). The results are shown
in Fig. 13 in which we present the signature of Δdsh in the
phase space spanned by the gravitational coupling α and
initial black hole spin χ0. Here we impose both Eq. (38) and
the superradiance condition (1) rewritten as

α ≤
m
2

χ0
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − χ20

p ; ð39Þ

where we set ωR ∼ μ. The green, rectangular-patterned
region corresponds to Δdsh > 0, i.e., a final shadow larger
than the initial one. The blue region corresponds to
Δdsh < 0, where the final shadow is smaller than the
shadow at the beginning of the superradiant evolution.

FIG. 12. Same as Fig. 11 but for a M87-like black hole with mass M0 ¼ 6.5 × 109 M⊙.

FIG. 13. Dependence of the sign of Δdsh on the gravitational
coupling α and the initial spin χ0 for the l ¼ m ¼ 1 mode. The
blank space corresponds to parameters that do not satisfy the
superradiance condition. For m ¼ l > 1 the behavior is qualita-
tively similar.
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The red dashed curve indicates the separatrix for which
Δdsh ¼ 0. As we see, by fixing α ¼ 0.05 and looking at
large initial spins, we were restricting ourselves to the
region in which Δdsh > 0. Looking at higher values of the
gravitational coupling α ∼Oð0.1Þ, this is no longer
the case, and the final shadow can indeed be smaller than
the initial one after the superradiant evolution. This is not
surprising: as indicated in Eq. (18) the change of the
shadow is determined by ddsh

dM þ mM0

α
ddsh
dJ , and these two terms

have opposite signs so lead to competing effects.
To quantify this effect, in Fig. 14 we show the rela-

tive change Δdsh=dsh;0 as a function of the gravitational
coupling constant for different spins. We observe that this
relative difference increases for decreasing coupling α
and, in the small-coupling regime, for increasing the
initial spin of the black hole. Additionally, we verify that
the zero crossings in Fig. 14 correspond to the Δdsh ¼ 0
lines in Fig. 13. Here we present the calculations for
l ¼ m ¼ 1, but we verified that the behavior form ¼ l > 1
is qualitatively similar. We remark, however, that the
values of α for which the system is in the superradiant
regime are directly proportional to the mode number m;
cf. Eq. (39).
Together with Fig. 14 we can study the maximum and

minimum values of Δdsh=dsh;0. Let us focus first on the
maximum change: this is reached when all angular
momentum is extracted and the final black hole is a
Schwarzschild black hole. We reach this state in the
limit that α → 0. Then, the final black hole has χII ¼ 0
andMII ¼ M0, and the change of the shadow is bounded by

Δdshmax

dsh;0
¼ ð2 ffiffiffi

3
p

− 3Þ½1 − ð1 − χ20Þδ�
3þ ð2 ffiffiffi

3
p

− 3Þð1 − χ20Þδ
: ð40Þ

Note that this maximum depends only on the initial
dimensionless spin χ0.

Now let us determine the minimum. Therefore, we
compute dðΔdsh=dsh;0Þ=dα ¼ 0, which translates into the
condition dMII=dα ¼ 0, where MII is given by Eq. (15).
The latter condition yields a fifth-order polynomial in α
and is not possible to solve analytically. In order to solve
for the value of the gravitational coupling constant that
minimizes Δdsh=dsh;0, αmin, we computed the minimum
numerically for different modes. We observed that the
value of αmin for m ¼ l > 1 is directly proportional to the
value for m ¼ l ¼ 1. Therefore, αmin ¼ α̃m, where α̃ is
the minimum computed form ¼ l ¼ 1. Substituting αmin in
Eqs. (16) and (15) gives

χ̃II ≡ χIIðα ¼ αminÞ ¼
4α̃

1þ 4α̃2
; ð41Þ

M̃II ≡MIIðα ¼ αminÞ ¼ M0

1 −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 16α̃2ð1 − α̃χ0Þ2

p
8ð1 − α̃χ0Þ

:

ð42Þ

Since the minimum of Δdsh=dsh;0 depends only on χII and
MII [see Eq. (31)], it will be independent of the mode m.
This value is given by

Δdshmin

dsh;0
¼

3ðM̃II
M0

− 1Þ
3þ ð2 ffiffiffi

3
p

− 3Þð1 − χ20Þδ

þ
ð2 ffiffiffi

3
p

− 3Þ½M̃II
M0

ð1 − χ̃2IIÞδ − ð1 − χ20Þδ�
3þ ð2 ffiffiffi

3
p

− 3Þð1 − χ20Þδ
: ð43Þ

Therefore, for a given initial spin χ0, the relative change in
the shadow will be bounded by

Δdshmax

dsh;0
>

Δdsh
dsh;0

≥
Δdshmin

dsh;0
; ð44Þ

independently of the modem. For example, if χ0 ¼ 0.99we
obtain Δdshmax=dsh;0 ¼ 12.1 × 10−2 and Δdshmin=dsh;0 ¼
−3.1 × 10−2.

VI. CONCLUSIONS AND OUTLOOK

Black holes have become unique gravitational probes for
ultralight, beyond–standard model particles, including
fashionable dark matter candidates or the string axiverse
[7,9,10,21]. The underlying phenomenon is black hole
superradiance, i.e., a classical mechanism that leads to the
buildup of bosonic condensates that are composed of low-
frequency, ultralight fields.
The majority of studies in this context focuses on the

detectability of these clouds with gravitational waves. We,
instead, placed observations of the black hole shadow into
the spotlight. While Refs. [66–68] explored the modifica-
tion of the shadow due to the presence of a bosonic cloud,

FIG. 14. Relative change of the final shadow with respect to the
initial shadow as a function of the gravitational coupling constant
α for different values of the initial dimensionless spin χ0. We have
fixed m ¼ l ¼ 1. For m ¼ l > 1 the behavior is qualitatively
similar.
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we investigated the impact of the superradiant evolution on
the black hole shadow in a wide range of parameter space.
To do so, we developed a numerical code capable of

simulating the buildup of the gravitational atom in the
adiabatic approximation (following Refs. [8,42]) and sim-
ulating the resulting evolution of the shadow diameter. We
have complemented this numerical study with analytic
approximations to efficiently model the superradiant evo-
lution. Our techniques are valid for any black hole mass,
although the presentation focuses on M87� and SgrA�, the
black holes at the center of the galaxy M87 and of the
Milky Way that are prime candidates for the EHT.
The superradiant evolution exerts two competing effects

on the black hole shadow: (i) the decrease of the black
hole mass decreases the shadow diameter; while (ii) the
decrease of the black hole spin increases the shadow
diameter. The majority of our study was performed in
the small coupling regime, where α ≪ 1 and the adiabatic
approximation is valid. In this regime, the spin effects
appear to dominate and the black hole shadow increases
over time. These changes can be as large as a few μas as is
illustrated in a series of snapshots in Figs. 11 and 12.
However, for supermassive black holes and for α ≪ 1 this
change occurs over timescales of 108 � � � 1011 yr. That is, in
practice these effects will not be detectable with VLBIs
over realistic observation times.
For large couplings α ∼Oð0.1Þ, however, the evolution

of the black hole mass seems to dominate and the black
hole shadow diameter would decrease. To estimate the
involved superradiance timescales, take the fastest growth
rate of MΓ ¼ 1.5 × 10−7 found for couplings of α ¼ 0.42
and spins of χ ¼ 0.99 [25]. That is, the shortest possible
timescale is τ ∼ 7 × 106M ∼ 420ð M

M⊙
Þ s, or τ ∼ 9 × 104 yr

for a black hole of M ∼ 6.5 × 109 M⊙. Indeed, a closer
qualitative inspection revealed that sufficiently small
(large) gravitational couplings yield a decrease (increase)
of the shadow diameter directly induced by the superradiant
evolution; see Fig. 13.
Although our original question “Can we tape the super-

radiant evolution with observations of the black hole
shadow?” has to be negated, this project has been very
instructive: It has taught us the richness of effects of the
superradiant evolution on the black hole shadow which is
significantly more complex than initially expected. In
particular, it is not a clear-cut, one-fits-all observable as
was concluded in Ref. [68]. Furthermore, although the
overall change in the shadow diameter can be a few μas, it
has to be compared to the actual observation time. Even if
we assume that the EHT, or a follow-up project, would
observe the shadow evolution over several decades, the
change during that time is several orders of magnitude
below their resolution.
The present paper has focused solely on the superradiant

evolution to cleanly identify its impact on the evolution of
the black hole and its shadow. We neglected additional

phenomena such as accretion of ordinary matter that
would have the opposite effect. For simplicity, we kept
the distance between observer and black hole constant.
Given the cosmological timescales involved, it would be
interesting to include the cosmological evolution of the
black hole’s distance to us. We leave a detailed analysis of
these effects for future work.
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APPENDIX A: FITTING FORMULAS FOR
SUPERRADIANT EVOLUTION

In this Appendix we derive the fitting formulas presented
in Sec. IVA. They will allow us to approximate the
superradiant evolution analytically. Since the improved
gamma fit is analogous to the gamma fit (but with a
different integral to solve), we will derive the former in less
detail than the gamma fit and squared fit.

1. Squared fit

In this fit we develop a fitting formula that uses an
ansatz for the black hole spin. Noticing the exponential
behavior of the numerical solution, our ansatz consists of an
exponential function with a second order time dependence.
This is because for this case the change is fast enough such
that we have to take into account 2 orders in the time
evolution. This scheme appears well suited to model large
seeds, whereas the evolution of small seeds is not well
captured as is illustrated in Fig. 7. Specifically, the ansatz is
given by

JðtÞ ¼ Ae−γt−βt
2 þ B: ðA1Þ

Applying the conditions Jð0Þ≡ J0 and Jðt → ∞Þ ¼ JII
determines the coefficients

A ¼ ðJ0 − JIIÞ; B ¼ JII:

In order to compute the exponent γ we will use the spin
differential equation

dJ
dt

¼ −
2m
μ

Γ0Mc; ðA2Þ
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where Γ0 is the (initial) growth or decay rate given in
Eq. (4).7 Evaluating this relation at t ¼ 0 and using the
relation dJ ¼ m

μ dM, we find the coefficient

γ ¼ 2mΓ0

μ

Mc;0

J0 − JII
¼ 2Γ0

Mc;0

M0 −MII
; ðA3Þ

where MII is given by Eq. (15).
In order to compute the coefficient β in ansatz (A1) we

need an extra condition. For this purpose we consider the
mean value of the evolved quantities, denoted by

J� ≡ Jðt ¼ t�Þ ¼
J0 þ JII

2
; ðA4Þ

and likewise for all other variables. We denote the time
when the mean values are reached as t�. We can estimate t�
by using Eq. (A2), i.e.,

dJ
dt

				
t¼t�

¼ −
2m
μ

Γ�Mc;� ∼
J� − J0

t�
; ðA5Þ

where Γ� ¼ Γ0

2
, to find

t� ¼
μ

mΓ0

J0 − JII
Mc;0 þMc;II

¼ 2

γ

Mc;0

Mc;0 þMc;II
: ðA6Þ

Ansatz (A1) now gives the extra condition

J� ¼
J0 þ JII

2
¼ JII þ ðJ0 − JIIÞ exp ½−γt� − βt2��

that we solve to find

β ¼ ln 2
t2�

−
γ

t�
: ðA7Þ

Finally, the fitting formula for the black hole spin is

JðtÞ ¼ JII þ ðJ0 − JIIÞ exp ½−γt − βt2�; ðA8Þ

with the exponents β and γ given in Eqs. (A7) and (A3).
One can now repeat the same procedure for the mass M of
the black hole as well as the mass Mc and spin Jc of the
cloud. In general, the fitting formula for the parameter pðtÞ
reads

pðtÞ ¼ ðp0 − pIIÞe−γt−βt2 þ pII; ðA9Þ

with

γ ¼ dp
dt

				
t¼0

1

p0 − pII
; β ¼ lnð2Þ

t2�
−

γ

t�
: ðA10Þ

2. Gamma fit

In this fit, instead of directly modeling the black
hole parameters we model the time dependence of the
imaginary part of the frequency. This is, as the black hole
parameters change due to the superradiant evolution, so
will the decay or growth rate of the bosonic field deter-
mined by the parameters. We capture this time dependence
of the imaginary part of the frequency with the ansatz

ΓðtÞ ¼ Γ0 exp ½−γt�; ðA11Þ

where we suppressed the subscript “(nlm)” for readability
and Γ0 is the rate given in Eq. (4). Substituting this ansatz
into the evolution equation for the cloud’s mass, Eq. (13),
yields

dMc

dt
¼ 2Γ0Mc exp ½−γt�: ðA12Þ

Solving the differential equation, we obtain

McðtÞ ¼ Mc;0 exp

�
2Γ0

γ
ð1 − e−γtÞ

�
; ðA13Þ

where we imposed limt→0Mc ¼ Mc;0. We can read off the
exponent γ by considering the limit limt→∞McðtÞ ¼ Mc;II,
and find

γ ¼ 2Γ0

lnðMc;II

Mc;0
Þ : ðA14Þ

Substituting Eq. (A13) into the evolution equations (12),
we obtain

dM
dt

¼ −
dMc

dt

¼ −2Γ0Mc;0e−γt exp

�
2Γ0

γ
ð1 − e−γtÞ

�
; ðA15aÞ

dJ
dt

¼ −
m
μ

dMc

dt

¼ −2
m
μ
Γ0Mc;0e−γt exp

�
2Γ0

γ
ð1 − e−γtÞ

�
: ðA15bÞ

We can integrate these differential equations to

MðtÞ ¼ M0 − ðMcðtÞ −Mc;0Þ

¼ M0 −Mc;0

�
exp

�
2Γ0

γ
ð1 − e−γtÞ

�
− 1

�
; ðA16aÞ7Notice that we suppress the subscripts “nlm” to improve

readability
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JðtÞ ¼ J0 −
m
μ
ðMcðtÞ −Mc;0Þ

¼ J0 −Mc;0
m
μ

�
exp

�
2Γ0

γ
ð1 − e−γtÞ

�
− 1

�
: ðA16bÞ

3. Improved gamma fit

We improve our model (A11) by taking the ansatz

ΓðtÞ ¼ Γ0 exp ½1 − eγt�; ðA17Þ

and call this improved gamma fit. Then, the evolution of the
cloud’s mass is determined by

dMc

dt
¼ 2Γ0Mc exp ½1 − eγt�: ðA18Þ

We integrate it to find

McðtÞ ¼ Mc;0 exp

�
2Γ0

Z
t

0

exp ð1 − eγt
0 Þdt0

�

¼ Mc;0 exp

�
2Γ0

�
e
γ
E½−eγt0 �

�
t

0

�

¼ Mc;0 exp

�
2Γ0e
γ

ðE½−eγt� − E½−1�Þ
�
; ðA19Þ

where E½x� is the exponential integral defined as

E½x� ¼ −
Z

∞

−x

e−t

t
dt:

In particular, E½−1� ¼ −0.219384, E½−∞� ¼ 0. Proceeding
analogously to the previous case, the spin and mass are
given by

JðtÞ ¼ J0 −
m
μ
Mc;0

�
exp

�
2Γ0e
γ

ðE½−eγt� − E½−1�Þ
�
− 1

�
;

ðA20aÞ

MðtÞ ¼ M0 −Mc;0

�
exp

�
2Γ0e
γ

ðE½−eγt� − E½−1�Þ
�
− 1

�
;

ðA20bÞ

with

γ ¼ −
2Γ0E½−1�e
lnðMc;II

Mc;0
Þ : ðA21Þ

As we show in Fig. 7 in the main text, the improved gamma
fit provides good results for both small and large seeds of
the bosonic cloud.

4. Heaviside tuning fit

For this fit we will model the time dependence of the
imaginary part of the frequency using an analytic approxi-
mation to the Heaviside step function ΘðtÞ,

ΘðtÞ ¼ lim
γ→∞

1

1þ eγt
; ðA22Þ

where γ is a coefficient that regulates how close the analytic
approximation is to Heaviside step function. Using this
expression we write

ΓðtÞ ¼ Γ0

2

1þ eγt
: ðA23Þ

Proceeding in the same way as the other fits we have to
solve the equation

dMc

dt
¼ 4Γ0Mc

1

1þ eγt
; ðA24Þ

which yields

McðtÞ ¼ Mc;0

�
1þ e−γt

2

�4Γ0
γ

; ðA25Þ

with

γ ¼ 4Γ0

lnð2Þ
lnðMc;0

Mc;II
Þ : ðA26Þ

We find that for the large seed this fit performs better than
the others. For the small seed case this fit is not good
enough. If we focus on the small seed case we can modify
expression (A25) substituting t → t − t0 and γ → γ=k on
the exponential. The first change will make the slope of the
step higher while the second one will shift the position of
the step. By comparison with numerical data we find that
the best choices for this tuning are

t0 ¼ 5.5τSR; k ¼ 1=7: ðA27Þ

Therefore, the final expression for Mc reads

McðtÞ ¼ Mc;0

�
1þ e−

γ
kðt−t0Þ

2

�4Γ0
γ

; ðA28Þ

with ft0 ¼ 0; k ¼ 1g for the large seed and ft0 ¼
5.5τSR; k ¼ 1=7g for the small seed. Although this modi-
fication can be done to the other fits, this is the one that
adjusts better to the numerical simulations. The mass and
spin of the black hole read
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MðtÞ ¼ M0 − ðMcðtÞ −Mcð0ÞÞ

¼ M0 −Mc;0

��
1þ e−

γ
kðt−t0Þ

2

�4Γ0
γ

−
�
1þ e

γ
kt0

2

�4Γ0
γ
�
;

ðA29aÞ

JðtÞ ¼ J0 −
m
μ
ðMcðtÞ −Mc;0Þ

¼ J0 −
m
μ
Mc;0

��
1þ e−

γ
kðt−t0Þ

2

�4Γ0
γ

−
�
1þ e

γ
kt0

2

�4Γ0
γ
�
:

ðA29bÞ

We can use this set of expressions to obtain a better
agreement with the numerical data. For instance, Fig. 15
shows the relative error of the shadow when using this fit.

APPENDIX B: SHADOW OF THE BLACK HOLE

Here, we derive approximate, analytic expressions to
describe the dependence of the angular diameter dsh on the
black hole spin.

1. Review

We consider a Kerr black hole of mass M and angular
momentum8 J ¼ aM ¼ χM2 given by the metric

ds2 ¼ −
�
1 −

2Mr
Σ

�
dt2 −

4aMrsin2θ
Σ

dtdφ

þ Σ
Δ
dr2 þ Σdθ2 þ F

Σ
sin2θdφ2 ðB1Þ

in Boyer-Lindquist coordinates ðt; r; θ;φÞ, where the met-
ric functions are

Δ ¼ r2 þ a2 − 2Mr; Σ ¼ r2 þ a2cos2θ;

F ¼ ðr2 þ a2Þ2 − Δa2sin2θ:

In order to consider the case of a photon from infinity
lensed by the Kerr black hole and reaching an observer at
infinity, we need to study null geodesics. Null geodesics are
described by the following set of differential equations
from the integrals of motion of the Kerr black hole [78]

Σur ¼ �
ffiffiffiffiffiffiffiffiffi
RðrÞ

p
; ðB2Þ

Σuθ ¼ �
ffiffiffiffiffiffiffiffiffiffi
ΘðθÞ

p
; ðB3Þ

Σuφ ¼ −
�
a −

L
sin2 θ

�
þ aP

Δ
; ðB4Þ

Σut ¼ −aða sin2 θ − LÞ þ ðr2 þ a2ÞP
Δ

; ðB5Þ

where P ¼ r2 þ a2 − aL, uμ is the four-velocity of the
photon, L is the projection of the angular momentum of the
photon onto the black hole’s rotation axis, E is the energy
of the photon, and

RðrÞ ¼ P2 − ΔðQþ ðL − aEÞ2Þ; ðB6Þ

ΘðθÞ ¼ Q − cos2θ½−a2E2 þ L2sin−2θ�: ðB7Þ

Q≡ κ − ðL − aEÞ2 is the Carter constant and κ is a
constant of separation used to solve the geodesics in the
Hamilton-Jacobi framework [78]. In order to study what an
observer would see, we define the observer’s sky as the
plane perpendicular to the line joining the observer and the
black hole, and determined by the coordinates ðα; βÞ,
as illustrated in Fig. 16. Next, we derive a relation between
the observer’s sky coordinates ðα; βÞ and the black hole’s
coordinates ðt; r; θ;φÞ which are defined such that z ¼
r cos θ is aligned with the spin axis. We furthermore define
the observer’s position angle θo between the observer’s line
of sight and the z axis, where θo ¼ 0 denotes an observer
facing the equatorial plane and θo ¼ π=2 corresponds to an
observer lying in the equatorial plane. We relate

α ¼ −r2o sin θo
dφ
dr

				
r¼ro

; β ¼ r2o
dθ
dr

				
r¼ro

:

FIG. 15. Relative error of the superradiant evolution of the
shadow diameter dsh of a black hole with initial mass M0 ¼
6.5 × 109 M⊙ and spin χ0 ¼ 0.8 computed with the analytic
approximation combined with the Heaviside tuning fit. We set the
coupling α ¼ 0.05 and consider scalar clouds with seed masses
Mc;0 ¼ 0.025M0 (blue solid curve) and Mc;0 ¼ 10−9M0 (green
dotted curve). The end of the blue line corresponds to the end of
the superradiant evolution.

8Note that here we derive the expressions for a, but use the
notation χ ¼ a=M ¼ J=M2 in the main text.
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We note that dφ=dr ¼ uφ=ur and dθ=dr ¼ uθ=ur, employ
Eqs. (B2)–(B5), and take the limit ro → ∞ to find

α ¼ −
L

sin θo
; ðB8Þ

β ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Qþ a2 cos2 θo − L2 cot2 θo

q
: ðB9Þ

Because the Kerr black hole is not spherically symmetric,
the photons are not confined in a plane but acquire a
precession movement. We define turning points by uμ ¼
dxμ=dλ ¼ 0, where λ is the affine parameter. The radial
turning point rmin will be the largest positive root of
RðrÞ ¼ 0, while the angular turning points ðθmin; θmaxÞ
are the roots of ΘðθÞ ¼ 0.
Since the geodesics are parametrized by L and Q, it is

useful to explore the region of the parameter space ðL;QÞ at
which photons that reach rmin can escape to infinity [79].
We rewrite Eq. (B3) as

uθ
2 ¼ Qþ a2cos2θ − L2cot2θ:

If we consider a photon crossing the equator θ ¼ π=2, we
obtain Q ¼ uθ

2 ≥ 0. Taking into account photons that
return to infinity means that dur=dλ > 0 at r ¼ rmin, i.e.,
moving away from the black hole. Hence, in order to know
the limiting case, we set urjr¼r̄ ¼ 0 and dur=dλjr¼r̄ ¼ 0,
with r̄ being the lower bound of rmin. With these conditions
we are able to solve Q and L in terms of r̄:

Lðr̄Þ ¼ r̄2ðr̄ − 3MÞ þ a2ðM þ r̄Þ
aðM − r̄Þ ; ðB10Þ

Qðr̄Þ ¼ r̄3ð4a2M − r̄ðr̄ − 3MÞ2Þ
a2ðM − r̄Þ2 : ðB11Þ

The limiting case Q ¼ 0 yields two roots for r̄ outside the
event horizon, namely r̄þ and r̄−. These roots are computed
for a photon in the equator. In order to get some physical
insight we can substitute these roots in Lðr̄Þ, where we

obtain Lðr̄þÞ > 0 and Lðr̄−Þ < 0, so we have two different
turning points: r̄þ for photons moving with positive angular
momentum, i.e., rotating in the same sense as the black
hole; and r̄− for photons moving with negative angular
momentum, counterrotating with respect to the black hole
[79]. From Eq. (B9) we can see that for photons to reach an
observer, the argument inside the square root must be non-
negative. In the case of an observer in the equatorial plane
the condition reduces to Q ≥ 0, so the values r ∈ ðr̄þ; r̄−Þ
correspond to photons reaching the equatorial plane from
all different inclinations. In the case that the observer is not
in the equatorial plane the condition for a photon to reach
her/him is given by Qþ a2 cos2 θ − L2 cot2 θ ≥ 0, with
roots smaller than ½r̄þ; r̄−�.

2. Black hole shadow formula derivation

Finding an exact formula of the angular diameter of the
black hole shadow for all spins and inclinations is difficult
due to the difficulty of finding the maximum approach
distance r̄, i.e., the inner edge of the shadow, for each
inclination. We need to solve

Qþ a2 cos2 θ − L2 cot2 θ ¼ 0; ðB12Þ

where Q and L are determined by Eqs. (B8), (B10), and
(B11). In order to derive Eq. (31) we have computed the
angular diameter numerically for all inclinations. Because
for inclinations different from 0 the shadow diameter is
similar, we now fix θo ¼ π=2 for simplicity. For this
orientation, Eq. (B12) implies Q ¼ 0. Since our goal is
to find an expression valid for all black hole mass and
observer distance, we propose the ansatz

dsh ¼ Aþ Bð1 − χ2Þδ; ðB13Þ

where χ2 accounts for the symmetry χ → −χ and the
exponent δ < 1 as indicated by our numerical computation.
To find the three unknown coefficients, we calculate the
shadow diameter analytically for a set of points in param-
eter space, namely χ ¼ 0, χ ¼ 0.5, and χ ¼ 1. For each of
these points we determine r̄� by determining the roots of
Eq. (B11) for Q ¼ 0, and insert the result in (B10) to
calculate

dsh ¼
1

ro
ðjL−j þ jLþjÞ; ðB14Þ

where L� ¼ Lðr̄�Þ.
Case χ ¼ 0: In this case we have to rederive Eqs. (B10)

and (B11), since their limit χ ≡ a=M ¼ 0 is singular. The
radial potential (B6) becomes

RðrÞ ¼ r4 − ðr2 − 2MrÞðQþ L2Þ: ðB15Þ

FIG. 16. Geometry of the system. The observer’s sky plane is
perpendicular to the line joining the observer and the black hole,
situated at the origin and with the spin pointing in the z axis.
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Furthermore, jLþj ¼ jL−j ¼ jLj due to symmetry, so the
shadow diameter is given by

dshðχ ¼ 0Þ ¼ 2jLj
ro

: ðB16Þ

We use Q ¼ 0 and the condition that the photon arrives at
the observer dur=dλjr¼r̄ ¼ 0 ¼ urjr¼r̄, to find r̄ ¼ 3M and
L� ¼ �3

ffiffiffi
3

p
M. Inserting the result in the above expression

gives

dshðχ ¼ 0Þ ¼ 6
ffiffiffi
3

p
M

ro
; ðB17Þ

which is the familiar expression for the shadow of a
Schwarzschild black hole found in [80].
Case χ ¼ 0.5: In this case we first solve Eq. (B11) to find

the roots of Q ¼ 0. They are r̄� ¼ Mð2þ cos ðπ=9Þ �ffiffiffi
3

p
sin ðπ=9ÞÞ. Inserting this into Eq. (B10) gives

L� ¼ M
2

�
−1 − 6 cos

�
π

9

�
þ 6 cos

�
2π

9

�
� 6

ffiffiffi
3

p
S

�
;

where we introduced S ¼ sin ðπ=9Þ þ sin ð2π=9Þ. Then,
the shadow diameter (B14) is given by

dshðχ ¼ 0.5Þ ¼ 6
ffiffiffi
3

p
M

ro
S: ðB18Þ

Case χ ¼ 1.0: As before, we solve for the roots of
Eq. (B11), and find r̄þ ¼ 4M and r̄− ¼ M. Inserting the
result into Eqs. (B11) and (B14) gives

dshðχ ¼ 1Þ ¼ 9M
ro

: ðB19Þ

Determining the coefficients: We now insert our results
(B17), (B18), and (B19) into the ansatz (B13) to identify
the coefficients ðA;B; δÞ. We obtain

A ¼ 9M
ro

; ðB20aÞ

B ¼ 3ð2 ffiffiffi
3

p
− 3ÞM

ro
; ðB20bÞ

δ ¼
lnð 2

ffiffi
3

p
−3

2
ffiffi
3

p
S−3

Þ
lnð4=3Þ : ðB20cÞ

Finally, the dependence of the angular shadow diameter
for an observer orientation θo ¼ π=2 can be approxi-
mated by

dsh ¼
3M
ro

½3þ ð2
ffiffiffi
3

p
− 3Þð1 − χ2Þδ�: ðB21Þ
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