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Internal geometric friction in a Kitaev-chain heat engine
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We investigate a heat engine with a finite-length Kitaev chain in an ideal Otto cycle. It is found that the critical
point of the topological phase transition coincides with the maxima of the efficiency and work output of the total
Otto engine. Finite-size effects are taken into account using the method of Hill’s nanothermodynamics, as well
as using the method of temperature-dependent energy levels. We identify the bulk and boundary thermal cycles
of the Kitaev chain engine and find that they are nonideal Otto cycles. The physics of deviation from ideal Otto
cycle is identified as a finite-size effect, which we dub as “internal geometric friction,” leading to heat transfer
from the bulk to the boundary during the adiabatic transformation of the whole system. In addition, we determine
the regimes allowing for independently running an ideal Otto refrigerator at the boundary and ideal Otto engines
in the bulk and in the whole system. Furthermore, we show that the first-order phase transition in the boundary
and the second-order phase transition in the bulk can be identified through their respective contributions to the
engine work output.
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I. INTRODUCTION

Thermodynamic methods are strictly applicable only to
describe energy processes of macroscopically large objects.
A formulation of thermodynamics for finite-size systems was
proposed by Hill [1,2], and named as nanothermodynam-
ics [3–5]. The thermodynamic behavior of bounded systems
of current interest, in particular topological insulators and
topological phase transitions (TPTs), can be examined by
the nanothermodynamic approach [6–8]. A topological phase
transition separates zero-temperature quantum states of a
system distinguished by topological numbers, which are in-
variant for the system with an energy gap under any adiabatic
changes. Gap closing is a necessary but not sufficient con-
dition for the TPT, where the topological number becomes
ill-defined. When the bulk has nonzero topological number,
gapless edge states emerge at the boundary of the system
in accordance with the bulk-boundary correspondence. The
bulk-boundary correspondence leads the boundary of the
topological system to manifest edge states due to the non-
trivial topology of its bulk. Topological numbers for pure,
zero-temperature, states are determined by the so-called Berry
phase. Extension of topological phases to finite temperatures
can be done by the generalizations of the Berry phase, for
example, the so-called Uhlmann phase [9,10]. Intriguing ther-
mal behavior, such as chiral heat currents that flow against
the thermal gradient [11], and signatures of the TPTs at the
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work output of quantum heat engines [12] were reported in
topological systems.

Here, we ask whether the gapless edge modes and the gap-
closing bulk states at the TPTs contribute to the work output
of a nanothermodynamic heat engine with distinct signatures.
We explore this question specifically for a finite-length Kitaev
chain [13], which hosts topological zero-energy Majorana
modes localized at the edges. The Majorana zero modes are
appealing for topological quantum computation [14]. Due to
the challenges concerning their direct observation, indirect
probing schemes of these modes were discussed in [15]. An
interesting proposal was to utilize stroboscopic heat current
in a time-periodic modulated spin chain to detect signatures
of Floquet-Majorana modes [16]. It is known that the Kitaev
chain undergoes a second-order phase transition at the bulk
and a first-order phase transition at the boundary [6]. We
can identify the order of the topological phase transition in
the work output of the topological heat engine by drawing
an analogy of the boundary and bulk contributions with the
quantum phase transitions of the Landau-Zener model in the
cases of the level crossing and avoided crossing, respectively.

In addition, we explore the energy exchange between the
bulk and the edge. Since the early studies performed by
Leonardo da Vinci, it is traditionally accepted that the fric-
tion force between two identical objects is independent of
their geometry—i.e., shape and size. Modern tribology stud-
ies, however, revealed that the bulk of the sliding bodies, in
addition to the interface, played also a role on the friction
[17,18]. The effects of orientation, shape, and size on friction
can be significant at any lengthscale, ranging from earthquake
fractures to nanoparticles [19] or biological cells [20]. By
introducing holes in the systems, one can show that friction is
sensitive to the topological changes [21]. Our study reveals an
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“internal” type of geometrical friction that emerges between
the bulk and the boundary of a finite-size object. Due to its
size dependence, we dub it “internal geometric friction.” It
exhibits sensitivity to the topological character of the system,
including the order of a topological phase transition during
the “sliding.” Here, the “sliding” refers to the different evo-
lutions of bulk and boundary subsystems when an adiabatic
transformation is applied to the state of the whole system. It
can be envisioned as a “relative motion” of the bulk and the
boundary on a parameter trajectory. Along the parameter path,
energy and entropy exchange occurs between the bulk and the
boundary, so that dissipation due to internal geometric friction
reduces the efficiency of the work done on the bulk of the
object along the parametric path. A perfect transformation on
the bulk would require an infinite size and an infinite time.
The term internal friction is used to describe imperfect finite-
time adiabatic transformations, which builds up coherence in
the internal degrees of freedom of a system. They can be
eliminated using the so-called shortcuts to the adiabaticity.
We leave the questions of bulk-boundary coherence, explicit
isolation of topological contribution, and shortcuts in internal
geometric friction questions open for future investigations.

Furthermore, we address the influence of a possible inter-
face that connects the heat baths to the Kitaev chain on the
heat transfer. The later question is investigated by another
finite-size thermodynamics method, known as temperature-
dependent energy levels (TDELs) [22–26]. The TDELs
scheme takes into account the contribution of the bath-system
interface as another energy dissipation channel [27,28], con-
sistent with the extended second law of thermodynamics [29].

Existing atomic and spin quantum heat engines are mainly
of academic interest, producing too small work output for any
practical application. Here, we consider a many-body engine
with potential to produce much more significant work output
(∼meV) in comparison to the single spin heat engine (∼peV).
Coupling the topological system to a mechanical, optical, or
a magnetic “flywheel” can also be envisioned for practical
device application. Further enhancement, as we show here,
is possible when the topological phase changes during the
engine cycle. Our results on the role of interface in imperfect
heat transfer to the bulk due to boundary, or internal geometric
friction, could be significant on such future applications, as
well as to interpret existing experiments [8]. Elaboration of
these practical questions are beyond the scope of our present
contribution.

This paper is organized as follows. We briefly review the
Hill’s nanothermodynamics and the framework of TDELs that
we use in two subsections in Sec. II. Our model system, the
finite-length Kitaev chain is presented in Sec. III. The results
and discussions are given in Sec. IV in four subsections. We
conclude in Sec. V. In the Appendix, we elaborate on the
regimes allowing for independently running an ideal Otto
refrigerator at the boundary and ideal Otto engines in the bulk
and in the whole system.

II. METHODS

We summarize here the key points of the two ma-
jor historical approaches developed to extend the ther-
modynamic description to finite-size systems: (i) Hill’s

FIG. 1. Schematic description of the idea of the Hill’s thermo-
dynamics. Identical, noninteracting N replicas of a system of finite
volume V form a macroscopic ensemble. Each copy is at temperature
T . The total number of particles is Nt , which can change at the cost of
chemical potential μ, same for each replica. At the cost of energy X ,
associated with so-called integral pressure p̂, another system can be
added to the ensemble. Addition of dN systems at constant volume
V increases the ensemble volume by V dN . The total volume can
also be varied by an external work, associated with mean pressure p,
changing the size of each system by an amount of dV at constant N .
We will apply this framework on a finite-size system, a Kitaev chain
of length L.

nanothermodynamics [1] and (ii) TDELs [24,27,28]. We shall
restrict ourselves to these two general methods to develop
our results. There are also other approaches to describe the
thermodynamics of small systems, but they are beyond the
scope of the present paper [30–32].

A. Hill’s nanothermodynamics

Laws of thermodynamics are stated for macroscopic
systems. In this section, we describe the so-called Hill’s
nanothermodynamics, which was developed to extend ther-
modynamical laws to the regime of finite-size systems [1,2].
The idea starts by envisioning a thermodynamically large
ensemble of small objects of volume V , as sketched in Fig. 1.
The total system comprises identical copies of the finite-size
system of interest, which are not interacting with each other.
We can apply ordinary thermodynamics on the large ensemble
to express its internal energy.

Let us assume that each replica is at temperature T . Heat
contribution to the internal energy is given by T dSt , where St

is the entropy of the entire ensemble. The number of particles
in each copy can change at the energy cost of μ. Denoting the
total number of particles by Nt in the ensemble, the chemical
work contributes to the internal energy by an amount of μdNt .
While these two terms are quite standard, the volume changes
become nontrivial. When the number of systems N in the
ensemble fluctuate by dN at constant V , the total volume
varies by V dN . Introducing the so-called integral pressure p̂
on the system, the internal energy change by such a process
can be written as −p̂V dN . The total volume could also be
changed at a constant N by applying pressure p on replicas to
change their sizes by dV . This would contribute an energy of
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−pNdV . Summing up, the Gibbs differential relation for the
internal energy of the entire ensemble reads

dEt = T dSt + μdNt − pNdV + XdN , (1)

where X = −p̂V can be interpreted as the energy cost of
adding another small-system replica to the ensemble.

Let us impose grand canonical ensemble, constant μ,V, T ,
conditions on the system and each of its copies so that Eq. (1)
simplifies to

dEt = T dSt + μdNt + XdN . (2)

Integrating Eq. (2) by the Euler theorem, for fixed T, p̂,V, μ

we find

Et = T St + μNt + XN . (3)

A critical step is to take ensemble averages per system,
E := Et/N and N := Nt/N , as the mean internal energy and
mean number of particles for a single system, respectively.
We remark that the entropy S := St/N is the same for each
small system [1,2]. Introducing ε := (p − p̂)V , so-called sub-
division potential, we then write

E = T S + μN − pV + ε. (4)

Remarkably, this internal energy expression cannot be found
by Euler integration of the corresponding Gibbs differential
relation for the internal energy of a single system. Substituting
Et = NE , Nt = NN, St = NS in Eq. (1), we get

dE = T dS + μdN − pdV, (5)

without any ε. The underlying result is that the internal energy
for a finite-size system is no longer a linear homogeneous
function of S,V , and N so that Euler integration cannot be
applied. Physically, this corresponds to the breaking of the
extensivity property of thermodynamic functions at a small
system size. The ordinary thermodynamics can be recovered
in the limit ε → 0, which is the case for large systems.

Using Eqs. (4) and (5), the generalized Gibbs-Duhem
equation can be written as

dε = −SdT + V d p − Ndμ. (6)

With the definition of ε, this yields the differential relation for
X ,

dX = −SdT − pdV − Ndμ, (7)

which is the same as the ordinary thermodynamic one, by
identification of X = −p̂V ≡ � as the grand potential of a
single system. Using the grand potential allows us to establish
the connection of Hill’s framework to the statistical mechanics
through

�(T, μ,V ) = −kBT ln �(T, μ,V ), (8)

where

�(μ, T,V ) = Tr exp[−β(H − μN )], (9)

is the grand canonical partition function for a single system
described by the Hamiltonian H in the ensemble with β =
1/kBT . Note that we can split the grand canonical partition
function into two parts, � = −pV + ε, demonstrating the
subdivision potential as the difference between the grand po-
tentials of the bounded and unbounded systems. Accordingly,

the possibility to describe boundary effects on the thermody-
namic behavior of small systems emerges naturally in Hill’s
framework. On the other hand, in contrast to �, a closed-form
statistical mechanical expression or microscopic origin for the
subdivision potential ε is not given in the Hill’s nanothermo-
dynamics.

Equations (4) to (6) constitute the essential relations of
Hill’s nanothermodynamics. We remark on two subtle points.
First, it is assumed that the small systems can be thermal-
ized to the bath temperature T , and Hill’s thermodynamics
does not give any mechanism for this thermal equilibration.
Second, the subdivision potential is a phenomenological term
presented without any microscopic origin. These two issues
are going to be addressed within the framework of the TDELs
method. A special method to construct ε using statistical me-
chanical calculation of � was introduced in Refs. [6,7], and
will be described subsequently.

B. Temperature-dependent energy levels

The method of TDELs was proposed as a fast and conve-
nient way to perform statistical mechanic calculations for an
assembly of systems [22,23]. It was applied to semiconductors
[33–36], superfluids [37], optomechanical oscillators [38,39],
heat losses in thermoelectric systems [27,28], and thermaliza-
tion of finite-size systems [24–26]. Even before TDELs were
proposed, the advantages of temperature-dependent mean po-
tentials and corresponding forces were known in statistical
mechanics of fluid mixtures [40]. A modern application of
TDELs connects them to a temperature-dependent effective
Hamiltonian, the so-called “Hamiltonian of mean force” to ex-
plore strong coupling of a small system to a heat bath [41,42],
where counterintuitive negative thermophoresis effects can be
explained using TDELs [43].

Temperature-dependent effective Hamiltonians and
TDELs arise after a prior averaging over certain possible
microstates of the assembly in thermal equilibrium, as
illustrated in Fig. 2. The original definition of TDELs [22]
and the definition of the Hamiltonian of mean force [41,42]
can be combined by the expression

〈n|e−βHa (T )

Za
|n〉 := e−βEn (T )

Za

≡ 〈n|Trb

(
e−βH

Z

)
|n〉. (10)

Here β = 1/kBT with kB being the Boltzmann constant. H =
Ha + Hb + Vab is the Hamiltonian of a macroscopic system in
thermal equilibrium. For clarity and brevity of notation we
restrict it to an assembly of two parts labeled with a and
b. Part a is the system we want to single out so that partial
integration, or trace, is employed over the quantum numbers
associated with part b. In Fig. 2 for example, the central small
chain corresponds to part a, while the macroscopic thermal
leads would be part b. Quantum numbers associated with
the part a are represented by the symbol n. We remark that
different definitions of the Hamiltonian of the mean force can
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FIG. 2. Illustration of the method of temperature-dependent en-
ergy levels (TDELs) applied to a finite-length (L) chain. Total system
of the chain and the semi-infinite interfaces is macroscopic and hence
can be described by ordinary thermodynamics. The total system is
assumed to be in a thermal equilibrium state due to the exposure
of the leads to a thermal environment at temperature T . If we are
interested only in the central chain, then interface degrees of free-
dom can be integrated out from the state of the total system. Such
prior averaging by partial integration yields a temperature-dependent
reduced state for the finite chain. The TDELs are conveniently in-
troduced by expressing such a state in a canonical thermal (Gibbs)
form. The TDELs approach differs from that of the Hill (cf. Fig. 1)
in its construction of the macroscopic system in terms of an interface.
In the Hill’s nanothermodynamics, an ideal “gas” of replicas of
the finite system is used to be able to apply ordinary macroscopic
thermodynamics.

be found in the literature, due to dropping or partially keeping
the partition functions [41–43]

Za := Trae−βHa (T ) =
∑

n

e−βEn (T ), (11)

Z := Trbe−βH , (12)

of the part a and the total system, respectively. They contribute
to the Hamiltonian of the mean force as constant potential
shifts.

The definition of the TDEL as well as of the Hamiltonian
of the mean force is not unique. The choice of monotonically
decreasing exponential, or the canonical Gibbs form, for the
reduced density matrix of part a is to allow to recover con-
veniently the standard thermodynamic expression for the free
energy [22,23]

Fa = −kBT ln Za = −kBT ln
∑

n

e−βEn (T ). (13)

On the other hand, thermodynamically consistent calculations
of the entropy Sa and the mean energy Ea

Ea = kBT 2 ∂ ln Za

∂T
, (14)

Sa = Ua

T
+ kB ln Za, (15)

lead to the expressions

Ua =
∑

n

pa(n)

[
En(T ) − T

∂En(T )

∂T

]
, (16)

Sa = −kB

∑
n

pa(n)

[
ln pa(n) + ∂En(T )

kB∂T

]
, (17)

where pa(n) := exp [−βEn(T )]/Za.

These expressions indicate that in the presence of TDELs,
the energy transferred from the heat bath to the system, cannot
be completely identified as heat. To see this clearly, let us
rewrite Eq. (16) as

U = 〈H〉 − T

〈
∂H

∂T

〉
, (18)

where 〈H〉 refers to the usual thermodynamic expression of
the mean energy, given by the first term in Eq. (16). We drop
the label a for brevity. In differential form U becomes

dU =
∑

n

(End pn + pndEn) − d

〈
∂H

∂T

〉
. (19)

Similarly, the differential form of Eq. (17) gives

T dS =
∑

n

End pn − T d

〈
∂H

∂T

〉
. (20)

The combination of the last two expressions yields the first
law of thermodynamics in the presence of TDEL

dU = dW + T dS −
〈
∂H

∂T

〉
dT, (21)

with

dW =
∑

pndEn. (22)

In the case of heating, where a heat bath or an interface lead
is attached to the small system, we take dW = 0 and write
[24,26–28]

δQeff = δQ −
〈
∂H

∂T

〉
dT . (23)

This expression tells us that some of the heat δQ from the bath
has been lost at the interface in terms of work, described by
the second term in Eq. (23), and the system received a reduced
amount of heat δQeff . As the system temperature changes to
match with that of the heat bath, the energy gaps between the
energy levels may change, in addition to their populations.
Accordingly, the second term cannot be interpreted as heat;
it represents the work applied to change the energy gaps.
Such a mechanism has been discussed in detail to explain
thermalization of small systems [24–26]

Equation (23) originates from the first law modified for a
small system; rewriting it as dST = dQ/T − 〈∂H/∂T 〉dT/T ,
one recovers the modified second law of information transfer
channels [29]. The entropy transferred from a heat source into
the system through the boundary is balanced by the entropy
lost at the boundary. The boundary acts as an energy channel
interfacing the heat source and the system.

Hill’s nanothermodynamics and the method of TDELs can
be connected to each other by recognizing that the subdivision
potential can be determined by [24]

ε = T

〈
∂H

∂T

〉
. (24)

This can be seen by substituting p(n) =
exp [−β(En(T ) − μ)]/� into the first term in Eq. (17),
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which yields

〈H〉 = T S + μN − kBT ln � + T

〈
∂H

∂T

〉
. (25)

Hill’s approach determines the mean energy from the usual
thermodynamic expression so that E ≡ 〈H〉 in Eq. (4); while S
is identified with that of TDEL [24]. Recognizing kBT ln � =
p̂V and using ε = (p − p̂)V in Eq. (25), Eq. (24) follows.

We can use the calculations of Hill’s nanothermodynamics
to evaluate the heat transfer as described by the TDEL method
according to

Qeff =
∫

T dS −
∫

ε

T
dT . (26)

We emphasize that the first term is written in terms of the S
of Hill’s nanothermodynamics, according to which we have
dE = dQ = T dS. The TDELs method yields a correction
term associated with the work done on the energy gaps, such
that some heat is dissipated at the system-bath interface and
only an effective heat is received by the system.

Next, we apply this generic formalism to a specific model.

III. MODEL: KITAEV CHAIN IN OTTO CYCLE

The Kitaev chain is a one-dimensional topological super-
conductor model [13], which consists of spinless fermions,
described by the Hamiltonian

H = −μ

n∑
i=1

a†
i ai −

n−1∑
i=1

(ta†
i ai+1 − �ai+1ai + H.c.). (27)

Here i = 1, . . . , n labels the n sites on the one-dimensional
finite-length Kitaev-chain, μ is the chemical potential, t is
the hopping parameter, and � is the superconducting pair-
ing parameter. The fermionic annihilation (creation) operators
ai(a

†
i ) satisfy the anticommutation relations {ai, a†

j} = δi j .
The Kitaev chain undergoes a topological phase transition at
|μ| = 2t , which separates a topological phase for |μ| < 2t
from a trivial phase for |μ| > 2t . In the topological phase, the
Kitaev chain hosts a pair of Majorana zero modes at its edges.

Following the Hill’s nanothermodynamics, an ensemble of
identical, equivalent, and noninteracting copies of a finite-
length Kitaev chain will be considered. For the TDEL
approach, we consider a macroscopic Kitaev chain decom-
posed into two parts: One part is taken as the finite-length
system, and the other is an interface lead, which is long
enough to be assumed in thermal equilibrium with a heat bath
[22]. TDELs arise as a result of averaging over the interface
microstates, and describe the heat exchange during the ther-
malization of the finite-length chain with the heat bath in a
thermodynamically consistent way.

Thermodynamical properties of bulk and boundary of the
finite-length Kitaev chain can be investigated using Hill’s nan-
othermodynamic framework from the statistical mechanical
point of view. The idea described in Refs. [6,7] is to use
a linear fit to the grand potential in Eq. (8). The chemical
potential term is already included in the Kitaev model, and
hence the grand canonical partition function reduces to

�(μ, T,V ) = Tr exp[−βH]. (28)

The chemical potential term in the Kitaev model makes two
contributions to the grand potential. It gives a constant shift,
which can be dropped from the grand potential, but is also
present in the eigenvalues of the Kitaev model in Eq. (27).
Accordingly, the grand potential is dependent on the chemical
potential. The following ansatz describes the linear fit for the
grand potential [6]:

�(μ, T, L) = �c(μ, T )L + �0(μ, T ). (29)

Here L is the total length of the chain and �cL = −pL is the
bulk grand potential, which is extensive, while �0 = ε is the
subdivision potential, which emerges due to the finite length
of the chain. The corresponding entropies obey a similar rela-
tion

S = ScL + S0. (30)

The first term, the bulk entropy, coincides with the entropy
of the total system in the thermodynamic limit, where S0

disappears at L → ∞. This first term can be larger than the
entropy of the total finite system because S0 can be negative.
A negative S0 is allowed in the Hill’s thermodynamics, which
is a nonextensive thermodynamic theory. Similar conclusions
apply to other thermodynamic quantities, which are extensive
in the thermodynamic limit but nonextensive in the finite-size
nanothermodynamic regime.

We first find the eigenvalues of the Hamiltonian in Eq. (27)
through a numerical calculation, then evaluate the total en-
tropy S of the chain. Sc and S0 are determined by using a
linear fit to S for an n-site chain (we take the unit length of the
chain as 1 so that L = n) in the interval 200 < n < 225. The
length is chosen to be sufficiently large to make the linear fit a
valid approximation [6]. Repeating the procedure for different
temperatures, the T -S relation is found. We will consider
the thermodynamic cycle of an ideal Otto engine. The Otto
cycle consists of two isentropic (adiabatic) and two isochoric
(isoparametric) stages [44]. We take the chemical potential μ

as the control parameter for the Otto cycle. The curves in the
T -S plane at different μ will be used to determine the explicit
cycle diagram and the associated work output. In the follow-
ing subsections, the corresponding work and efficiency of the
Kitaev-chain Otto cycle will be investigated by distinguishing
the bulk and boundary contributions and by considering the
effect of bath-system interface as an energy channel, which
modifies the heat exchange between the heat baths and the
Kitaev chain.

A Kitaev chain could be realized in a trapped ion quan-
tum simulator [45]. Such a system has the advantage of
single site resolution for heterogenous probing of thermal
properties. Accordingly, either the bulk or the boundary of
the ion string could be thermally excited. For that aim,
one could use a photonic quantum interface to encode ther-
mal Gibbs states locally. Different work and heat transfer
at the bulk and boundary could be investigated by spatially
resolved measurements. Other quantum simulators for topo-
logical matter, such as superconducting chains [46] or optical
lattices [47,48], or arrays of nonlinear optical cavities [49],
are also possible embodiments where bulk and boundary ef-
fects could be experimentally distinguished. One can envision
local measurements on bulk and boundary by using tunnel-
gates [50], narrow local gates [51,52], or high-resolution
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FIG. 3. Temperature-entropy (T -S) diagram of a finite-length
Kitaev chain according to Hill’s nanothermodynamics. The chain
has n = 225 sites and is characterized by a superconducting pair-
ing parameter � = 0.25 and hopping parameter t = 0.25. The blue
dotted curve is for the chemical potential μ1 = 0.4, while the red
dashed one is for μ2 = 0.6. An Otto cycle can be defined using the
segments between the points A, B,C, and D determined by the inter-
section of the curves and the solid yellow and solid purple constant
entropy lines. The cycle operates between a hot bath at temperature
TB = 0.08 and a cold bath at temperature TD = 0.05 in the clockwise
direction. The stages of the cycle are numbered 1, 2, 3, 4 in order.

scanning-tunneling microscopy/spectroscopy [53], which are
utilized for electrical transport experiments to probe Majorana
zero modes. While such possible experiments would be of
fundamental interest, they can eventually lead to practical
quantum thermal-topological devices as well. A robust topo-
logical heat engine, which exploits the boundary properties
of the one-dimensional nonequilibrium Su-Schriefer-Hegel
model, was proposed in a thermoelectric setup in Ref. [54].
These thermotopological devices may enable probing intrigu-
ing effects like a Berry-phase-induced heat pumping [55] or a
geometric-phase-induced heat flux [56]. Thermal devices such
as heat pumps using braiding of Majorana zero modes were
also recently proposed [57].

IV. RESULTS AND DISCUSSION

In our calculations, we consider a Kitaev chain of length
n = 225 with a superconducting pairing � = 0.25 and a hop-
ping t = 0.25. μ is used as the control parameter, for which a
TPT takes place at μ = 0.5. We use the same set of parameters
as in Ref. [7].

A. Work and efficiency of finite-length Kitaev-chain Otto engine

Let us first consider the finite-length Kitaev chain as a
whole. The curves in the T -S plane of the chain at μ1 = 0.4
(blue dotted) and μ2 = 0.6 (red dashed) are plotted in Fig. 3.
The vertical lines are the constant entropies S2(TA) = S1(TD)
and S2(TB) = S1(TC ), where Tx denote the temperature of the
chain at the point x = A, B,C, D. The lines are fixed by the

hot and cold bath temperatures, TB = 0.08 and TD = 0.05,
respectively.

The Otto cycle is then determined by finding the inter-
mediate temperatures, TA and TC , from the constant entropy
conditions. By intermediate temperatures, we refer to the tem-
peratures the total system attains between the hot and cold
baths. We note that we work in the low-temperature regime,
where the temperatures in the Otto cycle are much less than
the energy gap. The system goes through the following stages
in the Otto Cycle.

(1) Stage 1 (A → B): The system is initially at temperature
TA, and is coupled to a hot bath. It thermalizes to the hot
bath temperature TB = 0.08 through an isoparametric process,
where the chemical potential is μ = μ2 = 0.6. During this
process no work is done. The amount of heat injected to the
system is given by

QAB =
∫ TB

TA

T
dS2

dT
dT . (31)

(2) Stage 2 (B → C): This is an adiabatic process. The
entropy of the system remains constant. The system is sep-
arated from the hot bath. As the chemical potential changes
from μ = μ2 to μ = μ1, the chain attains the intermediate
temperature TC at point C. There is no heat exchange in this
process, but work is done on the system. The constant entropy
condition is S2(TB) = S1(TC ).

(3) Stage 3 (C → D): This is an isoparametric stage,
where μ1 is kept constant. The system is brought into contact
with a cold bath at temperature TD. As the chain thermalizes
to the cold bath temperature, heat is ejected from the system.
The ejected heat is given by

QCD =
∫ TD

TC

T
dS1

dT
dT . (32)

(4) Stage 4 (D → A): The system goes through another
adiabatic process from point D to point A, in which the
constant entropy condition is S1(TD) = S2(TA). The chemical
potential is changed from μ1 to μ2. There is no heat exchange
and work is done by the system.

We use a sign convention where heat injected to (ejected
from) the system is always taken to be positive (negative). We
note that the sign convention for heat and work are different
such that positive work signifies that the system does work on
an external agent, whereas positive heat means heat is injected
into the system as previously mentioned. The heat exchanges
of the chain with the heat baths at the isoparametric stages
A → B and C → D are calculated by Eqs. (31) and (32),
where the entropies of the chain for μ = μ1 and μ = μ2 are
distinguished by S1 and S2, respectively. The net work per-
formed by the cycle is then calculated by W = QAB + QCD.

QAB > 0 > QCD and the positivity of W is required for heat
engine operation, while QCD > 0 > QAB and a negative work
output would be the case of refrigerator behavior.

We now fix the parameter of the hot isochore μ2 = 0.6
and vary the one for the cold isochore μ1 ≡ μ from 0.4 to
0.6. Using the construction of the Otto cycle described in
Fig. 3, we evaluate the work output and the efficiency of
the cycle. In Fig. 4, we plot the injected and ejected heat,
together with the work output, for a range of μ1 values. We
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FIG. 4. The absorbed heat QAB (red dashed), the ejected heat
QCD (blue dotted), and the net work output W (black solid) are
given as a function of the chemical potential μ1 of the cold isochore
for an ideal Otto cycle working between a hot bath at temperature
TB = 0.08 and a cold bath at temperature TD = 0.05.

observe that at the TPT, the work output of the cycle becomes
maximum. The TPT point (or the maximum) is slightly shifted
from μ1 = 0.5, possibly because the engine operates at finite
temperatures, which are known to reduce the critical value of
μ [7]. For this range of μ1, QAB > 0 and QCD < 0, so that
the cycle can be properly described as a heat engine operation
with W > 0, except for a small range μ1 > 0.585. As shown
in Fig. 5, the efficiency is maximum at the TPT. Our results
show that the TPT enhances the work output of the Kitaev
chain heat engine, as well as its efficiency. Enhancements
in the efficiency due to phase transitions were previously
reported in the literature [58]. The existence of a TPT in a

0.42 0.44 0.46 0.48 0.5 0.52 0.54 0.56 0.58
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0.4

FIG. 5. The efficiency η of the finite Kitaev-chain heat engine is
given as a function of the chemical potential μ1 of the cold isochore
for an Otto cycle working between a hot bath at temperature TB =
0.08 and a cold bath at temperature TD = 0.05.

Kitaev chain at finite temperatures is restricted to a certain
temperature regime [6,9,10], and the temperatures that we
consider here remain within this limit.

B. Bulk and boundary cycles of the Kitaev-chain heat engine

The Hill’s nanothermodynamic framework allows us to
examine the bulk and boundary contributions to the net work
output of the Kitaev chain heat engine. For that aim, we use
Eq. (30) to write the total heat exchange

Q =
∫

T dS =
∫

T dScL +
∫

T dS0 = QcL + Q0, (33)

in terms of the bulk and boundary contributions, QcL and Q0,
respectively.

While the total system goes through the Otto cycle de-
scribed in Fig. 3, the bulk goes through the thermal cycle
plotted in Fig. 6(a). The adiabatic stages are altered due to
internal friction resulting from finite-size effects, and the bulk
thermal cycle diverges from an ideal Otto cycle. The heat
exchanges and the net bulk work output WcL are given in
Fig. 6(b). We find that the behavior of the heat exchanges
by the bulk during the isochoric stages as a function of μ1

are qualitatively the same as those for the entire chain heat
exchanges (cf. Fig. 4).

Although there are heat exchanges during the B → C and
D → A stages in the bulk, given by QBC

c L and QDA
c L in

Fig. 6(b), their effect on the bulk work output are not strong
enough to change the qualitative behavior of WcL. We con-
clude that the bulk thermal cycle is slightly nonideal Otto, and
the bulk and the total system behave qualitatively similarly
in their heat engine operation. The work output of the bulk
engine is also maximum at the critical point of the TPT.

The bulk thermal cycle is only slightly different from the
total finite Kitaev-chain heat engine cycle and the dependence
of the injected and ejected heat and the net work outputs
on the chemical potential μ1 do not exhibit much qualitative
difference for the bulk and for the entire chain. However, the
boundary behavior is remarkably different from both.

The boundary thermal cycle is plotted in Fig. 7(a). This
cycle produces positive work only for a small parameter range
around the TPT point at μ1 = 0.5, where the boundary work
W0 is also maximized.

Inspecting both Figs. 6(b) and 7(b), we observe that
QBC

c L = −QBC
0 (and QDA

c L = −QDA
0 ) since there is no heat

exchange in the total Kitaev-chain heat engine on the adia-
batic stage from point B to C (and D to A) and the left-hand
side (LHS) of Eq. (33) would be zero. The entropy flows
from the bulk to the boundary, consistent with the conser-
vation of total entropy �S = 0. Local entropy changes in
the bulk and boundary are equal and opposite to each other
�ScL = −�S0. While the adiabatic transformation induced
by changing chemical potential is employed on the total sys-
tem, heat transfer from bulk to the boundary causes deviation
of ideal adiabatic transformations in either subsytem. Accord-
ingly their cycles are nonideal Otto cycles. This finite-size
effect is a spatial analog of the finite-time imperfection of
adiabatic transformations [59]. Following the term “internal
friction” used for imperfect finite-time adiabatic transforma-
tion in finite-time Otto cycles [59], here we dub the finite-size
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FIG. 6. (a) The temperature-entropy density (T -Sc) diagram for the bulk of the finite-length Kitaev chain. The red dashed curve is for the
chemical potential μ1 = 0.4, while the blue dotted one is for μ2 = 0.6. There are heat exchanges on the B-C (brown solid) and D-A (purple
dot-dashed) stages. (b) The heat exchanges of the bulk, QAB

c L (red dashed), QDA
c L (brown solid), QDC

c L (blue dotted), QBC
c L (purple dot-dashed),

and the bulk work output WcL (black solid) are given as a function of the chemical potential μ1 of the cold isochore of a finite-length Kitaev
chain in an Otto cycle. The hot isochore chemical potential is μ2 = 0.6. All parameters are the same as in Fig. 3

effect on adiabatic transformation as “internal geometric fric-
tion.”

The boundary cycle shows different characteristics for the
trivial (μ1 > 0.5) and topological (μ1 < 0.5) phases of the
finite Kitaev chain. For the topological phase, we can define
the incoming heat as Qin

0 = QBC
0 + QCD

0 > 0 and the outgo-
ing heat Qout

0 = QDA
0 + QAB

0 < 0. Then, the boundary cycle
operates as a refrigerator with W0 < 0. In the topological
phase, the boundary and bulk thermal cycle operations are
reversed. For the trivial phase, the thermal cycle characteristic
of the boundary cannot be identified with a heat engine or a
refrigerator. Our results presented in this section show that as
the total system operates in an ideal Otto cycle, the bulk of the
finite Kitaev chain operates approximately close to an ideal
Otto cycle, and the boundary is a highly peculiar nonideal
Otto cycle. In the Appendix A, we also address the question

of whether it is possible to identify independently operating
bulk, boundary, and total Otto cycles.

C. Landau-Zener and spin-1/2 model quantum heat engines

We show in this section how quantum phase transitions of
the Landau-Zener model, both in the case of level crossing and
avoided crossing, are probed via a quantum Otto heat engine
cycle. We draw an analogy between the bulk/boundary contri-
butions to the Kitaev heat engine and avoided/level crossing
cases of a Landau-Zener model. The Landau-Zener model
describes a single two-level system, given by the Hamiltonian

HLZ = −ω0

2
σz + gσx, (34)
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FIG. 7. (a) The temperature-entropy (T -S0) diagram for the boundary of the finite-length Kitaev chain. The blue dotted curve is for the
chemical potential μ1 = 0.4, while the red dashed one is for μ2 = 0.6. The process from B to C is given by the brown solid line and from D
to f A by the purple dot-dashed line. (b) The heat exchanges of the boundary, QAB

0 (red dahed), QDA
0 (brown solid), QCD

0 (blue dotted), QBC
0

(purple dot-dashed), and the boundary work output W0 (black solid) are given as a function of the chemical potential μ1 of the cold isochore
of a finite-length Kitaev chain in an Otto cycle. All parameters are the same as in Fig. 3.
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FIG. 8. We display the population inversion in the case of level
crossing by red dotted lines. The populations remain in their energy
levels in the avoided crossing regime displayed by blue solid lines.

where σx and σz are Pauli spin matrices. The gap is determined
by both the parameter g and the transition frequency ω0. For
the g = 0 case, a spin-1/2 model is retrieved.

The ground-state energy is E0 = − 1
2

√
4g2 + ω2

0 and the

excited state is given by E1 = 1
2

√
4g2 + ω2

0. The energy spec-
trum of Eq. (34) displays two different behaviors, depending
on the value of the coupling g: (1) For g = 0, it exhibits a level
crossing of energy levels at the critical value ω0 = 0 and (2)
for g �= 0, it shows an avoided crossing at the critical value
ω0 = 0. The level crossing gives rise to a first-order quantum
phase transition (QPT), while the avoided crossing leads to a
second-order QPT [60]. A schematic of these two behaviors of
the Landau-Zener model at the critical point is given in Fig. 8.

Next, we show that it is possible to probe QPTs of the
Landau-Zener model for both avoided crossing and level
crossing via the work output of quantum heat engine cycles.
The heat engine operates using a quantum Otto cycle, consist-
ing of quantum adiabatic and quantum isochoric stages [44],
as depicted in Fig. 9. The control parameter in the cycle is the

FIG. 9. Quantum Otto engine scheme, i.e., occupation
probability-transition frequency Pn(T, ω) vs ω0 for both the
spin-1/2 system and the Landau-Zener model with g �= 0 (cycle
direction is the same for both cases and is given by the red arrow).
The system is in contact with a cold bath at point A and a hot bath
at point C. The cold and hot temperatures are TA = 0.5 and TC = 2,

respectively. The hot and cold isochore parameter is kept constant at
ω0 = ω1 and ω0 = ω2, respectively.

transition frequency ω0, which takes values between the hot
isochore frequency ω1 and the cold isochore frequency ω2.

In the cycle for the spin-1/2 engine, negative temperatures
are used to implement population inversion. Consideration
of negative temperatures in the context of heat engines and
refrigerators to examine the foundations and extent of ther-
modynamical laws is an old problem [61], which recently has
received much attention due to the recognition of the advan-
tages of negative temperatures in quantum thermodynamics
[62–66]. The system goes through the following stages for the
spin-1/2 engine with g = 0 and the Landau-Zener engine with
g = 0.1 (the cycle direction is the same for the both engines
and is given by the red arrow in Fig. 9).

(1) Stage 1 (A to D): The system is attached to a cold bath
with positive temperature at point A and starts at a thermal
state with ω2 > 0, TA > 0. The system is detached from the
cold bath and isochoric heat transfer takes place at fixed ω2 >

0. The heat Qin
α is injected to the system:

Qin
α =

∑
n

En(ω2)[Pn(TD, ω2) − Pn(TA, ω2)]. (35)

Here, α labels either the spin-1/2 system with 1/2 or the
Landau-Zener system with LZ. The spin-1/2 system (Landau-
Zener system) attains negative (positive) temperature TD < 0
(TD > 0) at point D.

(2) Stage 2 (D to C): The system is quantum adiabatically
transformed to a thermal state at point C, where it is at-
tached to a hot bath at temperature TC > 0. The system passes
through a level crossing(an avoided crossing) point at ω0 = 0
for the spin-1/2 system (for the Landau-Zener system), as the
transition frequency is changed. There is no heat transfer but
work is done on the system. A population inversion occurs in
the spin-1/2 system as the temperature changes from TD < 0
to TC > 0.

(3) Stage 3 (C to B): The system is separated from the hot
bath. An isochoric heat transfer takes place at fixed ω1 < 0.

The temperature at point B is TB < 0 (TB > 0) for spin-1/2
system (for the Landau-Zener system). No work is done but
heat Qout

α is ejected by the system:

Qout
α =

∑
n

En(ω1)[Pn(TB, ω1) − Pn(TC, ω1)]. (36)

(4) Stage 4 (B to A): The system is quantum adiabatically
transformed to another state at point A passing through the
critical point at ω0 = 0 as the transition frequency is changed
from ω1 to ω2. There is no heat transfer but work is done. A
population inversion occurs for the spin-1/2 system, as TB <

0 at point B and TA > 0 at point A. For the Landau-Zener
system, TB > 0, and the populations remain in their energy
levels.

In Eqs. (36) and (35),

Pn(Ti, ω0) = e−βiEn(ω0 )

Z (Ti, ω0)

are the occupation probabilities corresponding to energy
En(ω0) with n = 1, 2. i labels the cycle points with i =
A, B,C, D. Z (Ti, ω0) = ∑

n e−βiEn(ω0 ) is the partition function.
βi = 1/(kBTi ), where kB = 1 is the Boltzmann constant.
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(a) (b)

FIG. 10. (a) Incoming heat Qin
1/2 (red dotted), outgoing heat Qout

1/2 (blue dashed), and work output W1/2 (black solid) for a spin-1/2 system.
(b) Incoming heat Qin

LZ (red dotted), outgoing heat Qout
LZ (blue dashed), and work output WLZ (black solid) for the Landau-Zener model with

g = 0.1, given as a function of ω1 of the hot isochore. The initial transition frequency ω0 = ω2 = 2 is held fixed and and ω1 is changed in the
figure.

Figure 10(a) displays the incoming heat Qin
1/2, outgoing

heat Qout
1/2 and work output W1/2 of the spin-1/2 quantum heat

engine working between a cold bath at temperature TA = 0.5
and a hot bath at temperature TC = 2. The system is prepared
at point A with ω0 = ω2 = 2. Figure 10(b) displays the in-
coming heat Qin

LZ, outgoing heat Qout
LZ , and work output WLZ of

the Landau-Zener quantum heat engine in its avoided crossing
regime.

In Fig 11, we show the boundary and bulk contributions
in the Kitaev heat engine, which uses an ideal Otto cycle. We
consider a Kitaev chain of length n = 225 with a supercon-
ducting pairing parameter � = 0.25 as in the rest of the paper
with the same cold and hot bath temperatures, TA = 0.05 and
TC = 0.08, respectively. The chemical potential is fixed at
μ = 0.5, and the hopping parameter t is used as the con-

trol parameter for which a topological phase transition (TPT)
takes place at t = 0.25. For such an ideal Otto cycle, the first
isochore parameter t1 is changed, while the parameter of the
second isochore t2 is held fixed at 0.3. The cycle direction
is the same as in Fig. 3. We specifically choose the control
parameter for the topological engine as the hopping parameter
t because its function in the finite-length Kitaev chain Hamil-
tonian, Eq. (27) is comparable to the function of the transition
probability parameter ω0 in the Landau-Zener Hamiltonian
given in Eq. (34).

The behavior for the case of the spin-1/2 model depicted
in Fig. 10(a) is qualitatively the same as the one found in
Fig. 11(a) for the boundary contribution in the topological
Kitaev chain engine. The spin-1/2 model captures the first-
order quantum phase transition nature of the topological phase
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FIG. 11. (a) The boundary and (b) the bulk contributions to the injected Qin
0 , Qin

c (blue dashed) and ejected heat, Qout
0 , Qout

c (red dotted), and
to the work output W0, Wc (black solid), respectively, as a function of the hopping parameter t1 of the first isochore of a finite-length Kitaev
chain in an Otto cycle, operating between a cold bath at temperature TA = 0.05 and a hot bath at temperature TC = 0.08. The control parameter
of the engine is t1, which changes from 0.2 to 0.3.
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transition at the boundary. There, the emergence of unpaired
Majorana fermions can be considered as two uncoupled spins
for an intuitive description of the heat and work behavior in
Fig. 11(a).

The intersection of Qin
1/2 and W1/2 in Fig. 10(a) is also a

common feature in the heat and the work behavior of spin-
1/2 and the boundary of Kitaev-chain systems, which occurs
due to the fact that Qout

1/2 = 0. No heat transfer is required
to equilibrate the system with the bath at TC , as both levels
are degenerate at the transition point [ω0 = 0 in Fig. 10(a)
and t1 = 0.25 in Fig. 11(a)]. Another common feature is that
the thermal cycle characteristics before and after the phase
transition are different both in Figs. 10(a) and 11(a). Before
their respective transition points, their thermal cycles cannot
be identified with a heat engine or a heat pump, but after
the phase transition point, they both operate as heat engines
producing positive work.

The Landau-Zener engine also operates according to the
scheme given in Fig. 9. We note that the temperatures at
TB and TD are positive for such an engine since the system
is taken through an avoided crossing point at ω0 = 0. The
assignment of negative temperatures is used only when there
is a population inversion in the system.

The behavior of Fig. 11(b), which is the bulk contribu-
tion to the topological Kitaev heat engine, is similar to the
Landau-Zener quantum engine results depicted in Fig. 10(b).
Both results are consistent with the second-order nature of the
phase transitions. The work output is maximized at the critical
point, ω1 = 0 for the Landau Zener quantum heat engine and
t1 = 0.25 for the bulk contribution of the topological finite
Kitaev heat engine. Before and after their respective critical
points, the thermal cycles can be properly identified as heat
engines.

Thus we report that thermal cycles display universal fea-
tures in their heat exchange and work output behaviors
according to the order of phase transition taking place.

We remark that enhancement of the work output at the
critical point of the phase transition cannot be used per se to
justify the topological character of the phase transition. It is
a general phenomenon that can emerge in the general class
of gap closing quantum phase transitions. It is necessary to
examine the simultaneous contributions from the bulk and
boundary to the total work. We find that the contribution of
the boundary to the work output shows no enhancement due
to a level crossing at the critical point; on the other hand, the
avoided crossing leads to an enhancement in the contribution
from the bulk to the work output.

The observations are in parallel with the conclusion that
the subdivision potential describes the edge behavior of the
system and captures its unique thermodynamic signatures [6].
This model-independent conclusion applies both to the Kitaev
chain and to the toy (Landau-Zener) Otto engine models. The
work output of the Landau-Zener engine with (without) level
crossing exhibits a similar behavior with the edge (bulk) con-
tributions of the Kitaev-chain engine. This provides physical
intuition to recognize the topological phase transition in the
Kitaev chain at finite temperatures. Physically, the differences
in the work output from the bulk and edge of a Kitaev-chain
engine can be related to differences in the corresponding spe-
cific heat. We determine the order of the phase transitions in

the Kitaev chain and in the Landau-Zener model following the
Ehrenfest classification. The thermodynamic phase transition
can be identified with the topological phase transition at suf-
ficiently low temperatures, determined by the Uhlmann phase
[9,10]. Hence, we conclude that the bulk and edge work output
of the Kitaev chain allows one to identify the topological
phase transition.

D. Effective work

Hill’s thermodynamics was traditionally developed for an
idealized description of a nanothermodynamics system. A gas
of multiple copies of a small system is no longer finite sized,
but a macroscopic object on which laws of thermodynamics
can be applied. With the help of the subdivision potential, the
thermodynamic behavior of a single copy can be obtained.
For our example of Kitaev chain, this would correspond to
a chain immersed in a heat bath, with every site accessing
the bath as a whole. On the other hand, one could imagine
an infinitely long chain, on which laws of thermodynamics
could be applied. The chain is envisioned as a sum of the
actual finite-size system plus a semi-infinite chain, so that
the extended total chain is macroscopic. In a typical thermal
experiment, the heat bath would be able to access only the
sites of the semi-infinite (lead) chain, while the finite-size
system component remains inaccessible. Thermalization of
the lead chain brings its sites to canonical Gibbs thermal
states. Tracing them out makes the Hamiltonian, and hence the
energy levels of the finite-size actual system to be temperature
dependent. Then, the picture becomes similar to the one of
Hill in which a finite-size system is coupled to a heat bath and
the energy levels are temperature dependent. In a nutshell, the
difference between thermal properties, such as heat or work
transfer, between the two pictures (Hill’s and temperature-
dependent energy levels, TDELs) arise due to the introduction
of an interface between the heat bath and the finite-size
system in the case of TDEL. Accordingly, TDEL would
be a more faithful representation of a thermal measurement
or process in typical experiments using interfaces to access
finite-size systems.

For the TDEL approach, we consider a macroscopic Ki-
taev chain decomposed into two parts: One part is taken as
the finite-length system, and the other is an interface lead,
which is long enough to be assumed in thermal equilibrium
with a heat bath [22]. TDELs arise as a result of aver-
aging over the interface microstates, and describe the heat
exchange during the thermalization of the finite-length chain
with the heat bath in a thermodynamically consistent way.
The TDELs method, different from Hill’s approach, describes
the boundary as an energy channel interfacing the bath and
the system.

The connection between Hill’s nanothermodynamics and
TDELs is sustained by recognizing that the subdivision po-
tential acts as a thermal perturbation by the environment
[24–26]. As explained in Sec. II B, the subdivision potential
of the Hill’s nanothermodynamics can be used to calculate
the heat dissipated through this boundary energy channel,
upon associating X = �0 in Eq. (26) [24]. Thus, we use these
two nanothermodynamic approaches in conjunction with each
other.
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FIG. 12. (a) Effective incoming heat QAB(eff) (red dashed), effective outgoing heat QCD(eff) (blue dotted), and effective work Weff (black
solid). (b) Total net work W (red dashed) and effective work Weff (black solid) are given as a function of μ1 for an Otto cycle working between
a hot bath at temperature TB = 0.08 and a cold bath at temperature TD = 0.05.

The effective incoming and outgoing heats are computed,
respectively, according to the following formulas:

QAB(eff) =
∫ SB

SA

T dS −
∫ TB

TA

�0

T
dT, (37)

QCD(eff) =
∫ SD

SC

T dS −
∫ TD

TC

�0

T
dT . (38)

The second terms in Eqs. (37) and (38) are the correction
terms, which are computed using �0 of Hill’s nanothermo-
dynamics. The total effective work is

Weff = QAB(eff) + QCD(eff). (39)

We calculate the injected and ejected effective heat and also
the effective work for the Otto cycle depicted in Fig. 3 using
Eqs. (37) to (39). The results are plotted in Fig. 12(a).

There is a signature of a TPT in both QAB(eff), QCD(eff)

and in the effective work Weff at μ = 2t . We also present a
comparison between the work calculated using Hill’s nanoth-
ermodynamics and the effective work, which accounts for the
TDELs in Fig. 12(b). Both the work and the effective work
have qualitatively the same behavior, but the effective work
Weff acquires lower values. The behavior of the exchanged
heat values yielded by Hill’s nanothermodynamics are com-
pared to the effective heat values in Fig. 13. We observe that
QAB(eff) is less than QAB and QCD(eff) is higher than QCD. This
shows that the heat exchanges are modified by the interface
effects taken into account through the TDELs. We note that
the qualitative behavior of heat exchanges and work outputs
are the same in both approaches and that there is only a small
quantitative difference.

V. CONCLUSION

We propose a heat engine, which uses the finite Kitaev
chain as its working substance. The heat engine is based on an
Otto cycle, where there are two isentropic (adiabatic) and two
isochoric (isoparametric) stages. The control parameter in the
engine is the chemical potential of the Kitaev chain. We work

in the low-temperature regime, such that the temperatures are
smaller than the energy gap of the system.

We report that the TPT of the finite Kitaev chain enhances
both the total work output and the efficiency. We further
investigate the thermodynamic properties of the finite-length
Kitaev chain within two thermodynamic frameworks for
finite-size systems: Hill’s nanothermodynamics and TDELs
scheme.

Based on Hill’s nanothermodynamics, we identify the
qualitative and quantitative features arising from the bulk and
boundary in the work output of the Otto cycle. We find that the
bulk and boundary undergo their own thermal cycles different
from the ideal Otto cycle. The bulk operates in a nonideal Otto
heat engine in both phases of the Kitaev chain with a behavior
that is qualitatively similar to the one of the total system. The
boundary cycle yields a positive work output only in a small
parameter region around the TPT. The boundary shows two
different thermal cycle characters before and after the transi-
tion point, associated with its first-order TPT behavior. The
thermal cycle of the boundary contribution can be identified
with neither a heat engine nor a refrigerator in the trivial phase
but acts as a refrigerator in the topological phase of the finite
Kitaev chain.

We conclude that the nonideal Otto cycle behavior, which
arises at the bulk and boundary is a finite-size effect, a spatial
analog of the finite-time internal friction (or quantum friction)
[59]. Both finite-time and finite-size effects cause imperfect
adiabatic transformation, leading to nonideal Otto cycles.

We also show the existence of three Otto cycles working
independently between two baths and making use of the total,
bulk, and boundary contribution separately. This scheme only
works in the topological phase of the Kitaev chain. While the
total system and the bulk operate as heat engines, the bound-
ary operates as a heat pump. We remark that these cycles attain
different intermediate temperatures and cannot be designed to
operate simultaneously. Nevertheless, the Kitaev chain can be
used as a multifunctional thermal device in which engine and
refrigerator operations are tunable and spatially separated to
the bulk and to the boundary.
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FIG. 13. (a) Absorbed heat QAB (red dashed) and effective absorbed heat QAB(eff) (black solid). (b) Ejected heat QCD (blue dotted) and
effective ejected heat QCD(eff) (black solid) are given as a function of μ1 for an Otto cycle working between a hot bath at temperature TB = 0.08
and a cold bath at temperature TD = 0.05.

Using the TDELs scheme in conjunction with the Hill
nanothermodynamics approach, we have, in addition, calcu-
lated the effective heat exchange and the effective work of the
finite Kitaev-chain engine. We find that the effective work is
qualitatively lower than what is calculated by Hill’s nanother-
modynamics. The incoming heat is reduced and the outgoing
heat is increased due to the energy dissipation in the system-
bath interface. While Hill’s nanothermodynamics allows for a
clear identification of the bulk and boundary contributions in
the heat engine operation, TDELs provide a proper assign-
ment of the heat exchange between the heat baths and the
finite system. We show that these two approaches complement
each other and can be used in conjunction for detailed mod-
eling of thermal machines and experiments with topological
finite systems.

We show that, by separating the bulk and boundary con-
tributions to the work output of the Kitaev heat engine, we
can identify the order of the phase transition taking place by
inspecting these contributions. The boundary exhibits a first-

order phase transition, analogous to the level crossing regime
of a two-level Landau-Zener model, and the bulk exhibits
a second-order phase transition like in the avoided crossing
regime of the Landau-Zener model. We state a reservation in
this analogy which we leave for further study, which is that the
bulk and boundary of the Kitaev heat engine go through their
own thermodynamic cycles, which are nonideal Otto cycles,
but still exhibit phase transition features. We note that this
may be due to the universal feature of phase transitions and
conclude that those seem to be independent of the cycle being
considered.
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(117F097) and by the EU-COST Action (CA16221). The
authors would like to thank S. N. Kempkes and R. Arouca
for a careful reading of the manuscript.

0.42 0.421 0.422 0.423 0.424 0.425

1

-4

-2

0

2

4

x1
0

-2

Q
c
ABL

Q
c
CDL

W
c
L

0.42 0.421 0.422 0.423 0.424 0.425

1

-4

-2

0

2

4

x1
0

-4

Q
0
CD

Q
0
AB

W
0

(a) (b)
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temperature TD = 0.05 in the parameter range between μ1 = 0.42 and μ2 = 0.425. Note that the intermediate temperatures for each engine
would be different due to different entropy values leading to different isoentropy conditions.

155423-13



ELIF YUNT et al. PHYSICAL REVIEW B 102, 155423 (2020)

0.42 0.421 0.422 0.423 0.424 0.425

1

0.01

0.02

c

0.42 0.422 0.424

1

15

16
0
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a function of the chemical potential μ1 of the cold isochore of
a finite-length Kitaev chain in independent Otto cycles, operating
between a hot bath at temperature TB = 0.08 and a cold bath at
temperature TD = 0.08 in the parameter range between μ1 = 0.42
and μ2 = 0.425. In the inset, the coefficient of performance of the
boundary Otto refrigerator κ0 is given.

APPENDIX: THREE OTTO CYCLES WITH A SINGLE
FINITE-LENGTH KITAEV CHAIN

In this Appendix, we investigate whether one can find a
parameter range μ1–μ2 and hot and cold bath temperatures
for which bulk, boundary, and total systems could be used as
working systems for Otto cycles. When one of them is chosen
to work in the Otto cycle, however, the other two cannot
be found in the Otto cycles. It is possible to identify three
independently running Otto cycles, associated with the total,

bulk, and boundary of the system separately. For that aim, we
examine the curves in the temperature-entropy planes T -S,
T -Sc, and T -S0 separately. We consider the same hot and cold
bath temperatures TB = 0.08 and TD = 0.05, respectively, for
the cycles as in the previous discussions.

The Otto cycles can be determined for the bulk and for the
boundary, similarly to the case of the total system. The cycles
will be different due to the differences in the intermediate
temperatures determined by isentropy conditions for the bulk
and boundary entropies Sc and S0, and the entropy of the
total chain S, and hence would yield different work outputs
with different characteristics. In general, our numerical inves-
tigations suggest that the intermediate temperatures for the
bulk and for the total system are close to each other, while
the boundary can attain significantly different intermediate
temperatures. We find a narrow regime in the topological
phase, between μ1 = 0.42 and μ2 = 0.425, for which the
boundary can produce work through an Otto cycle and act as
a refrigerator.

The work outputs are shown in Figs. 14(a) and 14(b). In
Fig. 14(a), we observe that QAB

c L > 0 and QCD
c L < 0 so that

the bulk operation can properly be described as a heat engine
with WcL > 0. There are heat exchanges only on the isopara-
metric stages from A to B and C to D, which, in addition makes
it an ideal Otto heat engine. We observe in Fig. 14(b) that heat
is injected to (ejected from) the boundary of the Kitaev chain,
as the system is brought into contact with the cold bath at
point D (hot bath at point A) so that QCD

0 > 0 (QAB
0 < 0). This

makes the boundary thermal cycle an ideal Otto refrigerator
with W0 < 0. For the temperature and parameter range con-
sidered, the bulk behaves like an Otto heat engine, while the
boundary becomes an Otto refrigerator.

When we compare efficiencies of the total system and bulk
heat engines, η = W/QAB and ηc = Wc/QAB

c , respectively, as
in Fig. 15, we observe that the bulk is more efficient than the
total system. The coefficient of performance of the boundary
refrigerator κ0 = QCD

0 /|Wc| is given in the inset of Fig. 15.
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