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Critical phase transitions contain a variety of deep and universal physics and are intimately tied to thermody-
namic quantities through scaling relations. Yet, these notions are challenged in the context of non-Hermiticity,
where spatial or temporal divergences render the thermodynamic limit ill-defined. In this work, we show that a
thermodynamic grand potential can still be defined in pseudo-Hermitian Hamiltonians, and can be used to char-
acterize aspects of criticality unique to non-Hermitian systems. Using the non-Hermitian Su-Schrieffer-Heeger
(SSH) model as a paradigmatic example, we demonstrate the fractional order of topological phase transitions
in the complex energy plane. These fractional orders add up to the integer order expected of a Hermitian
phase transition when the model is doubled and Hermitianized. More spectacularly, gap preserving highly
degenerate critical points known as non-Bloch band collapses possess fractional order that are not constrained
by conventional scaling relations, testimony to the emergent extra length scale from the skin mode accumulation.
Our work showcases that a thermodynamic approach can prove fruitful in revealing unconventional properties
of non-Hermitian critical points.
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I. INTRODUCTION

Critical phase transitions have mesmerized generations of
physicists, with their profound implications in conformal and
statistical field theory [1–7], entanglement entropy [8–15]
and thermodynamics [7,16–21]. Placed in a non-Hermitian
context, critical transitions become even more intriguing,
involving the closure of various line or point gaps and ex-
ceptional points [22–37]. With the non-Hermitian skin effect
(NHSE) [38–50], the emergent non-locality from asymmetric
hoppings can allow topological transitions to occur even with-
out gap closure [47], and the system size itself can act as a
parameter that drives the model into different phases [51–53].

Naively, the concept of thermodynamics appears to be
incompatible with non-Hermiticity, since states with com-
plex eigenenergies cannot be in equilibrium and the NHSE
leads to directed state accumulations that diverge in the ther-
modynamic limit. However, when the system Hamiltonian
is related to its Hermitian adjoint by a similarity transform
and thus present a pseudo-Hermitian symmetry, the partition
function is real and we can use traditional thermodynamics
in a biorthogonal formalism [54]. In this sense, an analysis
of the topological phase transitions present in non-Hermitian
systems is particularly interesting.

Although topological phase transitions do not present
a local order parameter and cannot be described using a
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Ginzburg-Landau formalism, a scaling analysis can still be
used to characterize them [16,55–64].

A formalism based on the Hill nanothermodynamics [65],
which is specially suited to analyze thermodynamics of finite
size systems [66–72], gives a very interesting perspective on
topological phase transitions [73–78], despite the intrinsically
nonextensive character of topological systems. Due to the
bulk-boundary correspondence, the transition at the bulk is
related to the one at the surface of the material. As these
components have different dimensions, they usually display
phase transitions with different orders [73–77]. The nanother-
modynamics approach is very robust, being able to describe
systems without bulk-boundary correspondence [76], higher-
order topological insulators [77] and even heat machines [78].

In this work, we study the thermodynamic behavior
of a paradigmatic non-Hermitian model, namely, the non-
Hermitian Su-Schrieffer-Hegger (SSH) model. We calculate
the grand potential, separate it in an extensive (scales with
system size) and a nonextensive (does not scales with system
size) components and characterize the phase transitions. This
is done by analyzing which derivative of the grand poten-
tial presents divergences/discontinuities at the critical points,
and by calculating its critical exponents, the electronic den-
sity, and the density of states for transitions that occur for
finite μ.

We find that the transitions between “Hermitian” phases,
i.e., phases that can be deformed into a phase of a Her-
mitian model, belong to the universality class of the Dirac
model [56]. On the other hand, transitions between non-
Hermitian phases, i.e., phases that have no Hermitian coun-
terpart, belong to the non-Hermitian Dirac model universality
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class and exhibit different critical exponents with respect to
the usual Dirac model. Remarkably, the phase transitions in
a “Hermitianized” version of the model belong to the Dirac
model universality class, despite the fact that the system then
consists of two copies of the non-Hermitian SSH Hamiltonian.

The situation for transitions between “Hermitian” and
“non-Hermitian” phases is completely different depending
on the boundaries conditions. While for periodic boundary
conditions (PBC) they also belong to the non-Hermitian Dirac
universality class, for open boundary conditions (OBC) they
present a non-Bloch band collapse. This transition is very
idiosyncratic because it involves another length scale, besides
the correlation length. This new scale, called skin depth, is
due to the analytic continuation of the momentum in the
complex plane, what makes the bulk modes to be localized.
The presence of this length scale, which goes to zero at the
phase transition, makes that the correlation function does not
spread through the whole material at criticality, but rather is
extremely localized in one of the edges! This implies that this
phase transition has a very peculiar character: the Josepshon
hyperscaling relation is not obeyed and the extensive and
nonextensive contributions scale equally.

The paper is organized as follows. In Sec. II, we review the
thermodynamics tools that will be used in this work, with a
special focus on scaling ideas in quantum phase transitions. In
Sec. III, we very briefly present and discuss the non-Hermitian
SSH model. Since the phase diagrams are different for PBC
and OBC, we separate the results for each case. In Sec. IV, we
discuss the phases for PBC and analyze their thermodynamic
behavior and critical exponents. The main finding is that they
present critical exponents different from the Hermitian ver-
sion. Interestingly, if one considers a “Hermitianized” version
of this model, as shown in Sec. V, one sees that they present
the same phase transitions, but with critical exponents equal
to the Hermitian SSH model. In Sec. VI, we consider the
system with OBC and its periodic counterpart, the surrogate
Hamiltonian. We calculate the thermodynamical behavior,
the electronic density and the density of states, and perform
an analysis of the critical exponents of the phase transition
between “Hermitian” and between “non-Hermitian” phases.
We finish this section contextualizing our results in terms of
the Hermitian and non-Hermitian Dirac model universality
classes. In Sec. VII, we focus on the non-Bloch band collapse.
As in this system the gap closes into a flat band, we perform
a scaling analysis of the correlation length, in addition to the
study of the gap closing. This analysis shows that the presence
of the skin depth changes completely the scaling relations and
that the Josephson hyperscaling relation is no longer valid
for the non-Bloch band collapse. This corroborates the com-
pletely exceptional character of the non-Bloch band collapse
as a phase transition.

II. THERMODYNAMIC APPROACH TO NON-HERMITIAN
SYSTEMS

Non-Hermitian systems can possess complex energies
and exhibit an extensive sensitivity to boundary conditions.
Therefore it is at first sight questionable whether they can
be described thermodynamically. In particular, instabilities
due to the non-Hermitian character of the Hamiltonian are

amplified at large system sizes, such that systems with dif-
ferent boundary conditions and sizes display very different
spectral properties.

Regardless of that, the thermodynamics of finite non-
Hermitian systems can still be rigorously defined via Hill
thermodynamics [65], without recourse to the thermody-
namic limit. In particular, there exist several classes of
non-Hermitian systems with eigenenergies that sum to a real
value, either due to the non-Hermitian skin effect, or special
symmetries like pseudo-Hermiticity (also called PH in the
literature) [54].

A. Partition function and grand potential

A pseudo-Hermitian Hamiltonian HPH is related to its Her-
mitian adjoint H†

PH by a similarity transformation U ,

H†
PH = UHPHU −1, (1)

which is defined by [54]

U =
∑

m

|ψL〉 〈ψL| ,

U −1 =
∑

m

|ψR〉 〈ψR| , (2)

where the |ψL〉 and |ψR〉 are the left and right eigenvectors,1

respectively,

HPH |ψR〉 = E |ψR〉 , H†
PH |ψL〉 = E∗ |ψL〉 . (3)

Due to this relation, the energies come in complex conju-
gated pairs and the partition function

Z = Tr[e−β(Ĥ−μN )] (4)

is real, where β = 1/kBT , μ is the chemical potential and N is
the number operator. This real form of Z is amenable to usual
thermodynamics approaches, other than the fact that correla-
tion functions should be calculated with the biorthogonal basis
|ψL〉 and |ψR〉, which is equivalent to treating U as a metric
operator in the inner product [54].

For a free fermionic system with a spectrum {εm}, the grand
potential takes the form

�(T, μ) = − 1

β

∑
m

ln[1 + e−β(εm−μ)], (5)

which, in the T = 0 (β → ∞) limit, becomes

�(T = 0, μ) =
∑

�εm�μ

(εm − μ). (6)

Notice that for non-Hermitian systems, the filling of the Fermi
sea is determined by the real part of the spectrum [79].

For 1D systems, the grand potential in the thermody-
namic limit usually contains an extensive part ωextL, where
L is the size of the system, and a nonextensive part ωn-ext,
which are related to the bulk and edge energy contributions,

1These relations do not hold at the non-Bloch band collapse point
because the Hamiltonian is not diagonalizable. However, they do
hold very close to this exceptional point as attested by the scaling
analysis performed in Sec. VII.
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respectively [73,74]. As a result, one can decompose � as

� = ωextL + ωn-ext. (7)

This scaling, however, does not hold in general. In the
presence of nonlocal correlations, other type of scalings can
appear in the grand potential [76]. For non-Hermitian systems,
the spectrum for OBC can be obtained by a nonlocal mapping
of the Bloch Hamiltonian [47,80], as explained in Sec. VI C.
Therefore it was not a priori clear whether this scaling with L
should hold for this system [51,81]. Nevertheless, this turned
out to be the case for all the phases of the model that we
considered in this work, as shown in Appendix A.

For most topological systems, a bulk-boundary correspon-
dence is present and one can obtain these two contributions
by calculating the grand potential with different boundary
conditions [76,77]. The system with PBC only has the bulk
contribution, while the system with OBC presents both con-
tributions. We can then obtain the boundary contribution by
subtracting the grand potential calculated for PBC from that
with OBC.

This approach, however, should be modified when the
non-Hermitian skin effect invalidates the bulk-boundary cor-
respondence. In this case, one should explicitly vary the
system size L [73–75], evaluate the grand potential for many
values of L, and do a linear fit to separate the extensive and
nonextensive contributions to �.

B. Scaling near a quantum phase transition

The main focus of this work is to show, via a thermo-
dynamic approach, unconventional scaling properties around
non-Hermitian critical points, especially when boundary ef-
fects scale anomalously. To do that, we review the framework
of scaling functions and critical exponents [16].

If we consider a reduced parameter g that tunes a critical
phase transition, such that it occurs at g = 0, we can associate
critical exponents [16–18] to different thermodynamic quan-
tities. The grand potential itself presents such scaling. Let us
decompose (any component of) the reduced grand potential
ω j , j = ext/n-ext as a sum of a regular part ωreg and a singular
ωs part

ω j (g) = ωreg(g) + ωs(g), (8)

such that the singular part scales with g close to the phase
transition

ωs(g) ∼ |g|2−α, (9)

where α is the canonical critical exponent. 2 − α is then
the order of the phase transition because derivatives of ωs

of orders higher than 2 − α are discontinuous at the phase
transition point.

We consider a quantum setting where occupied states with
momenta p 2 are separated by a gap �, according to the
power-law scaling relations:

�(p, g = 0) ∝ |p|z, (10)

�(p = 0, g) ∝ |g|νz, (11)

2We adopt p instead of p to be consistent with the notation used in
our results, as we are considering a 1D chain.

where p is the momentum measured with respect to the point
Kc at which the gap closes. The associated critical exponents
z and ν corresponding to the scaling of the gap with the
momentum p and with g, respectively, are related to the order
of the phase transition as follows. For each real energy interval
dε, there are |p|d occupied states. Hence ωs = ∫ � |p|d dε =∫ �

εd/zdε ∝ �1+d/z ∝ |g|ν(d+z). Comparing with Eq. (9), we
obtain

2 − α = ν(d + z), (12)

the Josephson’s hyperscaling relation [16], which can be de-
rived from purely dimensional arguments on a critical system.
Hence, by studying how the gap closes, one can determine
z and ν, and establish the order of the phase transition for a
system of dimensionality d .

This relation also implies that the same system in settings
with different dimensionalities undergo different orders of
phase transition, even when their critical exponents ν and z are
the same. For the Hermitian SSH model, for instance, z = 1
and ν = 1, which yields a first-order phase transition for its
edge (nonextensive contribution, d = 0) and a second-order
transition for its bulk (extensive contribution, d = 1) [74].
Below, we shall see that the non-Hermitian variant of the SSH
model possess much more intricate bulk-versus-boundary
scaling behavior.

C. Thermodynamics of topological systems

Topological phase transitions are transitions between in-
equivalent phases, distinguished by different topological
invariants. The change of topology is usually accompanied
by a gap closing. In general, a gap closing signals a quantum
phase transition due to the change of the system ground state,
thus leading to the scaling behavior discussed in Sec. II B. In
this sense, a natural question that arises is whether these two
notions of phase transitions are equivalent.

Many works indicate that topological phase transitions
show distinct scaling behavior [55,57–63]. In addition, the
thermodynamic approach used here [73–76] has revealed that
when the change of a topological invariant occurs concomi-
tantly with a drastic variation of the spectrum, the grand
potential (or its derivatives) exhibit a discontinuity at the
phase transition. Then, the two notions of phase transitions
are equivalent.

There are, however, some topological phase transitions that
do not show signatures in the grand potential. An example are
boundary-obstructed topological phases [82–84], for which
the change of topology is revealed by the Wannier spectrum,
and no signature is visible in the grand potential [77].

III. NON-HERMITIAN SSH MODEL

One of the simplest models exhibiting both topologi-
cal effects and the NHSE, which breaks the bulk-boundary
correspondence, is the non-Hermitian variant of the SSH
model [38,39,41,50,80,85–87]. There are basically two ways
to make the SSH model non-Hermitian. One is to introduce
a complex intracell hopping, which is equivalent to intro-
ducing a Peierls phase in the intracell bonds. As this phase
can be gauged away, this system still obeys bulk-boundary
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FIG. 1. Sketch of the model of Eq. (13). The intracell (solid lines)
hopping parameters are nonreciprocal (one is t + δ, while the other
is t − δ), which leads to the non-Hermitian character of this model.
The intercell hopping (dashed lines) is t2. The ratios t/t2 and δ/t2

determine the phases of the system.

correspondence, despite exhibiting complex energies. An-
other approach, which will be the one under investigation
in this work, is to introduce a real nonreciprocal intracell
hopping. This leads to the pseudo-Hermitian Hamiltonian

H = (t + δ)
∑

i

a†
i bi + (t − δ)

∑
i

b†
i ai

+ t2
∑

i

(a†
i+1bi + H.c.), (13)

where the nonreciprocal intracell hopping parameters are
given by t − δ and t + δ, and the intercell hopping parameter
is denoted by t2. A sketch of this model is shown in Fig. 1. A
nonzero value of δ breaks the Hermiticity of this Hamiltonian
and leads to the NHSE, i.e., a dramatic modification of all
eigenstates upon a local change in the value of the hoppings
at the boundary [41].

The ratios t/t2 and δ/t2 determine the different topological
phases of this system, which include phases that are not pos-
sible in Hermitian systems. These phases become completely
different upon varying the boundary conditions, as the bulk-
boundary correspondence is not respected. Hence, we will
consider the different boundary conditions separately. As this
system is pseudo-Hermitian, with complex conjugate pairs
of eigenenergies, the traditional thermodynamic approach ap-
plies and we can characterize its phase transitions using the
grand potential.

IV. PERIODIC BOUNDARY CONDITIONS

A. Phase diagram

We start our analysis by reviewing the non-Hermitian SSH
system with PBCs. The Bloch Hamiltonian corresponding to
Eq. (13) [80] is given by

h(k) =
(

0 t − δ + t2e−ik

t + δ + t2e+ik 0

)
. (14)

By diagonalizing this Hamiltonian, we find the energy levels
for PBC:

ε±(k) = ±ε(k) = ±
√

12 + t2 − δ2 + 2t cos k − 2iδ sin k,

(15)
where we have set the characteristic energy scale t2 = 1 and
the lattice parameter length scale a = 1 (this make that k goes
from −π to π ).

The system exhibits a gap closing when

1 ± 2t + t2 − δ2 = 0 → δc = ±|1 ± t |. (16)

FIG. 2. Phase diagram for the non-Hermitian SSH system with
periodic boundary conditions. The phases are characterized by the
winding numbers (W1,W2). Hermiticity requires W1 = W2, so the
Hermitian phases are given by (0, 0) and (1/2, 1/2). On the other
hand, the non-Hermitian phases are (0, 1/2) and (1/2, 0). In our
study, we consider a fixed value of t = 0.5 and vary δ (dashed line) to
explore all the phases transitions. This phase diagram was originally
obtained in Ref. [85].

This occurs at k = 0 for δc = 1 + t and k = π for δc = 1 − t ,
which separates the system into different topological phases.

To understand the nature of these phases, we recast the
Bloch Hamiltonian (14) as a d = (dx, dy) vector multiplied by
the Pauli matrix basis σ = (σx, σy),

h(k) = dx(k)σx + dy(k)σy, (17)

with dx and dy given by

dx(k) = t + t2 cos(k)

dy(k) = t2 sin(k) − iδ. (18)

In this case, the topological phases may be identified by the
associated winding numbers [85]

W = (W1,W2), (19)

where Wi, i = 1, 2 are defined [85] as

Wi = 1

2π

∮
∂k arctan

[�dy(k) ± 
dx(k)

�dx(k) ∓ 
dy(k)

]
dk, (20)

with the upper sign for i = 1 and the lower sign for i = 2.
As k varies, the trajectory of d in the �dx/�dy plane can

be topologically nontrivial if it encircles exceptional points
(EP) at (±
dy,∓
dx ), where Wi is ill defined. Hence, Wi is
the winding number around the EPs, which characterizes the
phases of this system, and Eq. (16) provides the values for δ

that mark the transition between states with different Wi, thus
leading to the phase diagram given in Fig. 2. For Hermitian
systems (δ = 0), both components of this winding number
should be equal, so W = (0, 0) is equivalent to the Hermitian
trivial phase and W = (1/2, 1/2) to the Hermitian topological
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FIG. 3. Spectrum and derivatives of the grand potential of the
non-Hermitian SSH model as a function of δ for PBC, t = 0.5, and
μ = 0. (a) Real, (b) imaginary, and (c) absolute value components of
the energy. (d) First derivative of the grand potential. (Inset) Second
derivative of the grand potential, which is discontinuous at the two
critical points. We use 100 discretization values of k for the energy
simulation and 1000 values of k for the grand potential. The gray
vertical dashed lines indicate the (theoretical) critical values of δ.

phase. In addition, we have the exclusively non-Hermitian
topological phases (0, 1/2) and (1/2, 0).

B. Thermodynamics

Since the eigenenergies of the system determine the free
energy, phases with different real, imaginary and absolute
values of the energy spectrum will give rise to different ther-
modynamic properties, particularly across phase transitions.
Below, we detail the spectral behavior of the system as δ is
varied, to concretely explain how various critical scenarios
manifest as kinks in the grand potential.

The results for t = 0.5 are shown in Figs. 3(a)–3(c). This
value is chosen to span all phases upon varying δ. The spec-
trum shows a gap closing (merging of bands) at δc = 0.5 and
a merging of bands (gap closing) at δc = 1.5 for the real
(imaginary) component of the energy. The absolute value of

the energy shows a very distinct gap closing at both values
of δc.

The signatures of the phase transitions seen in the energy
spectrum are also manifest in the derivative of the reduced
grand potential ω,3 which indeed shows kinks at δc = 0.5
and δc = 1.5 (see Fig. 3), with its second derivative showing
discontinuities. One could identify the order of the phase
transition by applying the Ehrenfest classification [88], which
associates the order of the phase transition to the order of
the derivative of the grand potential that diverges or exhibits
a discontinuity. In this case, one would conclude that both
phases transitions have the same order. However, the precise
order of these phase transitions do not seem to be unequivo-
cally determined by only considering the discontinuities at the
critical point. To acquire a clearer picture, we will calculate
the critical exponents involved in Josepshon’s hyperscaling
relation [Eq. (12)].

1. Critical exponents

An examination of how the gap closes in both the mo-
mentum and parameter space allows us to obtain the critical
exponents ν and z defined in Eqs. (10) and (11). As this system
has only two bands, the gap can be obtained from Eq. (15)

�(k) = ε+(k) − ε−(k) = 2ε(k). (21)

If we write the spectrum in Eq. (15) in terms of the reduced
parameter

g = δ − δc

δc
→ δ = (1 + g)δc (22)

and the relative momentum p = k − Kc, we find that near the
critical point (g � 1 and p � 1), the gap closes as

�(g, p) = 2
√

2
√

−δ2
c g + iδc p. (23)

If we calculate this expression now at g = 0 and p = 0, we
find the critical exponents z and ν, respectively. For the z
exponent,

�(g = 0, p) = 2
√

2δc

√
ip = 2

√
δc(1 + i)|p|1/2. (24)

We observe that both the real and imaginary parts have
the same critical exponent, z = 1/2, and the same critical
amplitude, 2

√
δc, on both sides of the phase transition.

On the other hand, looking at how the gap closes in terms
of g for p = 0, we find

�(g, p = 0) = 2
√

2δc
√−g = 2

√
2δc|g|1/2

√
− g

|g| . (25)

As
√−g/|g| = 1 for g < 0 and

√−g/|g| = i for g > 0, the
critical exponent becomes ill defined for positive (negative)
values of g for the real (imaginary) part of the gap as the
critical amplitude is equal to zero.

3Notice that as the system with PBC does not have an edge, the
grand potential is extensive, such that ω = �/L and we do not need
to define extensive and nonextensive contributions. This will also
be the case for the surrogate Hamiltonian, as it is an analytical
continuation of the PBC Hamiltonian.
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If instead we consider how the absolute value of the gap
behaves,

|�(g, p)| =2
√

2 4

√
δ4

c g2 + δ2
c p2, (26)

we obtain

|�(g = 0, p)| = 2
√

2δc|p|1/2

|�(g, p = 0)| = 2
√

2δc|g|1/2, (27)

and ν± = 1. In this way, we understand that this apparent
discrepancy in the critical exponents for one side or the other
of the phase transition is only because of considering the real
and imaginary parts of the gap separately. For the absolute
value, the behavior is symmetric around the critical point.

We can check that this is indeed how the gap closes by
numerically investigating the particular critical point δc = 0.5
and Kc = π for t = 0.5 in Figs. 4(a) and 4(b), which confirms
that close to the phase transition (both in momentum and
parameter space), the gap has a power-law behavior, with the
critical exponents and amplitudes given by Eqs. (24), (25),
and (27).

If we use these critical exponents in the Josepshon hyper-
scaling relation, we obtain

2 − α = 1

(
1 + 1

2

)
= 1.5. (28)

This implies that the non-Hermitian SSH model has a critical
phase transition of fractional order, and belongs to a dif-
ferent universality class as compared to the Hermitian SSH
model [56].

To confirm this behavior, we perform a scaling of the grand
potential with g close to the point of the phase transition. First,
one needs to extract the singular part of the grand potential.
This contribution is usually [89] obtained by

ωs(g) = ω(g) − ω(0), (29)

as ωreg(g) ≈ ωreg(0) and ωs(0) = 0 (2 − α > 0 in general).
If one considers the real or imaginary part of the spectrum,

instead of the its absolute value, the gap closing occurs only
for a given sign of g. As the free energy is calculated by the
real values of ε, this will lead to different critical exponents
for different sides of the phase transition. To remediate this
problem, we calculate the singular part of the grand potential
by

ωs(g) = ω(g) − ω(−g), (30)

where we assumed that ωreg(g) ≈ ωreg(−g) for small enough
g and that ω(g) ≈ ωreg(g) for one of the sides of the transition.
Furthermore, to numerically analyze the critical behavior of
the grand potential, we need to scale every length by ξ (or,
equivalently, g−ν) and every energy scale by the gap (or,
equivalently ξ−1/z or gν/z). Therefore ωs should be multiplied
by a factor ξ , as it is divided by the system size L. Hence, the
scaling of this quantity is actually

ωs(g) ∝g2−αξ = g2−αg−ν = g2−α−ν = g1/2. (31)

The results for the simulation of this quantity are given in
Fig. 4(c) for δc = 0.5 and L = 1000. It is interesting to ob-
serve that very close to the phase transition, they follow the

FIG. 4. Scaling analysis for the gap � closing and for the singu-
lar part of the grand potential ωs near the critical point δc = 0.5 and
Kc = π for t = 0.5. (a) In momentum space, the real (red circles) and
imaginary (green squares) parts of the gaps are very well described
by Eq. (24) (blue solid line), while its absolute value (blue stars)
is described by the first of Eqs. (27) (orange dashed line). This
result confirms the critical exponent z = 1/2.(b) For the closing of
the gap in the parameter space, the real (red circles) and imaginary
(green squares) components are very well described by Eq. (25)
(blue solid lines) and the absolute value (blue stars) is determined
by Eq. (27)(orange dashed lines). This result confirms the critical
exponent ν = 1. (c) The scaling of ωs [red circles, obtained using
Eq. (29)] goes with g1/2, which confirms that 2 − α = 1.5 (see dis-
cussion in the text). For values of g further away from the phase
transition, there is a subdominant scaling with g1, similar to the one
in the Hermitian SSH model. We used μ = 0, 50 discretization k
values for �, and 1000 values of k for ωs.

expected behavior, but for higher values of g they start to scale
with g1, which is the behavior of the Hermitian SSH model.
For larger values of L, the onset of the scaling with g1 happens
at smaller g because the scaling actually goes like ξg and ξ

increases with system size. Interestingly, the fact that z = 1/2
makes 2 − α = 1.5 and justifies why it was difficult to resolve
whether the transition was of first or second order.
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V. “HERMITIANIZED” SSH MODEL

To connect between the Hermitian and non-Hermitian SSH
models, and, in particular, to trace the origin of the fractional
order phase transition, we extend the non-Hermitian SSH
model to an extended Hermitian Hamiltonian H comprising
H and its conjugate,

H =
(

0 H
H† 0

)
. (32)

It was shown in Refs. [85,90] that this mapping basically
transforms each point gap present in the spectrum of the non-
Hermitian system into a line gap in the spectrum of H. In this
way, the usual bulk-boundary correspondence is recovered
in this “Hermitianized” system. In addition, the number of
edge modes in H is equal to W1 + W2 calculated the Bloch
Hamiltonian on Eq. (14) [85,90].

Figure 5 shows the thermodynamic results, together with
the spectrum for H, obtained using Hamiltonian (13) for
t = 0.5. The spectrum, depicted in Fig. 5(a), shows signatures
for both values of δc. Upon increasing δ, at δc = 0.5, one
of the zero modes (pink) goes into the bulk and at δc = 1.5
the other zero mode (green) goes into the bulk. These phase
transitions can be clearly seen in the grand potential and
its derivatives, as shown in Figs. 5(b)–5(d). If we separate
the grand potential using Eq. (7), we find that the extensive
contribution ωext is equal to the one calculated using PBC.
This is a distinctive feature of this system, as it recovers
the bulk-boundary correspondence. We notice also that the
phase transition for the nonextensive contribution ωn-ext is of
first order, while the one for ωext is of second order,4 as in
the Hermitian SSH model [74]! Despite still containing the
nonreciprocal hoppings, this Hermitianized model no longer
exhibits fractional order phase transitions. We turn now to an
analysis of the critical exponents to verify the order of the
phase transitions.

The gap closes linearly both in momentum and parameter
space, as shown in Figs. 6(a) and 6(b), so that ν = 1 and z = 1,
like in the Hermitian SSH model [74,75]. The Josephson hy-
perscaling relation then becomes 2 − α = d + 1, so that it has
the same critical behavior of a Hermitian SSH, which explains
the previous results.

To check the scaling of the grand potential close to the crit-
ical point, we extract its singular contribution using Eq. (29),
but separating the extensive and nonextensive contributions
using Eq. (7). The scaling of the two contributions ωext and
ωn-ext are given by

ωs
ext(g) ∝ g2ξ 1 = g2g−1 = g

ωs
n-ext(g) ∝ g1ξ 0 = g, (33)

as the extensive part scales with L1, while the nonextensive
one scales with L0. This kind of behavior is indeed observed
in the simulations, as shown in Fig. 6(c).

4The apparent divergence in the PBC component is due to numeri-
cal instabilities diagonalizing the system in the vicinity of the critical
point for PBC.

FIG. 5. Spectrum and thermodynamic properties of H for t =
0.5. (a) The spectrum shows a number of zero modes equal to
W1 + W2, which are a signature of the phase transitions in the phase
diagram in Fig. 2. These transitions are also shown in (b) the grand
potential and (c) its first and (d) second derivative. These quantities
were calculated for the extensive (red circles with red dashed lines)
and the nonextensive (blue stars with blue dashed lines) contribu-
tions, as well for PBC (green squares with green dashed lines). We
used a system with 100 unit cells for OBC and with 100 discretized
values of k for PBC in these simulations. The gray vertical dashed
lines indicate the (theoretical) critical values of δ.

VI. OPEN BOUNDARY CONDITIONS

The system with OBC has very different properties, as
compared to the one with PBC. In particular, in the OBC
case, there are no bulk modes only skin modes localized at
the edges of the system, which implies that the bulk-boundary
correspondence is broken via the NHSE.

A. Phase diagram

The phase diagram of the same non-Hermitian SSH model,
but with OBC is also very different, see Fig. 7. For |δ| < t ,
the system is adiabatically connected to the Hermitian model
and, as such, we denote these phases as Hermitian trivial and
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FIG. 6. Critical behavior of H close to the critical point δc = 1.5
and Kc = 0. The gap closing in both, (a) the momentum and (b) the
parameter space exhibits critical exponents z = 1 and ν = 1, respec-
tively, which are the same for the Hermitian SSH model. (c) The
singular contribution of the grand potential ωs scales with g (solid
blue and orange dashed lines. The two different lines represent
different amplitudes, both for ωext (red circles) and ωn-ext (green
squares). We used 100 unit cells for this simulation. The results for
the δc = 0.5 critical point are similar, with the difference that there
the extensive and nonextensive contributions are precisely equal.

Hermitian topological, depending on their winding num-
ber [80]

W =
∮

dk

4π i
Tr

[
σzh

−1(k)
dh(k)

dk

]
, (34)

(W = 0 and 1, respectively). The boundary between the trivial

and topological phase is given by the curve |δ| =
√

t2 − t2
2 ,

which simplifies to t2 = ±t when the system is Hermitian
(δ = 0).

For |δ| = t , the non-Bloch band collapse occurs. For |δ| >

t , the energy, which was previously confined to the real axis,
extends into the imaginary axis [41] [see Fig. 8(b)]. The
phases are then no longer deformable into their Hermitian
counterparts, and we call these phases non-Hermitian topolog-
ical and non-Hermitian trivial. The topology of theses phases
is characterized in the generalized Brillouin zone, where

FIG. 7. Phase diagram of the non-Hermitian SSH model with
open boundary conditions. For |δ| < t , the phases are continuously
connected to the phases of the Hermitian (δ = 0) SSH model, and are
denoted as Hermitian trivial (“Herm. Trivial,” purple) and Hermitian
topological (“Herm. Top.,” pink) even though they are still non-
Hermitian. The boundary between these phases is given by the curves
|δc| = √

t2 − t2
2 . For |δ| > t , the phases cannot be deformed to the

ones in the Hermitian model, so they are called non-Hermitian trivial
(“Non-Herm. Trivial,” green) and non-Hermitian topological (“NH.
Top.,” orange). The boundary between these phases is determined by
the curves |δc| = √

t2 + t2
2 . For |δc| = t , the non-Bloch band collapse

critical line separates the Hermitian and non-Hermitian phases. In
our studies, we analyze the phase transitions along the path t = 1.1
(black dashed line), such that by varying δ, we span all phases.

the skin accumulation is “unraveled”, and can be quantified
by a winding number defined on the generalized Brillouin
zone [39,41,47]. The boundary between these phases is given

by the curve |δ| =
√

t2
2 + t2.

B. Thermodynamics

We now investigate how the spectrum of the system
evolves as we vary δ, such as to uncover unconventional
critical thermodynamic behavior with no Hermitian ana-
log. The results are shown in Figs. 8(a)–8(c) for t = 1.1.
Most strikingly, we observe the appearance of an asym-
metric bunching of bands at the so-called non-Bloch-band
collapse point [47,91–94] δc = 1.1 (for all components),
which is akin to a non-Hermitian flat band in complex
energy space. As all bands can intermix with divergent den-
sity of states, such a point, despite not presenting a gap
closing, is a phase transition point leading to band met-
ric discontinuities linked to the NHSE-induced nonlocality
of the system [47,95]. In addition, there are also topo-
logical transitions marked by the appearance/disappearance
of zero modes, between the Hermitian topological and
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FIG. 8. Comparison between the spectrum and grand potential of the system with OBC and the surrogate Hamiltonian for t = 1.1. (a) Real,
(b) imaginary, and (c) absolute values of energy for OBC. (d) First derivative of the grand potential: extensive part for μ = 0 (blue circles),
extensive part for μ = −1.0 (orange squares), nonextensive part for μ = 0 (green stars), and nonextensive part for μ = −1 (pink triangles) for
OBC. (e) Real, (f) imaginary, and (g) absolute values of energy for the surrogate Hamiltonian. (h) First derivative of the grand potential for the
surrogate Hamiltonian for μ = 0 (blue circles) and μ = −1.0 (orange squares). The OBC simulations were done with L = 30 unit cells, while
for the surrogate Hamiltonian 100 values of k were used for the simulation of the spectrum and 1000 values were used for the grand potential.
The gray vertical dashed lines indicate the (theoretical) critical values of δ.

Hermitian trivial phase at δc = √
1.12 − 1 ≈ 0.46 and be-

tween the non-Hermitian topological to non-Hermitian trivial
phase at δc = √

1.12 + 1 ≈ 1.49.
As the non-Bloch band collapse is a gapped transition with

criticality occurring at nonzero ε, we need to set the chemical
potential to that finite value to observe its signature in the
grand potential. Figure 8(d) shows that indeed the transi-
tion between different Hermitian phases or between different
non-Hermitian phases occurs for μ = 0, while the transition
between the Hermitian and non-Hermitian topological phases
occurs at μ = −1.0.5

Interestingly, all the phase transitions show very distinctive
behavior in the derivative of ω with respect to δ. For the

5Notice that the OBC phase transitions are a bit displaced with
respect to the critical values of δ. This is visible in the spectrum and
in the grand potential derivative, and is a finite-size effect. For the
surrogate Hamiltonian, instead, we can achieve the thermodynamic
limit and the phase transition at δc is much sharper.

transition at δc ≈ 0.46, there is a discontinuity in the nonex-
tensive contribution, while the extensive contribution shows
a small kink. This imply that the second derivative presents
a discontinuity, as can be seen in the inset of Fig. 8(h). This
suggest that they have the same scaling as the Hermitian SSH
model (this will be later confirmed by the scaling analysis in
Sec. VI E). On the other hand, for the transition at δc ≈ 1.49,
the nonextensive part shows a discontinuity and the extensive
part of ω also shows a kink.6 However, as in the case for
PBC, the order of the phase transition cannot be unequiv-
ocally determined by only considering the grand potential
derivative. For the non-Bloch band collapse at δc = 1.1, both
contributions show a very similar behavior. This indicates that
they might have the same order, which seems to contradict

6Notice that in the non-Hermitian trivial phase, the nonextensive
contribution is nonzero although this phase does not present zero
modes. This happens due to finite size effects, but this contribution
vanishes for higher δ.
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the Josephson hyperscaling relation. These aspects will be
discussed in Sec. VII.

C. Surrogate Hamiltonian

Due to the NHSE, the system with OBC has skin modes
that diverge in the thermodynamic limit, making the exact
determination of the thermodynamic behavior a very subtle
question. A way to overcome this is to perform a change of
basis that is position-dependent, which “gauges away” the
skin mode accumulation, while preserving the OBC spectrum.
Given an original Hamiltonian H (k), one performs a complex
deformation of the momentum k → k + iκ , such that one ob-
tains the so called “surrogate Hamiltonian” H (k + iκ ), which
does not experience the NHSE [47,50] (by construction, a
constant complex momentum deformation does not change
the OBC spectrum [41]). For the non-Hermitian SSH Hamil-
tonian (14), the deformation is [39]

κ = − ln

(√∣∣∣∣ t − δ

t + δ

∣∣∣∣
)

, (35)

such that the Bloch Hamiltonian of Eq. (14) becomes

H (k) = (t1 − δ + ei(k+iκ ) )σ+ + (t1 + δ + e−i(k+iκ ) )σ−, (36)

where σ± = (σx ± iσy)/2. As σxσ±σx = σ∓, the similarity
transformation U in Eq. (1) is given simply by σx for this
model.

The spectrum of this system,

ε±(k) = ±
√

12 + t2 − δ2 + 2
√

t2 − δ2 cos k, (37)

is identical to the spectrum of the original model under
OBC [47,80], with the exception of the zero modes [compare
Figs. 8(a)–8(c) with Figs. 8(e)–8(g)]. This is a way to recover
the bulk-boundary correspondence.

Theses modes are the ones associated to the extensive
part of the system with OBC. Therefore one can obtain the
extensive contribution of the grand potential from the surro-
gate Hamiltonian, as it can be observed comparing Figs. 8(d)
and 8(h). The advantage of using the surrogate Hamiltonian is
that we can approach the thermodynamic limit and make the
thermodynamic results more reliable because it is not unstable
for large system sizes. It is more evident then that indeed the
first derivative of ωext shows a discontinuity at the non-Bloch
band collapse δc = 1.1, while it shows a kink at δc ≈ 1.49.
As the behavior at δc ≈ 0.49 is not clear, we calculate the
second derivative around this point [inset of Fig. 8(h)]. It
shows a discontinuity, indicating that there is a kink in the
first derivative.

D. Electronic density and density of states

We next examine the divergent degeneracy at the non-
Bloch band collapse [47,92–94] through the electron density
n, as derived from the rate of change of ω with μ

n(μ) = N

L
= −∂ω

∂μ
, (38)

where N is the number of electrons, and through the (reduced)
density of states d.o.s., which can be obtained by the second

FIG. 9. (a) The electronic density n(μ) and (b) the reduced den-
sity of states d.o.s(μ) for the extensive (red circles) and nonextensive
(green squares) contributions as a function of μ for t = 1.1 and
δ = 1.1, where the non-Bloch band collapse occurs. We used 50 unit
cells in these simulations.

derivative of ω with respect to μ,

d.o.s.(μ) = −∂2ω

∂μ2
. (39)

The results for all phases are described in Appendix B, but
if we focus on δ = 1.1, where the non-Bloch band collapse
occurs, we see in Fig. 9 that the electronic density shows
only steps of integer occupancy, depending on the chemical
potential [Fig. 9(a)] contributions! This leads to the van Hove
singularities seen in Fig. 9(b), and indicates the remarkable
character of this transition, where there is an accumulation
of modes in a fermionic system and the density of states is
composed only of van Hove singularities [92–94].

Another very intriguing feature observed both in the elec-
tronic density and in the density of states is that, at the
non-Bloch collapse, the extensive and nonextensive contri-
butions are exactly opposite to each other (for the electronic
density at μ = 1 with respect to the n = 1 line). This can be
understood if we assume that the nonextensive modes can act
like a reservoir to the extensive modes. This was observed in a
heat-machine approach to the topological mode of the Kitaev
model [78], where the edge mode acted as a heat reservoir to
the bulk modes. Here, it seems that this is the case but now
the nonextensive modes seems to act as a particle reservoir
for the extensive modes. A similar feature can be observed
for all phases (see Appendix B), although they are not exactly
opposite to each other.

E. Critical exponents

In principle, we can use the surrogate Hamiltonian to ob-
tain the critical exponents z and ν and compare them to the
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result for the scaling of ω, as it was done for PBC. From the
expression of the spectrum in Eq. (37), it is clear that the gap
closing occurs for

δc =
√

t2 − 1 Kc = π μ = 0,

δc =
√

t2 + 1 Kc = π/2 μ = 0,

δc = t ∀k μ = ±1. (40)

For the transitions that happen at δc = √
t2 ± 1, the gap clos-

ing can be described using the same kind of calculation done
for PBC, with critical exponents

δc =
√

t2 − 1 z = 1 ν = 1,

δc =
√

t2 + 1 z = 1/2 ν = 1, (41)

as it can be seen in Figs. 10(a) and 10(b), respectively
(see Appendix C for details of the calculation). This makes
that the grand potential scales with g1 (both for the exten-
sive and nonextensive components due to ξ , see discussion
on Sec. II B) at δc = √

t2 − 1, and as g1/2 (again, for both
components) for δc = √

t2 + 1. This is indeed confirmed in
Fig. 10(c), where we calculated ωs using Eq. (29) for both
values of δc.

Although the result for the first transition is expected, as it
is the transition between the “Hermitian” phases and should
have the same critical exponents even with finite δ, the fact
that the transition between the non-Hermitian phases have
particular critical exponents and that they are the same as
the one observed for PBC is really interesting. In addition, if
we increase the system size using the surrogate Hamiltonian
spectrum, as done in Fig. 10(d), we see that the δc = √

1 + t2

transition also exhibits a change in the scaling behavior for
increasing values of g (as seen for PBC), while for the other
transition it maintains the g1 scaling.

1. Hermitian and non-Hermitian Dirac universality classes

The results for the critical exponents can be understood if
one considers that the Hermitian SSH model pertain to the
universality class of the Dirac model [56], while the transition
between non-Hermitian phases belongs to the universality
class of the non-Hermitian Dirac model [96–98].

The Hermitian Dirac model has the Bloch Hamiltonian

h(p) = Mσx + vF pσy, (42)

where the mass term M tunes the phase transition between the
trivial (M > 0) and topological phase (M < 0) and vF is the
Fermi velocity.

Consider the Hermitian SSH model,

h(p) = [t + t2 cos(k)]σx + t2 sin(k)σy, (43)

in the vicinity of the topological phase transition at t = t2 and
Kc = π , such that we can write t = t2(1 + M ) and k = Kc +
p. We then obtain

h(p) ≈ Mσx − t2 pσy, (44)

which has the form of Eq. (42) upon identifying t2 with −vF .
A version of the non-Hermitian Dirac model [96–98],

h(p) = Mσx + (vF p + iγ )σy, (45)

FIG. 10. Scaling analysis for the gap � closing and for the sin-
gular part of the grand potential ωs near the critical points δc ≈ 0.46,
Kc = π and δc ≈ 1.49, Kc = π/2 for t = 1.1. (a) Gap closing in
momentum space, for both phase transitions, compared to the curves
|p| (blue dashed lines) and |p|1/2 (red solid lines). (b) Closing of the
gap in the parameter space for both phase transitions, compared to the
curves |g| (blue dashed lines) and |g|1/2 (red solid lines). (c) Scaling
of ωs for both phase transitions and both components calculated for
L = 20 and open boundary conditions. (d) Scaling of ω calculated
from the surrogate Hamiltonian for both phase transitions and 1000 k
values.

presents a new phase transition when γ = ±M, in addition to
the Hermitian one at M = 0 and γ = 0.

If we consider the non-Hermitian SSH model in Eq. (14)
with t = t2(1 + M ) and k = Kc + p, we get

h(p) ≈ Mσx + (−t2 p + iδ)σy, (46)

such that it is mapped on the non-Hermitian Dirac model in
Eq. (45) if we identify t2 with −vF and δ with γ .

VII. SCALING FOR THE NON-BLOCH BAND COLLAPSE

For the non-Bloch band collapse (δc = t), the energy ε

given by Eq. (37), is equal to ±1 for any value of k, such that
the gap closes in a flat band. Hence, although the gap scales
with g1/2, as calculated in Appendix C, it is difficult to obtain
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the critical exponent z using the scaling of the gap closing in
momentum space. However, as the exponent ν defines how
the correlation length diverges at to the phase transition

ξ = |g|−ν, (47)

one can obtain ν by performing a scaling analysis of the
correlation length.

To obtain ξ from the simulation, we assume that |〈a†
0ar〉| =

|〈a†
0a0〉| exp (−r/ξ ), where 0 denotes the first site, such that a

linear fit of the form

log

( |〈a†
0ar〉|

|〈a†
0a0〉|

)
= − r

ξ
, (48)

allows one to obtain ξ .
As discussed in Sec. II, for non-Hermitian systems there

are two different wave functions |ψL〉 and |ψR〉, such that they
can lead to different correlation functions. Then, one can use
different definitions to evaluate these correlation functions, as
detailed in Appendix D. In Fig. 11(a), we show the results for
the correlation functions (at T = 0 and μ = −1) calculated
using |ψL〉 as a basis (denoted by 〈LL〉) and using 〈ψL| and
|ψR〉 (denoted by 〈LR〉). Surprisingly, the correlation length
does not seem to diverge as we approach the critical point for
none of the correlation functions.

One possible explanation is that the NHSE introduces
a new length scale, given by the skin depth κ−1 =
[ln

√|(t + δ)/(t − δ)|]−1
, which invalidates scaling argu-

ments based on a single correlation length scale. κ−1 goes
to zero as g goes to zero, which makes the correlation length
defined in Eq. (48) goes to zero as g tends to zero! The fact that
the correlation length does not diverge in this phase transition
are supported in Fig. 11(a) both for the simulated data and for
the theoretical expression for 
k−1 obtained from Eq. (35).

This contradicts the usual lore of phase transitions, as in a
phase transition the divergence of the correlation length indi-
cates that the system is very sensitive to fluctuations (classical
or quantum), which can drive the phase transition. This is
caused by the very peculiar character of the non-Bloch band
collapse: as all modes are located at the edge (even for the
surrogate Hamiltonian for δ = t), so that the system is very
unstable. This instability is manifest on the change of the
branch of energies, which is similar to a change in ground
state. In addition, the fact that the gap closes as a flat band
shows that the spatial and time fluctuations are decoupled and
there is no typical length scale associated to the gap closing
and change of ground state.

The fact that there is still a phase transition is clear when a
scaling analysis is performed in the gap and in the grand po-
tential as a function of g, see Figs. 11(b)–11(d). Although the
critical exponent ν is not defined in this phase transition, the
way in which the gap closes in the parameter space suggests
that νz is equal to 1/2. As ξ does not have a characteristic
scaling, this imply that the order of the phase transition should
not depend on the dimension of the system, such that the
Josephson hyperscaling relation is not satisfied. This implies
that both components scale with g1/2, which is consistent with
the result obtained in Fig. 8(d), where both the extensive and
nonextensive contributions show basically the same behavior.

FIG. 11. Scaling analysis for the correlation length ξ , gap �

closing and singular part of the grand potential ωs near the criti-
cal points δc = 1.1, Kc = 0 for t = 1.1. (a) Correlation length as a
function of g close to the phase transition for the correlation length
using only left eigenvectors (< LL >, red circles) and using left and
right eigenvectors (< LR >, green squares) compared to curves of
the inverse of κ (dashed lines with different amplitudes) defined in
Eq. (35). (b) Closing of the gap in the parameter space (red circles),
compared to the curve |g|1/2 (red solid line). (c) Scaling of ωs for the
extensive (red circles) and nonextensive (green squares) compared
to curves proportional to g1/2 (red solid line and blue dashed line)
calculated for L = 20 and open boundary conditions compared to.
(d) Scaling of ω calculated from the surrogate Hamiltonian with
1000 k values (red circles) compared to a curve proportional to g1/2

(red solid line).

This establishes the complete exceptional character of the
non-Bloch band collapse as a quantum phase transition.

VIII. CONCLUSIONS

We developed a framework for characterizing phase tran-
sitions in non-Hermitian systems. Despite the fact that
non-Hermitian systems exhibit complex energies, for models
with pseudo-Hermitian symmetry, the grand potential is a real
quantity, such that the traditional thermodynamics analysis
can be applied.
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As non-Hermitian systems present in general different
phase diagrams for different boundary conditions, we an-
alyzed separately the case for PBC and OBC. We also
investigated system a “Hermintianized” version of the model
and the so called surrogate Hamiltonian, which yields further
insight into the phases of these models. Most phase transitions
in this system can be characterized using critical exponents
and belong to either the Dirac or non-Hermitian Dirac univer-
sality class.

However, the non-Bloch band collapse transition possesses
an additional length scale (skin depth) and does not strictly
obey critical scaling relations. This makes that the correla-
tion length does not diverge, but rather goes to zero at this
phase transition. This very peculiar behavior is due to the
localization of the modes at the edges due to the complexi-
fication of the momentum. This absence of divergence in the
correlation length breaks the Josephson hyperscaling relation.
This implies that the order of the phase transition is equal for
the extensive and nonextensive parts of this system, although
they have different dimensions. The breaking of the Josephson
hyperscaling relation marks the extremely exceptional char-
acter of phase transitions that are possible in non-Hermitian
systems.

The anomalous scaling laws discussed here could be pos-
sibly observed in cold-atom systems, which are a promising
platform to observe the NHSE [36]. Nevertheless, this would
require an extension of our analysis to finite temperatures.
The generalization of this formalism for other non-Hermitian
systems, such as the ones that are not pseudo-Hermitian, or the
ones that have higher dimension and present multiple scaling
of the NHSE are natural extensions of this work.

ACKNOWLEDGMENTS

The authors thank N. de C. Costa and F. Kunst for a careful
reading of the manuscript. R.A. acknowledges funding from
the Brazilian Coordination for the Improvement of Higher
Education Personnel (CAPES) and from Delta Institute for
Theoretical Physics (DITP) consortium, a program of the
Netherlands Organization for Scientific Research (NWO) that
is funded by the Dutch Ministry of Education, Culture and
Science. C.H.L. acknowledges support from the Singapore
MOE Tier I grant (WBS No. R-144-000-435-133).

APPENDIX A: SCALING OF � WITH L

Although non-Hermitian systems present many interesting
scalings with L due to their nonlocal character, we verified that
Eq. (7) always holds for this model. In Fig. 12, we show that
for all the phases arising in the phase diagram for OBC, the
grand potential scales linearly with L. However, at precisely
the non-Bloch band collapse point, �(δ = t, μ = −1) = 0,
as can be anticipated by the spectrum in Fig. 8. Thus the
grand potential does not scale with the system size at this
point.

APPENDIX B: DENSITY OF STATES FOR ALL PHASES

The results for the electronic density and reduced density
of states for all phases are presented in Fig. 13 for t = 1.1.
We can understand better these results by comparing them

FIG. 12. Grand potential as a function of L for many representa-
tive values of δ. The blue circles are results for the Hermitian model
(δ = 0). The orange diamonds are results for the Hermitian trival
phase (δ = 0.25). The green triangles are results for the transition
between the Hermitian trivial and Hermitian nontrivial phase (δ =√

t2 − t2
2 ). The pink reversed triangle are results for the Hermitian

nontrivial phase (δ = 0.75). The brown squares are results for the
region in the proximity of the non-Bloch band collapse (δ = t). The
purple stars are results for the non-Hermitian trivial phase (δ = 1.2).
The gray triangle pointing to the right are results for the transition
between the non-Hermitian trivial and the non-Hermitian topological
phase (δ = √

t2 + t2
2 ). The red triangles pointing to the left show

results for the non-Hermitian topological phase (δ = 1.6). We used
t = 1.1 and μ = 0 for all the simulations. We divide the result for
each δ by their value at L = 30, such that we can see the scaling for
all values of δ.

to the spectrum in Fig. 8. For the Hermitian trivial phase,
Figs. 13(a), 13(e) 13(i), and 13(m), the spectrum presents a
very small gap such that the results are similar to a metallic
state: there is a continuous increase of the electronic density
as we increase the chemical potential for the extensive compo-
nent, while the nonextensive component shows a very small,
but finite, density. The d.o.s reflects this result, as it is finite
for all energy values inside the band, but does not show any
distinct feature.

For the Hermitian topological phase, the gap increases
and the bands become less dispersive, what makes that the
electronic density for the extensive contribution show zero
density of electrons, until it reaches some value of μ that
is inside the continuum of bands [see Fig. 13(b)]. Then, the
density states increase until it reaches the top limit of this
continuum and displays a plateau at half-filling. These are
also present in the density of states, Fig. 13(j), which sig-
nals the gap (although with much fluctuations). Besides the
features seen in the extensive contribution, the nonextensive
contribution of the electronic density, see Fig. 13(f), shows a
jump at μ = 0 due to the zero mode, what is reflected in the
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FIG. 13. Electronic density n and d.o.s. as a function of the chemical potential μ for all phases and for both components of the grand
potential, for t = 1.1 and several values of δ. Electronic density for the extensive contribution in the (a) Hermitian trivial, (b) Hermitian
topological, (c) non-Hermitian topological, and (d) non-Hermitian trivial phases. Electronic density for the nonextensive contribution in the (e)
Hermitian trivial, (f) Hermitian topological, (g) non-Hermitian topological, and (h) non-Hermitian trivial phases. Reduced density of states for
the extensive contribution in the (i) Hermitian trivial, (j) Hermitian topological, (k) non-Hermitian topological, and (l) non-Hermitian trivial
phases. Reduced density of states for the nonextensive contribution in the (m) Hermitian trivial, (n) Hermitian topological, (o) non-Hermitian
topological, and (p) non-Hermitian trivial phases. We used 50 unit cells in these simulations.

van Hove singularity in the density of states for μ = 0, see
Fig. 13(n).

The same features are visible in the non-Hermitian topo-
logical phases [Figs. 13(c), 13(g) 13(k), and 13(o)], except
that they are amplified because the bands are less dispersive.
For the non-Hermitian trivial phase [Figs. 13(d), 13(h) 13(l),
and 13(p)], we see the same features as for the Hermitian
trivial phase, but again amplified due to the less dispersive
character of the bands.

APPENDIX C: GAP CLOSING FOR OPEN BOUNDARY
CONDITIONS

We can do the same kind of calculation for the critical
points δc = √

t2 ± 1 of the surrogate spectrum in Eq. (37), as
it was done in Sec. II B for the periodic case.

Starting with the critical point δc = √
t2 − 1, Kc = π , we

find

ε(g = 0, p) ≈
√

1 + t2 − (t2 − 1) + 2
√

1

(
−1 + p2

2

)
= p,

(C1)

implying that z = 1. In addition,

ε(g, p = 0)

≈
√

1 + t2 − (t2 − 1)(1 + g)2 − 2
√

t2 − (t2 − 1)(1 + g)2

≈
√

2 − (t2 − 1)(2g + g2) − 2 + 2(t2 − 1)g + (t4 − t2)g2

=
√

t2 − 1t g, (C2)

hence νz = 1 and ν = 1.
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For the critical point δc = √
t2 + 1 and Kc = π/2, we have

ε(g = 0, p) ≈
√

1 + t2 − (t2 + 1) + 2
√−1p = 1 + i

2
p1/2,

(C3)

implying that z = 1/2 and

ε(g, p = 0) ≈
√

1 + t2 − (1 + t2))(1 + g)2

= t
√

−2g − g2

≈
√

2t |g|1/2
√

−sgn(g), (C4)

which presents the same asymmetry as obtained for the PBC
case, so that νz = 1/2 and ν = 1. The critical exponents for
both phase transitions are supported by the scaling results
from the simulations in Figs. 10(a) and 10(b).

For the non-Bloch band collapse (δc = t), there is no gap
closing, but we can analyze how the energy approaches the
flat band value (ε = 1). In this case,

ε(g, k) =
√

1 + t2 − t2(1 + g)2 + 2
√

t2 − t2(1 + g)2 cos k

=
√

1 − t2(2g + g2) + 2t
√

−2g + g2 cos k

≈
√

1 + 2
√

2t
√−gcos k

≈ 1 +
√

2t cos k
√

−sgn(g) |g|1/2, (C5)

such that νz = 1/2.

APPENDIX D: CORRELATION FUNCTIONS FOR
NON-HERMITIAN SYSTEMS

For a generic (noninteracting) tight-binding model, we can
write the second quantized Hamiltonian in terms of a matrix
H,

H =
∑
α,β

c†
αhαβcβ = C†H C, (D1)

where α and β represent generic quantum numbers and C =
(c1 c2 · · ·)T is a vector with all the annihilation operators.

We can diagonalize the Hamiltonian to obtain

C†H C = �†E�, (D2)

where E = S−1HS is a matrix with the energies of the system
in its diagonal and � = (ψ1 ψ2 · · ·)T is a vector of the
annihilation operators of the eigenmodes of the Hamiltonian.
S relates � and C,

� = S−1C ⇒ C = S�, (D3)

which leads to

cα =
∑

m

Sαmψm, (D4)

with m labeling the energy mode. The correlation function for
a Hermitian system is then given by

〈c†
ρcσ 〉 (T, μ) =

∑
m

S∗
ρmSσm fFD(εm, β, μ), (D5)

where fFD = (eβ(εm−μ) + 1)
−1

is the Fermi-Dirac distribution.
For T = 0,

〈c†
ρcσ 〉 (T = 0, μ) =

∑
εm<μ

S∗
ρmSσm. (D6)

For non-Hermitian systems, H† and H are different such
that

C = SR�R = SL�L, (D7)

where �R and �L are the set of eigenmodes of H and H†,
respectively.

In this way, we have four kinds of correlation functions:

〈c†
ρcσ 〉RR(T = 0, μ) =

∑
�εm<μ

(
SR

ρm

)∗
SR

σm

〈c†
ρcσ 〉RL(T = 0, μ) =

∑
�εm<μ

(
SR

ρm

)∗
SL

σm

〈c†
ρcσ 〉LR(T = 0, μ) =

∑
�εm<μ

(
SL

ρm

)∗
SR

σm

〈c†
ρcσ 〉LL(T = 0, μ) =

∑
�εm<μ

(
SL

ρm

)∗
SL

σm. (D8)

From the above expressions, it is clear that 〈c†
ρcσ 〉RL =

(〈c†
σ cρ〉LR)

∗
, such that these correlations functions are

not independent. Similarly, for pseudo-Hermitian systems,
〈c†

ρcσ 〉RR = (〈c†
σ cρ〉LL )

∗
.

For the results in Sec. VII, we use the correlation functions
〈a†

0ar〉LL
and 〈a†

0ar〉LR
because we consider wave functions

localized on the left, such that the correlation function has
an exponential decay with respect to the first site (0). Similar

results hold for 〈a†
L−1−raL−1〉RR

and 〈a†
L−1−raL−1〉RL

if ones
calculate the correlation function between the last site of the
lattice (L − 1) and a site r sites distant to the left.
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