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Flat-band superconductivity for tight-binding electrons on a square-octagon lattice
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The discovery of superconductivity in twisted bilayer graphene has triggered a resurgence of interest in flat-
band superconductivity. Here, we investigate the square-octagon lattice, which also exhibits two perfectly flat
bands when next-nearest-neighbor hopping or an external magnetic field are added to the system. We calculate
the superconducting phase diagram in the presence of on-site attractive interactions and find two superconducting
domes, as observed in several types of unconventional superconductors. The critical temperature shows a linear
dependence on the coupling constant, suggesting that superconductivity might reach high temperatures in the
square-octagon lattice. Our model could be experimentally realized using photonic or ultracold atoms’ lattices.
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I. INTRODUCTION

It has been conjectured that the presence of flat bands in
a two-dimensional system may give rise to room temperature
superconductivity [1]. Indeed, while for a conventional BCS
superconductor, the critical temperature scales exponentially
with the inverse of the interaction strength, for a flat band
system the critical temperature exhibits a linear dependence
on the interaction [2,3], indicating a robust superconducting
phase. The BCS result for narrow bands in the strong coupling
limit becomes Tc ∝ gN (0) where N (0) is the density of the
states at the Fermi level, which is enhanced as the flat band
leads to maximal values of the density of states [4].

The conjecture seems to be ratified by the discovery of
superconductivity in twisted bilayer graphene [5]: when two
stacked sheets of graphene are twisted relative to each other
by about 1.1 degrees, the so-called first “magic” angle, zero-
resistance states with critical temperature of up to 1.7 K arise
upon electrostatic doping. This emergent superconductivity
is absent in a single layer graphene and occurs because the
twisting leads to the formation of a Moiré pattern, and a con-
sequent shift of the van Hove singularity to the Fermi energy.
This phenomenon was predicted theoretically a few years ago
[6], but has been experimentally observed only recently [5,7].
The general understanding is that, due to the presence of flat
bands, the kinetic energy is quenched and interaction-driven
quantum phases prevail. A similar explanation was proposed
to interpret the appearance of high-Tc superconductivity in
highly oriented pyrolytic graphite [8,9].

The possibility to access flat bands and their influence
on the physical properties of the system have been stud-
ied for about three decades [10–19] and recently there is a
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resurgence of interest in flat bands to explore unconventional
superconductivity [20–25]. In fact, given the implementation
of experiments with cold atoms, photons, or electrons in the
micro and nanoscale, respectively, many of the long-standing
theoretical predictions for the flat band systems may finally be
tested experimentally. Indeed, flat bands have been observed
not only in electronic systems or spin chains with frustration
[26,27], but also in artificial lattices [28], as in ultracold
atomic gases [29–32] or photonic devices [33–39].

Here we investigate the superconducting phase of the
square-octagon lattice, which is the arrangement of the octa-
graphene [40]. The square-octagon lattice has been attracting
much attention lately due to the plethora of novel phases
predicted to occur in the system. They range from a quantum
magnetic phase under the competition between temperature
and on-site repulsive interaction [41], to topological insulating
phases induced by spin-orbit coupling or non-Abelian gauge
fields [42–44], and even high-temperature superconductivity
with singlet s±-wave paring symmetry [45]. Moreover, it has
been shown that trivial and nontrivial flat bands can be tuned
on the square octagon lattice by considering the addition of
next-nearest neighbor hopping and an external magnetic flux
[46,47].

In this paper, we calculate the superconducting phase due
to on-site attractive interactions when the system presents per-
fectly flat bands. We obtain multiple superconducting domes,
as observed in several strongly correlated compounds [48] and
twisted graphene bilayer [49]. Since we analyze the conditions
for the appearance of superconductivity in the system, our
conclusions may shed some light in the understanding of the
experimental data for those unconventional superconductors
as well.

This paper is structured as follows. In Sec. II we ana-
lyze the conditions for the appearance of flat bands in the
square-octagon lattice assuming nearest neighbor (NN) and
next-nearest neighbor (NNN) hoppings and the presence of
an external magnetic flux. Then, in Sec. III we calculate the
superconducting phase diagram when the system presents
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FIG. 1. The geometry of square-octagon lattice. A, B,C, D de-
note four different sites in the unit cell, which indicate a large square
(red dashed lines). The strength of the NN hopping along the sides
(black solid lines) of the small square is t . The strength of the NNN
hopping (red dotted lines) along the diagonals of the small square is
τ . δ1, δ2, δ3, δ4 are NN vectors and δ5, δ6 are NNN vectors.

perfectly flat bands. We expect our results to be a good
approximation when the bands are not perfectly flat, as long as
the dispersion is much smaller than the superconducting gap.
Our conclusions are presented in Sec. IV.

II. FLAT BANDS

The tight-binding model that describes the kinetic energy
of spin-1/2 fermions in the square-octagon lattice (see Fig. 1)
can be written as [47]

H0 =
∑
m,n

∑
i, j

τi, jc
†
m,n,i,σ cm,n, j,σ + H.c. , (1)

where the operator c†
m,n,i,σ (cm,n,i,σ ) creates (annihilates) a

fermion with spin σ =↑,↓ at the ith site of the (m, n)th unit
cell. τi, j is the hopping parameter between the ith site and
the jth sites, and it can take two possible values, depending
on the position of the sites i and j. For an electron hopping
along the boundary of a square plaquette, τi, j = t , which is
the NN hopping. Along the lines inside the square plaquettes,
τi, j = τ , which denotes the NNN hopping. As shown in Fig. 1,
the NN vectors are defined as δ1 = (1/

√
2)(1,−1), δ2 =

(1/
√

2)(1, 1), δ3 = (0, 1), and δ4 = (1, 0), while the NNN
vectors are δ5 = √

2(0, 1), and δ6 = √
2(1, 0). The lattice

parameter is set to unit for the sake of simplicity. The lattice
translation vectors are a1 = (1 + √

2, 0) and a2 = (0, 1 +√
2), so that each unit cell is given by R(m, n) = ma1 + na2.
Now, we assume that for each square plaquette there are

Aharonov-Bohn phase factors incorporated to the hopping
terms, t → t exp(±i�), due to the presence of an external
magnetic flux � (or some artificial gauge field). Here, � =
π �/2�0, with �0 = hc/e denoting the fundamental flux

quantum. The positive and negative signs in the exponent
indicate the direction of the forward and backward hoppings,
respectively. By performing a Fourier transformation and
introducing the spinor ψk,σ = (cA

k,σ , cB
k,σ , cC

k,σ , cD
k,σ )T , where

cα
k,σ are the fermion annihilation operators in the four basis of

the unit cell (α = A, B,C, D, as in Fig. 1), with k1 = k · a1

and k2 = k · a2, the Hamiltonian in Eq. (1) becomes H =
−∑

k,σ ψ
†
k,σ H̃0 ψk,σ , where [46]

H̃0 =

⎛
⎜⎜⎜⎝

0 tei� teik2 + τ te−i�

te−i� 0 tei� te−ik1 + τ

te−ik2 + τ te−i� 0 tei�

tei� teik1 + τ te−i� 0

⎞
⎟⎟⎟⎠ .

(2)

From now on, we set t = 1 throughout this work without any
loss of generality, and τ is given in units of t .

The particular case � = τ = 0, i.e., when there is no mag-
netic flux and NNN hopping is neglected, has been previously
investigated by Yamashita et al. [50]. It was shown that the
system is metallic and there are Dirac cones in the first
Brillouin zone, with flat bands only along the lines k1 = π

or k2 = π .
The band solutions ε for the generic case of finite τ and

� �= 0 can be quite complicated, since they are provided by
the solutions of the equation

|H̃0 − ε1| = F + G = 0 (3)

for each spin channel, where

F = ε4 − 2ε2[τ 2 + τ f (k1, k2) + 3]

− 4ε cos 2�[ f (k1, k2) + 2τ ] , (4)

G = τ 4 + 2τ 3 f (k1, k2) + 2τ 2(2 cos k1 cos k2 − 1)

− 2τ f (k1, k2) − 2 cos 4� + 3 − 4 cos k1 cos k2 , (5)

and f (k1, k2) = cos k1 + cos k2.
However, a simple possible condition for the appearance

of flat bands in the model is obtained for G = 0. In this case,
one can see from Eq. (4) that there is at least one flat band,
at ε = 0. Let us consider for the moment � = 0. Under this
constraint, there are four values for the hopping τ satisfying
G = 0: τ = ±1, τ±, where

τ± = f (k1, k2) ±
√

f (2k1, 2k2) − 4(cos k1 cos k2 − 1)

2
. (6)

The roots τ± indeed correspond to a flat band ε = 0, but
since the solutions are functions of k1 and k2, the adjustable
parameter τ = τ± cannot be easily used in experiments to
engineer a model with flat bands. In contrast, for τ = ±1, we
obtain not just one, but rather two flat band solutions from
Eq. (5): For τ = −1, there are flat bands at

ε1,2 = 2, 0 , (7)

and dispersive bands at

ε3,4 = −1 ±
√

5 − 2 f (k1, k2) , (8)
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FIG. 2. Band structure of the noninteracting tight-binding
square-octagon lattice model in momentum space. τ = 1, � = 0,
and the energies are expressed in units of t .

whereas for τ = 1 the bands are

ε =
⎧⎨
⎩

0 ,

−2 ,

1 ± √
5 + 2 f (k1, k2).

(9)

The band structure for τ = 1 and � = 0 has been previ-
ously investigated [46,47] and a remarkable feature for the
square-octagon lattice is that one of the dispersive bands is
sandwiched in between two perfectly flat bands, while the
other is isolated from the rest, at the top of the spectrum, as
depicted in Fig. 2.

As emphasized in Ref. [46], this is a remarkable result,
very different from the usual flat bands that appear only at
the maximum or minimum of the spectrum in absence of any
magnetic field [51,52].

Notice that, within the first Brillouin zone, the sandwiched
dispersive band touches the higher flat band (ε = 0) at k =
(±π,±π ) and the lowest flat band at k = (0, 0).

Moreover, numerical calculations [46] indicate that flat
bands appear even in the presence of a magnetic flux and
remain robust for fairly high values of the flux, although they
are not observed for every nonzero value of �. Indeed, our
studies ratify the numerical results, since it can be promptly
verified analytically from Eq. (3) that perfectly flat bands arise
for τ = 1 and � �= 0,

| H̃0 − ε1 | = F − 2(cos 4� − 1) = 0 . (10)

Thus, whenever cos 4� = 1, one obtains at least one flat
bland, ε = 0, and hence � = n π/2, with n ∈ Z. In particular,
for this specific choice of � and τ = 1, we get two flat bands
and also two other dispersive bands

ε =
⎧⎨
⎩

0 ,

2l ,

−l ± √
5 + 2 f (k1, k2) ,

(11)

where l = ±1 for odd or even values of n, respectively.
Therefore, from now on, we set τ = 1 and � = nπ/2 for even
values of n in the remaining of this paper.

Although we concentrated here on the case τ = 1 and n
even for the magnetic flux quantization, � = nπ/2, the results
for n odd or τ = −1 are essentially the same since one still
obtains two perfectly flat bands and two dispersive bands,

where one of the bands is detached from the others and the
remaining is sandwiched between the two flat bands.

Finally, the Chern numbers were calculated for each of
the bands [46] with � �= 0 and, as expected, the dispersive
bands are trivial, but nearly flat bands present nonzero Chern
numbers.

III. ON-SITE PAIRING INTERACTIONS

Let us now turn our attention to the effect of interactions in
the system by introducing an on-site Hubbard-like attractive
term, expressed as −gnα

↑nα
↓, where g > 0 is the interaction

strength and nα
σ is the number operator for fermions, with

α = A, B,C, D labelling the basis of the unit cell, as before.
Taking into account every site of the lattice, the interaction
Hamiltonian can be rewritten as

Hon-site
int = −g

∑
α,i

(
pα

i

)†
pα

i , (12)

where the operator pα
i = cα

i,↓cα
i,↑ destroys a Cooper pair at the

ith site of the lattice and its adjoint (pα
i )† creates a Cooper pair.

In a flat band, the interactions dominate over the kinetic
energy, which suggests that a mean-field calculation might be
appropriate to describe the superconducting phase. Therefore,
the Fourier transform of Eq. (12) becomes

H̃on-site
int = −

∑
α,k

[(
pα

k

)†
� + pα

k�
∗ − |�|2

g

]
, (13)

where we introduced the superconducting order parameter,
� = −g

∑
k cα

−k,↓cα
k,↑ and we also assumed that �α ≡ �.

Now, taking the spinor ψk,σ introduced above and defining
the Nambu operator �

†
k = (ψ†

k,↑; ψT
k,↓), one can combine the

noninteracting Hamiltonian in Eq. (2) with the interaction
term in Eq. (13), so that our model Hamiltonian becomes
H = ∑

k �
†
k H̃ �k, where

H̃ =
(

H̃0 − μ H�

H�∗ −H̃0 + μ

)
, (14)

and we introduced the chemical potential μ, with H� = � ×
14, where 14 is the 4 × 4 identity matrix. Therefore, the
eigenvalues of our model Hamiltonian are

E =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

±
√

μ2 + |�|2 , (15a)

±
√

(2 + μ)2 + |�|2 , (15b)

±
√

(|1 − μ| − ξ )2 + |�|2 , (15c)

±
√

(|1 − μ| + ξ )2 + |�|2 (15d)

,

where ξ = √
5 + 2 f (k1, k2). Notice that for � = μ = 0 we

get E = ±|ε|, where ε are the energies of the noninteracting
system, with l = −1 in Eq. (11). In addition, Eqs. (15a)
and (15b) is related to the flat bands obtained previously,
while Eqs. (15c) and (15d) to the remaining dispersive bands.
Since the band given by Eq. (15d) is detached from the
others, we will consider an effective model from now on that
disregards it.

The condition for the appearance of superconductivity is
provided by the nonzero values of � that minimize the free
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energy (effective potential), given by

Veff = |�|2
g

− T
∑

n

∫
d2k

A log

⎡
⎣ 8∏

j=1

(iωn − Ej )

⎤
⎦ , (16)

where T is the temperature, A is the area in momentum space,
ωn are the well-known fermionic Matsubara frequencies and
j is the index for the eigenvalues in Eq. (15). We have set
kB = h̄ = 1 for the sake of simplicity.

Deriving Veff with respect to �, and performing the sum
over ωn, we arrive at the gap equation

1 = g

2

∑
j (odd)

∫
d2k

A
1

Ej
tanh

(
Ej

2T

)
, (17)

where j (odd) indicates that we are summing only over the
first three positive values of E in Eqs. (15a) to (15c).

From Eq. (17), we obtain the self-consistent equation for
the critical temperature Tc, which is defined as the temperature
at which � = 0,

1

�00
= 1

|μ| tanh

( |μ|
2Tc

)
+ 1

|2 + μ| tanh

( |2 + μ|
2Tc

)
+ I (kc) ,

(18)
where

�00 ≡ g

2

[A(kc)

A

]
= g

2

[
1

A

∫
|k|<kc

d2k

]
, (19)

and

I (kc) = 1

A(kc)

∫
|k|<kc

d2k
1

|ξμ| tanh

( |ξμ|
2Tc

)
, (20)

with ξμ = ξ − |1 − μ|, and we introduced the momentum
cutoff kc.

To calculate Tc from Eq. (18), three parameters have to be
given: �00, μ, and kc. Notice that a natural cutoff emerges
from the theory, depending on the microscopic mechanism
that is responsible for the Cooper pair formation. In the BCS
theory, a natural cutoff is the Debye frequency since the
pairing is due to the electron-phonon interaction. Similarly,
for the square-octagon lattice, a natural cutoff is given in terms
of the inverse of the lattice constant, and we integrate the
momentum over the first Brillouin zone. In such a case, �00 =
g/2. Let us now expand ξ in polar coordinates for small values
of k, ξ ∼ √

9 − k2. Introducing the change of variables x =
(k/kc)2, we get ξ (x) ∼ 3

√
1 − δcx, where the new parameter

δc = (kc/3)2 incorporates the momentum cutoff kc. From that,
one can rewrite Eq. (20) as

I (μ, Tc) =
∫ 1

0
dx

1

|ξμ(x)| tanh

( |ξμ(x)|
2Tc

)
. (21)

From now on, we set δc = 1, which is equivalent to integrate
over the first Brillouin zone.

A. Square-octagon lattice

The numerical results of Tc as a function of μ for several
values of �00 are presented in Fig. 3.

A unique feature for the square-octagon lattice is the kink
at μ = 1, as indicated in Fig. 3(a) for �00 = 0.6 and 0.7. This
is due to the contribution of the dispersive energy in Eq. (15c),

FIG. 3. (a) Superconducting critical temperature Tc as a function
of the chemical potential μ for several values of �00. (b) Tc calculated
individually for each band contribution compared with the combined
results for �00 = 0.4. Energies are expressed in units of t .

where a kink appears for the hyperbolic tangent at ξμ = 0 in
Eq. (21), inducing a kink at μ = 1 in the phase diagram. As
�00 decreases, a reentrant superconducting phase with two
domes arises for �00 = 0.4 and 0.5.

Interestingly, two-dome superconducting phase diagrams
have been observed in several unconventional superconduc-
tors, as in cuprates, heavy-fermions, pnictides, chalcogenides,
and others [48]. Different theories were proposed to explain
the suppression of the superconductivity between the domes
in those compounds. For the particular case of La-based
cuprates, superconductivity is suppressed at x ∼ 0.125 [53],
hence being called the 1/8 anomaly, and there is some consen-
sus that this is due to the static stabilization of stripes [54]. For
the Ce-based heavy fermion compounds, on the other hand,
it has been suggested that the domes are related to different
pairing mechanisms [55], although a conclusion has not been
reached yet [56]. For the YBCO compound, moreover, a richer
scenario emerges as an external magnetic field is applied. In
the absence of an external field, the domes are merged, which
is similar to the data for the heavy-fermion CeCu2Si2 and also
to our results in Fig. 3(a) for �00 = 0.6 and 0.7. As an exter-
nal magnetic field is applied, there are two superconducting
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domes, which closely resembles the data for La2−x BaxCuO4,
at x ∼ 1/8 and our results in Fig. 3(a) for �00 = 0.4 and
0.5. For 50 T, only the second dome survives. Two possible
scenarios have been proposed to explain the experimental
data for YBCO [57]: independent pairing mechanisms, each
responsible for a superconducting dome, as for the case of
the Ce-based heavy fermion compounds; or a single pairing
mechanism, where Tc is reduced in the region between the
domes. Presently, we argue that the two-dome phase diagram
observed in unconventional superconductors can be related
to a single pairing mechanism, especially when it is taken
into account the multiband aspect of the microscopic models
that describe them. In fact, the two-dome phase diagram with
a single pairing mechanism have been previously obtained
for strongly correlated systems, such as the heavy fermions
compounds since it also appears in the periodic Anderson
model in the context of a hybridization gap [58].

Indeed, the emergence of these two superconducting
domes in the square-octagon lattice is understood upon in-
specting Fig. 3(b), where Tc is calculated individually for each
band in Eq. (17) for the particular case of �00 = 0.4. (The
numerical results for different values of �00 in this range are
qualitatively the same). Notice that the first dome is essentially
the combination of the three contributions in Eqs. (15a) to
(15c), which are summed in a nonlinear way, as in Eq. (18),
while the second dome is mainly provided by the dispersive
band in Eq. (15c). We see that a single underlying pairing
mechanism is responsible for the appearance of the two
disconnected superconducting domes in the square-octagon
lattice. Hence, we argue that the two-dome phase diagram
observed in some unconventional superconductors can be
related to a single pairing mechanism as well, especially when
the multiband aspect of the microscopic models that describe
them is taken into account.

Another remarkable feature can be observed in Fig. 3(b)
when we consider only the contribution of the flat bands
for μ < 1. In this case, two superconducting domes are
separated by an insulating phase since the contribution from
the dispersive band is disregarded. This resembles the phase
diagram experimentally observed in twisted bilayer graphene
[49]. However, upon the contribution from the dispersive band
sandwiched between the two flat bands, the superconducting
domes become intertwined in the square-octagon lattice.

Next, we concentrate on the critical temperature Tc. The
numerical results for Tc as a function of �00 for several values
of μ are presented in Fig. 4.

There seems to be an apparent threshold in the interaction
strength for the appearance of superconductivity at finite
values of the chemical potential. Per se, this defines a quantum
critical point (QCP). However, the apparent suppression of
the critical temperature for small values of �00 for μ = −0.5
and 0.5 is simply a steep exponential decay, as observed
in the inset. Indeed, the absence of a QCP at μ = 0 in the
square-octagon lattice can be demonstrated as follows.

Since the right-hand-side of Eq. (18) is a positive, un-
bounded and monotonically decreasing function of Tc at μ =
0, given any positive value for �00, there is always a unique
value for Tc that satisfies the self-consistent equation, and,
therefore there is no QCP at μ = 0. Moreover, while the
contributions related to the flat bands are indeed bounded

FIG. 4. Superconducting critical temperature Tc as a function of
the interaction strength ∝ �00. Energies are expressed in units of t .

for finite values of the chemical potential, the contribution
from the dispersive band I (μ, Tc) diverges as Tc → 0 (as
demonstrated in the Appendix) and, hence, there is no QCP
for the square-octagon lattice even at μ �= 0.

Furthermore, for larger values of �00, there is a linear
dependence of Tc on �00. Since �00 ∝ g, the critical temper-
ature scales linearly with the interaction strength. Such linear
dependence was also obtained for generic flat-band supercon-
ductivity [2,3] and should be contrasted with the exponential
dependence of Tc in conventional Bardeen-Cooper-Schrieffer
(BCS) superconductors, Tc ∼ exp [−1/N (0)g], where N (0) is
the density of the states at the Fermi level. From there on, it
has been conjectured that the superconducting critical temper-
ature might reach room-temperatures for a system presenting
flat bands [1]. Our results thus suggest that high-Tc should
be obtained in the square-octagon lattice, especially in the
vicinity of μ = 0.

B. Generic flat band system

A superconducting QCP can be derived for a generic flat
band system as follows: considering only the flat band ε = 0
in the Eq. (18), the critical temperature satisfies

T̃c = |μ̃|
2 tanh−1 |μ̃| , (22)

where we defined T̃c = Tc/�00 and |μ̃| = |μ|/�00. The
real values for Tc are constrained to |μ̃| < 1, which is
equivalent to

g > 2|μ| , (23)

assuming that �00 = g/2 from the Eq. (19). The above equa-
tion defines a QCP whenever μ �= 0 and to the best of our
knowledge, this is the first time that a QCP was derived
for flat-band superconductivity. This is in contrast with two-
dimensional (2D) Dirac fermion systems, where there is a
quantum critical point (QCP) at μ = 0 and the threshold is
absent for μ �= 0 [59]. It is curious that precisely the opposite
applies for the flat-band superconductivity.

Moreover, assuming that the only relevant contribution in
the self-consistent equation for Tc arises from the flat band
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in Eq. (15a), and taking μ = 0, we get that �00 satisfies the
gap equation and �00/Tc = 2, which was obtained previously
for flat-band superconductivity [2,3]. This ratio is comparable
to the results obtained experimentally for several high-Tc

superconductors [60].

IV. CONCLUSION

In conclusion, in this paper we investigated the conditions
for the appearance of flat bands in the square-octagon lattice.
We found two perfectly flat bands with a dispersive band
between them for equal values of NN and NNN hopping
combined to an external magnetic flux, quantized as � =
nπ/2, for even values of n.

Then, we introduced an on-site attractive interaction re-
sponsible for Cooper pairing and calculated the critical tem-
perature for the two-dimensional system.

The superconducting phase diagram resembles those mea-
sured for unconventional superconductors [48]. In the square-
octagon lattice, the disconnected superconducting domes are
provided by the same underlying pairing mechanism and
are related to the multiband aspect of the system. We argue
that the two-dome phase diagram observed in unconventional
superconductors can be related to a single pairing mechanism
as well.

Despite the steep reduction of Tc for small values of the
superconducting interaction strength, there is no QCP for the
square-octagon lattice, but an exponential decay of Tc for
μ �= 0, given the presence of a dispersive band between the
two flat bands. In contrast, we derived the QCP for flat-band
superconductivity, which occurs whenever μ �= 0. To the best
of our knowledge, this is the first time that such a QCP was
derived.

The linear dependence of the critical temperature on the
coupling, as previously obtained for flat-band superconductiv-
ity [2,3], suggests that Tc might reach very high temperatures
in the square-octagon lattice.

The system discussed here could be experimentally real-
ized using ultracold quantum gases in optical lattices. Interac-
tions can be easily implemented using Feshbach resonances,
but it might be challenging to design a laser setup that yields
a square octagon lattice, and even more difficult, NN and
NNN hopping of equal intensity. This problem can be easily
solved by using electronic quantum simulators [61]. In this
case, lattices of any geometry can be promptly realized on
the nanoscale, and the values of NN and NNN hopping can
be controlled independently, with extreme precision. This
occurs because the overlap integrals are designed by adjusting
potential barriers, instead of the distance between lattice sites.
Nevertheless, the currently investigated electronic quantum
simulators rely on patterning adatoms on the surface state of
copper, which is a noninteracting 2D electron gas, and interac-
tions are not yet tunable. Further progress in the development
of this platform is required to observe the phenomenon dis-
cussed here in designed structures.

Although we focused the discussion of superconductiv-
ity on the square-octagon lattice, some results are generic,
and valid for any system displaying flat bands. Indeed, we
generalized the calculations in several instances to models
with a generic flat band, and found that our results confirm

previously obtained ones in some limits, and expands them. In
particular, we find a striking similarity with the phase diagram
observed experimentally in unconventional superconductors.
Our studies might then shed further light on our understanding
of these complex materials.
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APPENDIX A: ABSENCE OF A QCP

Here, we demonstrate that the contribution from the dis-
persive band is divergent when Tc → 0 and therefore there is
no QCP for the square-octagon lattice. Indeed, the integral in
Eq. (21) can be broken in two parts, given the definition of the

FIG. 5. The superconducting critical temperature as a function
of the chemical potential for several values of the parameter �00.
(a) Including the dispersive band in Eq. (15). (b) Neglecting the
dispersive band in Eq. (15). Energies are expressed in units of t .
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modulus. Employing the changes of variables

y1,2 = ±
(

aμ − 3
√

1 − x

2Tc

)
, (A1)

where aμ = |1 − μ|, Eq. (21) can be rewritten as

I (μ, Tc) = 2

9

[ ∫ aμ/2Tc

0
dy1

(
aμ

y1
− 2Tc

)
tanh y1

+
∫ (3−aμ)/2Tc

0
dy2

(
aμ

y2
+ 2Tc

)
tanh y2

]
.

(A2)

The right-hand side in the above expression contains four
terms, the second and the fourth terms are proportional to Tc

and bounded in the limit Tc → 0; the first and the third terms,

on the other hand, are proportional to∫ α
Tc

0
dy

tanh y

y
, (A3)

where a is a constant, which diverges at Tc → 0. It follows
immediately that I (μ, Tc) is divergent and there is no QCP for
the square-octagon lattice due to the presence of a dispersive
band sandwiched between the two flat bands.

APPENDIX B: PHASE DIAGRAM INCLUDING EQ. (15)

For low-temperature calculations, as in the superconduct-
ing phase, we assumed that the upper band could be disre-
garded since it is very detached from the others, given the big
insulating gap (2t) separating it from the others. Therefore,
we considered an effective model neglecting the upper band.

Nevertheless, even including the upper band in the
Eq. (15), the same two-dome superconducting phase diagram
is obtained, as can be seen in the Fig. 5. The effects are
somehow mitigated, but the qualitative features of the phase
diagram remain the same.

[1] G. E. Volovik, JETP Lett. 107, 516 (2018).
[2] T. T. Heikkilä, N. B. Kopnin, and G. E. Volovik, JETP Lett. 94,

233 (2011).
[3] N. B. Kopnin, T. T. Heikkilä, and G. E. Volovik, Phys. Rev. B

83, 220503(R) (2011).
[4] D. Marchenko, Sci Adv. 4, eaau0059 (2019).
[5] Y. Cao, V. Fatemi, S. Fang, K. Watanabe, T. Taniguchi, E.

Kaxiras, and P. Jarillo-Herrero, Nature 556, 43 (2018).
[6] R. Bistritzer and A. H. MacDonald, Proc. Natl Acad. Sci. USA

108, 12233 (2011).
[7] Y. Cao, V. Fatemi, A. Demir, S. Fang, S. L. Tomarken, J. Y.

Luo, J. D. Sanchez-Yamagishi, K. Watanabe, T. Taniguchi, E.
Kaxiras, R. C. Ashoori, and P. Jarillo-Herrero, Nature 556, 80
(2018).

[8] P. Esquinazi, T. T. Heikkilä, Y. V. Lysogorskiyc, D. A.
Tayurskiic, and G. E. Volovik, JETP Lett. 100, 336 (2014).

[9] Y. Kopelevich, R. R. da Silva, and B. C. Camargo, Physica C
514, 237 (2015).

[10] E. H. Lieb, Phys. Rev. Lett. 62, 1201 (1989).
[11] A. Mielke, J. Phys. A: Math. Gen. 24, 3311 (1991).
[12] H. Tasaki, Phys. Rev. Lett. 69, 1608 (1992).
[13] R. Arita, Y. Suwa, K. Kuroki, and H. Aoki, Phys. Rev. Lett. 88,

127202 (2002).
[14] A. Tanaka and H. Ueda, Phys. Rev. Lett. 90, 067204 (2003).
[15] K. Noda, A. Koga, N. Kawakami, and T. Pruschke, Phys. Rev.

A 80, 063622 (2009).
[16] H. Katsura, I. Maruyama, A. Tanaka, and H. Tasaki, Eur. Phys.

Lett. 91, 57007 (2010).
[17] A. Julku, S. Peotta, T. I. Vanhala, D.-H. Kim, and P. Törmä,

Phys. Rev. Lett. 117, 045303 (2016).
[18] N. Hartman, W.-T. Chiu, and R. T. Scalettar, Phys. Rev. B 93,

235143 (2016).
[19] P. Kumar, T. I. Vanhala, and P. Törmä, Phys. Rev. B 96, 245127

(2017).
[20] S. Peotta and P. Törmä, Nat. Commun. 6, 8944 (2015).

[21] L. Liang, T. I. Vanhala, S. Peotta, T. Siro, A. Harju, and P.
Törmä, Phys. Rev. B 95, 024515 (2017).

[22] H. Aoki, J. Supercond. Nov. Magn. (2020).
[23] P. Kumar, T. I. Vanhala, and P. Törmä, Phys. Rev. B 100, 125141

(2019).
[24] J. S. Hofmann, E. Berg, and D. Chowdhury, arXiv:1912.08848.
[25] S. Sayyad, E. W. Huang, M. Kitatani, M.-S. Vaezi, Z. Nussinov,

A. Vaezi, and H. Aoki, Phys. Rev. B 101, 014501 (2020).
[26] O. Derzhko, J. Richter, and M. Maksymenko, Int. J. Mod. Phys.

B 29, 1530007 (2015).
[27] J. T. Chalker, Geometrically frustrated antiferromagnets: Sta-

tistical mechanics and dynamics, in Introduction to Frustrated
Magnetism: Materials, Experiments, Theory, edited by C.
Lacroix, P. Mendels, and F. Mila (Springer, Berlin, 2011).

[28] D. Leykam, A. Andreanov, and S. Flach, Adv. Phys.: X 3,
1473052 (2018).

[29] S. Taie, H. Ozawa, T. Ichinose, T. Nishio, S. Nakajima, and Y.
Takahashi, Sci. Adv. 1, e1500854 (2015).

[30] H. Ozawa, S. Taie, T. Ichinose, and Y. Takahashi, Phys. Rev.
Lett. 118, 175301 (2017).

[31] S. Taie, T. Ichinose, H. Ozawa, and Y. Takahashi, Astropart.
Phys. 99, 9 (2018).

[32] F. A. An, E. J. Meier, and B. Gadway, Phys. Rev. X 8, 031045
(2018).

[33] S. A. Schulz, J. Upham, L. O’Faolain, and R. W. Boyd, Opt.
Lett. 42, 3243 (2017).

[34] L. J. Maczewsky, J. M. Zeuner, S. Nolte, and A. Szameit, Nat.
Commun. 8, 13756 (2017).

[35] S. Mukherjee and R. R. Thomson, Opt. Lett. 42, 2243 (2017).
[36] B. Real, C. Cantillano, D. López-Gonzaĺez, A. Szameit, M.
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