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The boundary states of topological insulators are thought not to depend on the precise atomic structure of
the boundary. A recent theoretical study showed that, for topological crystalline insulators with given bond
strengths, topological states should only emerge for certain edge geometries. We experimentally probe this
effect by creating artificial Kekulé lattices with different atomically well-defined edge geometries and
hopping ratios in a scanning tunneling microscope. Topological edge modes are found to only appear for
specific combinations of edge geometry and hopping ratio.
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A common assumption concerning topological states of
matter is that their existence should be insensitive to any
detail, except the topology of the bands. This is indeed
the case for the quantum Hall [1–3] and quantum spin Hall
[4–6] effects, which are triggered by a magnetic field and
strong spin-orbit coupling, respectively. However, theory
predicts that the edges of topological crystalline insulators
are important [7,8]. The reason is that the topological
invariant depends on the choice of unit cell, which also
determines the edge geometry. To establish the relation
between edge geometry and the existence of protected
boundary states in topological crystalline insulators exper-
imentally, it is essential to work with systems that have
atomically precise edges.
Electrons in engineered potentials can be used to study the

electronic properties of a large variety of systems [9–13].
Importantly, it is possible to control the hopping strength
between different sites [9,14]. Vacancies in a chlorine
monolayer onCu(100) have been coupled together to realize
topologically nontrivial domain-wall states in 1D Su-
Schrieffer-Heeger chains [15]. In addition, the manipulation
of Fe atoms on the superconducting Re(0001) surface led
to a topological superconductor [16,17]. Recently, the
carbon monoxide (CO) on Cu(111) platform was used to
create robust corner localized zero energy modes in a 2D
lattice [18]. This platform is therefore ideally suited to
experimentally address the relation between the geometric
structure of topological crystalline insulators and the emer-
gence of nontrivial states.
We investigate this relation by focusing on the Kekulé

lattice, see Fig. 1. The lattice consists of a triangular array
of hexagonal molecules with intrahexagon bond strength t0
(light blue lines), connected to each other by bonds of
strength t1 (navy lines). Gapless edge modes appear when
the edge is connected only via weak bonds to the rest of the
lattice. This topological crystalline system is protected by
sublattice and mirror symmetry [19,20].

Here, we experimentally show that the same Kekulé
structure may be trivial or topological, depending on
the termination of the sample. The experimental observa-
tions are corroborated by theoretical calculations using
muffin-tin and tight-binding approaches for the specific
experimental realization, as well as investigations of the
underlying crystalline symmetries protecting the topologi-
cal phase.
To experimentally realize Kekulé lattices with atomically

well-defined edges, we pattern the surface of a Cu(111)
crystal with CO molecules, such that the surface state
electrons form the desired structure [9]. All experiments
were performed using a commercially available Scienta
Omicron low-temperature scanning tunneling microscope
(STM). Details of the procedures are given in the
Supplemental Material [21] (see also [10,12,18]).
We generate finite lattices with two different hopping

parameter ratios and two different edge terminations
(bearded and molecular zigzag [19]). The geometry of
the lattices is shown in Figs. 1(a) and 1(b). The leftmost
column in Fig. 1 shows the precise positioning of the
COmolecules on Cu(111) for a single Kekulé unit cell. Our
designs are adjusted compared to those in Refs. [9,24] to
minimize next-nearest neighbor hopping and to reduce
building complexity. For t0 < t1, the repulsive potential
introduced by the central six CO molecules diminishes the
strength of t0 (light blue). In contrast, for t1 < t0, there is less
repulsion about the single central scatterer. Additionally, for
t0 < t1, each triangularly shaped collection of four CO
molecules reduces the bond strength between hexagons. For
the t1 < t0 case, these tetramers are rotated by 60°. This
allows for a stronger t0, while simultaneously impinging on
the connection between hexagons, decreasing t1. We built
triangular lattices to have the same edge geometry on all
sides. Symmetry is locally preserved at the edges, including
at the corners, where there is local resemblance to the edges.
Interactions with the surrounding 2D electron gas were
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minimized by adding additional CO molecules, see
Supplemental Material [21].
To verify that the configuration of CO molecules leads to

the appropriate hopping regime and to find the hopping
parameters, the band structures calculated within the
tight binding were matched to those calculated using the
muffin-tin method [10,12,18]. In addition to the hopping
parameters t0 and t1, orbital overlap and next-nearest
neighbor (NNN) hopping were included in the tight-
binding model. Detailed information is given in the
Supplemental Material [21]. We find t1 ¼ 0.7t0 and t0 ¼
0.67t1 for the configurations shown in Figs. 1(c) and 1(d),
respectively. This confirms that the designs result in the
desired parameter regime.
Although the orbital overlap deforms the band structure

and is therefore of vital importance to understand the
experimental results, it was numerically verified that it does
not break the topological protection of the edge states in the
Kekulé lattice. The NNN hopping, however, breaks chiral
symmetry. It was found that most NNN hopping parameters
were small (≤ 0.02 t0) due to the clustered CO structure.
Only the NNN hopping within the hexagon for the t1 < t0
design (0.2 t0) is larger, as there is only one CO in the
middle of the hexagons. Therefore, we expect that the chiral
symmetry is weakly perturbed for that case.
Two different types of termination have been investi-

gated for each lattice: the partially bearded edge and the

molecular-zigzag edge [19]. Figure 1 shows both their
geometric structure, as well as the configuration of CO
molecules needed to realize these edges in both parameter
regimes.
Two lattices with t1 < t0 are shown in Figs. 2(a) and

2(b). They have the same bulk but are terminated with a
partially bearded and molecular-zigzag edge, respectively.
Differential conductance spectra of bulk and edge sites of
both lattices are shown in the middle panels of Figs. 2(a)
and 2(b) [locations indicated by the colored dots in
Figs. 2(a) and 2(b)]. The spectra of bulk and edge sites
of the molecular-zigzag terminated lattice are similar,
cf. black and blue curves in the middle panel of Fig. 2(b).
In contrast, the local density of states (LDOS) of bulk and
edges sites of the lattice with the partially bearded edge are
markedly different. The spectrum of bulk sites (indicated
in black) shows two peaks associated with the valence (at
V ¼ −0.15 V) and conduction bands (V ¼ 0.05 V), sep-
arated by a gap. In contrast, the spectrum of the edge site
(indicated in red) shows a large peak positioned at the
energy of the bulk gap. The experimentally observed
features are reproduced in the tight-binding [lower curves
in the middle panels of Figs. 2(a) and 2(b)] and muffin-tin
simulations, see Supplemental Material [21]. For the
calculated LDOS, a broadening of 80 meV was added to
account for the coupling between surface and bulk states
[10,12,18,25].

FIG. 1. (a),(b) Geometries of the partially bearded and molecular-zigzag edges. The light blue and navy lines indicate the intra- and
interhexagon hopping parameters, respectively. The edges are highlighted in pink. The unit cell is defined by one yellow rhombus. a1, a2
indicate lattice vectors. The edge is formed by translation along a1. (c),(d) Configurations of CO molecules that lead to hopping regimes
t1 < t0 and t0 < t1, respectively. (e)–(h) show the configurations of CO molecules to realize the partially bearded and molecular-zigzag
edges in both hopping regimes. The gray circles represent additional CO molecules that reduce the interactions with the surrounding 2D
electron gas.
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The spatial extent of the in-gap state is probed by
taking differential conductance maps at energies corre-
sponding to the middle of the gap (approximately the on
site energy of the system). By comparing the maps,
shown in the bottom panels of Figs. 2(a) and 2(b), it is
immediately clear that the bearded edge features a well-
defined edge localized mode, whereas the lattice with
molecular-zigzag edges in the same hopping regime
does not. Again, the experimental features are repro-
duced in the simulations [see the insets in the bottom
panels of Figs. 2(a) and 2(b)]. This edge localized state
is robust with respect to the introduction of defects, see
Supplemental Material [21].
These results support the theoretical prediction based on

calculation of the topological invariant (the mirror winding
number) [19] that the edge mode at the partially bearded
edge is topological when t1 < t0.

The situation is reversed when the hopping strengths are
inverted. Figures 2(c) and 2(d) show topographs and LDOS
spectra for the Kekulé lattice in the opposite regime of
hopping parameters, t0 < t1. In this case, for the partially
bearded edge lattice [Fig. 2(c)], the experimental spectra at
different edge positions match the behavior of the spectrum
in the bulk of the crystal [Fig. 2(c), middle panel]: there
is a dip in the experimentally measured LDOS around
V ¼ −20 mV for all positions, implying trivially insulating
behavior throughout. At the molecular-zigzag edge
[Fig. 2(d)] for the same t0 < t1 case, there is a markedly
higher LDOS at the edge positions at energies correspond-
ing to the bulk gap [Fig. 2(d), middle panel]. The differ-
ential conductance maps confirm that, for this parameter
regime, the molecular-zigzag terminated lattice features a
topological edge mode. The theoretical spectra and maps
agree with the experimental data [see inset in Fig. 2(d)].

FIG. 2. (a) (Top) STM topograph of a Kekulé lattice with partially bearded edges and in the t1 < t0 regime (Vgap ¼ 100 mV,
Iset ¼ 10 pA). Navy and light blue colors indicate bonds as depicted in Fig. 1. (a) (Middle) Experimental differential conductance
spectra acquired at bulk (black) and edge (red) sites, normalized by spectra taken on Cu(111). Positions where spectra were acquired are
indicated by colored dots in the top panel. The bottom curves depict the LDOS calculated using tight binding. (a) (Bottom) A differential
conductance map acquired at a voltage close to the middle of the bulk gap (V ¼ −65 mV). (Inset) The tight-binding LDOS map.
(b) Same as (a), but now for a lattice with a molecular-zigzag edge. Settings for the topograph: Vgap ¼ 100 mV, Iset ¼ 100 pA. (c),(d)
Same as (a),(b) but now for the opposite regime of hopping parameters, i.e., t1 > t0. Scan parameters for the topographs in (c),(d):
Vgap ¼ 100 mV and Iset ¼ 30 pA. Differential conductance maps were acquired at −20 mV and the LDOS was calculated at −20 meV.
Scale bars (black) are 5 nm.
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From these results, we conclude that nontrivial edge
modes in topological crystalline insulators in a given
regime of hopping parameters only emerge for specific
edge geometries. The topological protection occurs at the Γ
point and remains robust as long as the bulk states do not
mix with the edge states in the middle of the bulk gap. Our
experimental broadening is small enough that we do not
expect it to influence the topological protection.
Finally, we turn our attention to finite-size effects. We

first study how edge states are protected in the ribbon
geometry and then investigate how these features change
for the finite structures built experimentally. Kariyado and
Hu [19] found that the mirror winding number protects
the zero energy crossing of the edge modes in the Kekulé
system. The calculation of this invariant requires both
reflection symmetry My (the mirror plane intersects the
middle of the unit cell and is perpendicular to the edge) and
chiral symmetry. Therefore, both symmetries need to be
present to protect the edge states. This has been confirmed
by Noh et al. [20] by numerically adding perturbations to
the Hamiltonian. In the case of armchair terminated Kekulé
lattices, the My symmetry is broken and the edge modes
become gapped.
When a system can be divided in two subsystems that

only couple to each other and never to themselves, the
system possesses chiral symmetry. The chiral symmetry
leads to a spectrum that is symmetric around zero energy.
This means that zero modes can only move away from zero
energy in pairs. If there are more sites of one subsystem
than of the other on the edge, but not in the rest of the
structure, this can result in zero modes on the edge, as in
graphene ribbons with a zigzag termination [26,27]. The
edge geometry considered here contains equally many sites
of each sublattice. Thus, chiral symmetry alone does not
enforce the existence of edge states. To understand the
protection of zero modes in the system, we should therefore
also consider the reflection symmetryMy. At the Γ point in
the Brillouin zone, My commutes with the Hamiltonian.
Hence, the Hamiltonian needs to have the same eigenstates
as My, and states that are even and odd under My cannot
mix. This mechanism prevents two zero modes on the edge
of a Kekulé ribbon to mix, thus pinning them at zero energy
due to the chiral symmetry.
The Kekulé lattices realized here have (approximate)

chiral symmetry, since the NNN hopping is small. The My
symmetry is preserved locally. In the experimental designs,
the lattice sites are locally affected by the same environ-
ment as they would be in an infinitely long ribbon, as
illustrated in Fig. 3(a). However, the global mirror sym-
metry present in the ribbon is broken in the finite lattice: the
boundary is not fully periodic due to modulations to form
the corner. Moreover, the lattice is relatively small; thus, the
momenta are not continuous and a state with zero momen-
tum (the Γ point) does not need to exist. By performing
tight-binding calculations on finite molecular-zigzag

terminated lattices, we determine the evolution of the
energy levels upon tuning the ratio t0=t1. Figure 3(b)
shows this for a lattice with the same size as the exper-
imental system. The in-gap energy levels obtained for a
fixed ratio of t0=t1 are continuous lines for infinite systems,
but become discrete dotted lines (coarse grained) for finite-
sized systems. The smaller the system, the larger the
distance between the dots. Nevertheless, the spreading
and the number of edge states do not change with the size
of the system [21]. Because of hybridization of the edge
modes in this finite-size system, the edge modes move
away from zero energy before the phase transition at
t0 ¼ t1. For larger systems, the edge modes remain close
to zero energy for a longer parameter range, as shown in the
Supplemental Material [21]. Note that, since the edge states
here are dispersive, they span the entire bulk band gap.
In conclusion, by studying Kekulé lattices with two

different bulk structures and two types of edge termination,
we investigated the influence of the boundary shape on the
existence of nontrivial edge modes in topological crystal-
line insulators. We found that, for the same bulk, the
existence of nontrivial edge modes depends on the termi-
nation of the sample.
The detection of 1D edge modes in this finite-size 2D

system is remarkable. In translational invariant ribbons, the
mirror and chiral symmetries pin the edge modes to zero
energy at the Γ point in the Brillouin zone. However, here
we investigate a finite and relatively small system, without
translational symmetry and for which a Brillouin zone
cannot be defined. Furthermore, in the t1 < t0 regime,
chiral symmetry is not strictly enforced due to a nonzero
NNN hopping, and the mirror symmetry is not globally

FIG. 3. (a) Illustration of the finite molecular-zigzag terminated
lattice. Green represents protruding sites that couple weakly to
two blue sites; orange represents sites sitting in a “cove” at the
edge of the lattice. The sections shown in pink have the same
local environment. (b) Energy spectrum as a function of t0=t1.
The spectrum is shown for the system size used in the experi-
ments with 28 hexagons in total. The coloring of the points
signifies the localization of the states. Fully edge localized states
appear red; bulk localized states appear blue. The color value was
determined for each point by summing over the tight-binding
wave function edge (bulk) components squared to get the red
(blue) contribution.
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preserved. This suggests that the edge modes are remark-
ably robust to weak symmetry breaking and finite-size
effects. Finally, this Letter highlights the potential of using
artificial lattices to study topological states of matter.
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