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Abstract

The core functionality of many socio-technical systems, such as supply chains, (inter)

national trade and human mobility, concern transport over large geographically-spread com-

plex networks. The dynamical intertwining of many heterogeneous operational elements,

agents and locations are oft-cited generic factors to make these systems prone to large-

scale disruptions: initially localised perturbations amplify and spread over the network, lead-

ing to a complete standstill of transport. Our level of understanding of such phenomena,

let alone the ability to anticipate or predict their evolution in time, remains rudimentary. We

approach the problem with a prime example: railways. Analysing spreading of train delays

on the network by building a physical model, supported by data, reveals that the emergence

of large-scale disruptions rests on the dynamic interdependencies among multiple ‘layers’ of

operational elements (resources and services). The interdependencies provide pathways

for the so-called delay cascading mechanism, which gets activated when, constrained by

local unavailability of on-time resources, already-delayed ones are used to operate new ser-

vices. Cascading locally amplifies delays, which in turn get transported over the network to

give rise to new constraints elsewhere. This mechanism is a rich addition to some well-

understood ones in, e.g., epidemiological spreading, or the spreading of rumours and opin-

ions over (contact) networks, and stimulates rethinking spreading dynamics on complex net-

works. Having these concepts built into the model provides it with the ability to predict the

evolution of large-scale disruptions in the railways up to 30-60 minutes up front. For trans-

port systems, our work suggests that possible alleviation of constraints as well as a modular

operational approach would arrest cascading, and therefore be effective measures against

large-scale disruptions.

1 Introduction

Socio-technical systems such as supply chains, (inter)national trade and human mobility pro-

vide pivotal support to modern societies. Even though each one operates in its own intricate

ways that are typically tuned to highly optimised benefit-to-cost ratios, their core functionality

involves transport over geographically-spread, complex network backbones. Of particular
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interest are those situations in which—at detrimental costs to societies and economies—initial

perturbations spread through a significant part of the network, leading to ‘large-scale disrup-

tions’, i.e., near system-wide standstill of transport [1–3]. The initial perturbations are often

triggered by exogenous events: indeed, well-documented are the world trade and supply chain

disruption events that have been caused by natural disasters [4], and the ongoing COVID-19

pandemic [5]. Related research focuses on risks associated with critical infrastructures, service

elements, alternative scenarios planning [6–10] and case studies of (potential) disasters [5, 11].

On the one hand, the dynamical intertwining of many heterogeneous operational elements

and agents, network connectivity, and geographical spread are oft-cited generic factors respon-

sible for the susceptibility of these systems to disruptions [12–16]. On the other, combined

with a lack of reliable empirical data, the same factors also contribute to hinder the under-

standing, anticipation and prediction of systemic build-up of large-scale disruptions.

In order to address this problem, here we consider a prime example network transport sys-

tem: railways. In most countries, railways witness large-scale disruptions—manifested by near

system-wide train service delays—multiple times a year [13]. Large-scale disruptions in rail-

ways lead to heavy economic damage by hindering cargo and passenger transport [17]. Con-

versely, investments in robust railway systems may prompt economic growth [18, 19]. These

especially hold true for densely urbanised countries in Europe, wherein railway transport,

planned at a high density and frequency to match the extent of urbanisation, has developed to

be an inextricable asset for societal and economic well-being, and is projected to be even more

intensely developed due to rising demands and sustainability goals. While scattered delays are

commonplace, they do occasionally build up to a large—near system-wide—scale, as illus-

trated for Italy, Germany, the Netherlands and Switzerland in Fig 1.

All cases in Fig 1, except Italy, were initiated by extreme weather: storms ‘Niklas’ (2015),

‘Friederike’ (2018) and ‘Burglind’ (2018, ‘Eleanor’ in the English nomenclature). Exogenous
triggers like these—be it weather conditions, power outages [13], accidents or even earth-

quakes [17]—are typical for the onset of problems, but the consequences were driven by the

system’s internal dynamics, propagating and amplifying delays to near system-wide scale.

Indeed, in the year July 2017—June 2018, 29 days were marked as strongly disrupted days for

the Dutch railways, with most of them occurring in November, December and January. This is

no coincidence, even though railway companies use icing protection, adjusted timetables and

many other precautions to prevent cold weather affecting their performance. Statistics like

these, notwithstanding the wide variety of operations management for railway systems, high-

light the generic aspects for the build-up of large-scale disruptions: while the initial primary
delays, caused by external events, could possibly have been quickly resolved, systems’ internal

issues cause new secondary delays, converting an initial locally-confined problematic event to

an amplified near system-wide disruption.

For transport and logistic systems at large, considerable effort has been invested in identify-

ing risks associated with criticality aspects of infrastructure in situations of hazards like in Fig

1 [9, 20] and how to deal with disruptions in terms of rescheduling [10, 12, 21]. Related litera-

ture aims to understand and predict the evolution of delays in transport systems, both under

regular and disrupted circumstances. Most delay evolution models, however, focus on regular

circumstances and predict how delay fluctuations develop using high-resolution statistics

obtained from particular incidents or scenarios [20, 22], or from particular stations [23, 24] or

lines [25–27]. These models come in various forms, mainly in the context of air and railway

transport: analytical [28], agent-based [29], stochastic [30–33] and purely data-driven [3, 34].

A second relevant branch of transport literature focuses on robustness and vulnerability

aspects, such as definitions of transportation resilience [35], perturbations in the network

topology [9, 36], and data-based analyses on how the systems are connected [15, 37].
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Specifically note that the above references include studies of multiple types of transport sys-

tems: airways, railways, supply chains, and even the analogy with freight truck and cargo ship

transport. All these systems share the common feature of scheme-based transport, where dis-

ruptions may lead to subsequent delay of other transport units [38–41]. This effect, universal

to many transport systems, is often commonly referred to as ‘cascading’ of delay; in this paper

we analyse its contribution to large-scale disruptions for railways.

In the context of these models, which use the language of networks and dynamics, it is cru-

cial to make the distinction between (a) dynamics on networks, where dynamics of a certain

state variable evolve on top of, and is thus bound by (a time-invariant) network topology, and

(b) dynamics of networks, i.e., involving (dynamic) links that can (re)appear, disappear or

change weights (e.g., [9, 42–46]). In transport literature, the study of delay propagation gener-

ally conveys dynamics of the former type, while literature on infrastructure and resilience gen-

erally focuses on dynamics of the latter type.

Even though the above two paragraphs indicate transport literature as an active and broad

field of study, there are still many unknowns, such as how the system as a whole evolves during

disruptions, e.g., following an exogenous trigger. Due to heterogeneity in terms of space, time,

human interactions and externalities that impact the system, the existing models typically lack

accuracy and predictability (of evolution dynamics) in cases other than ‘regular’ (i.e., non-dis-

rupted circumstances, or are purposed to simulate very specific scenarios, e.g., particular types of

disruptions [47] or geographical areas [27, 48]. The contrast between disrupted and regular cir-

cumstances is manifold (and are visible in the results in this paper, e.g., Fig 4). Under regular,

non-disrupted circumstances, delays are generally small and are of a less interactive nature with

other delays, which allows for the applicability of data averages and a linear or local view [23].

The decreased interactivity of delays is a result of the fact that the schedules contain built-in

Fig 1. Examples of large-scale disruptions. Railway delays for strongly disrupted situations in four European countries (shown only are the delays larger

than two minutes in colours; see SI section A for data description and sources). Panel (a): near-simultaneous occurrence of several problems in the Italian

railways in March 2015—a major one around Rome, affecting mostly intercity trains, and one between Milan and Venice. Panel (b): effect of cyclone

‘Niklas’ (31 March 2015) on the German railways. In particular, a specific train near Pegnitz (center-south) was severely damaged by a fallen tree and the

rooftop of the Munich station was destroyed, along with multiple smaller incidents across the country. The high risk of more accidents and delays caused

the Deutsche Bahn to cancel most of its train activity throughout the day, leaving passengers stranded in major cities like Hannover, Frankfurt, Kassel and

Berlin. Panel (c): aftermath of storm ‘Friederike’ in January 2018 in the Netherlands, coinciding with an accident in the north of the country. Fallen trees

and damaged overhead lines made the fire department force the Dutch railways to close at multiple stations—resulting in no train activity between the end

of the morning and 14:00. A combination of the many disruptions with the lack of resources overview limited the possibility of mitigating delay at crucial

corridors. The smaller scale and high density of the railway system in the Netherlands can be recognised also in Switzerland [panel (d)], where in January

2018 (coinciding with storm Burglind/Eleanor in the north-west of Europe) a strong disruption in near Zürich (north) rapidly propagated towards the rest

of the country.

https://doi.org/10.1371/journal.pone.0246077.g001
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buffers that, in case of delay, prevent the delay from affecting other transport units due to limited

capacity of, e.g., platforms, tracks, or exchange of resources. Additionally, isolated delays can also

be easily mitigated by human control. However, in case of (multiple) disruptions, the severity of

delays exceeds the buffer and mitigation capacity and start building up and affecting other trans-

port units, making the analysis rather complex [13]. For railways, Fig 1, provides a visual feel of

delays building up and spreading across large spatial and temporal scales. The figure suggests

that neither methods under regular circumstances, nor the specific incidents or scenarios cov-

ered in the existing literature are applicable to the underlying delay propagation mechanisms.

In this paper we focus on finding generic delay propagation mechanisms that do apply to

situations as in Fig 1. Indeed, Fig 1 prompts us to conceptualise the intertwining of the many

heterogeneous operational elements and agents in terms of stochastic processes playing out on

a complex (infrastructure) network that remains invariant in time. We do so by constructing a

structure with multiple layers of dynamics on a fixed infrastructure network—each layer of

dynamics conveying the movements of a certain type of resource or service required for the

system’s operations. This conceptualisation reveals that the interdependencies among the

resources and services give rise to pathways for the delay cascading mechanism, which gets

activated when, constrained by local unavailability of on-time resources, already-delayed ones

are used to operate new services. Cascading amplifies delays locally for both resources and ser-

vices, which in turn transport the amplified delays geographically over the network to give rise

to new constraints elsewhere—describing phenomena we see in strongly disrupted situations

like in Fig 1. Building the above concepts into a physical model leads us to reveal that the emer-

gence of large-scale disruptions in networked transport requires three building blocks: con-

straints, cascading and transport. Not only does this paper bring new understanding of the

evolution of disruptions, but the data-based interlinkages between transport resources and

resulting cascading effect has also never been quantitatively shown in transport literature.

The model allows us to extract the key (delay-)amplifying role played by cascading, and to

also predict the evolution of large-scale disruptions in the railways up to 30-60 minutes up

front. We note here that the concept of cascading in itself is not new. Cascading in other

dynamical systems like the Earth’s climate [49], or in network science in general is an active

topic of research. On the one hand, in dynamics of networks, cascading has resulted in concepts

like ‘cascading failure’, depicting the loss of connectivity in a network by a sequential removal

of nodes and/or links [9, 43, 44, 50]. On the other, in dynamics on networks, such as innovation

diffusion (e.g., in the work of Watts [51]) cascading refers to when an adoption, a rumour, an

opinion or an infection process spreads through the entire network. In our work, the notion of

cascading presented refers to interlayer spillover effects within the multiple layers of dynamics

on a fixed infrastructure network, and it simply cannot be described by a diffusion-like model.

Our work therefore stimulates us to rethink and contributes to broaden our horizon to spread-

ing dynamics on complex networks (we will return to this discussion in Sec. 6).

The paper is structured as follows. In Sec. 2 we explain the cascading mechanism and how

three ingredients may lead to large-scale disruptions: constraints, cascading and subsequent

transport, and illustrate using a case example. In Sec. 3 we formulate a model from these build-

ing blocks. In Sec. 4, using the model, we quantify the role of cascading in driving large-scale

disruptions. We investigate the performance and predictive power of the model in Sec. 5. We

conclude the paper in Sec. 6 with a discussion on the broader outlook.

2 The three building blocks for large-scale disruptions

We start by pointing out the generalities of transport systems. They are based on a certain

(infrastructure) network: e.g., rails and stations for railway transport, airports and airline
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services for air transport, and highways and cities for car transport. Nodes in a rail network

correspond to stations between which resources (trains, personnel, scheduled lines) move on

edges, which are the tracks between stations. In this paper, we treat the network as fixed or

time-invariant, and study the system dynamics that is taking place on the network. The data

for the Dutch railway system can be found in a repository on Open Science Framework

(https://osf.io/tps4r/). Data of other national railway systems, used only in Fig 1, were

found partially via another paper [52], i.e., from the following websites: OpenDataCity for

German data (http://www.opendatacity.de/), ViaggiaTreno for the Italian data (http://www.

viaggiatreno.it/) and OpenTransportData for the Swiss data (https://opentransportdata.

swiss/). Details on time intervals and data considerations can be found in App. A.

As stated above, crucial to understanding the evolution of delay in case of a disruption is

the impact and interactions of operational resources and agents. Using the example of rail-

ways networks, we conceptualise these elements by distinguishing three ‘layers’ of dynamics

on the network, each of which has its own operator-specified scheme (i.e., dynamics) but is

dependent on the schemes of the other layers: (a) a (train) service layer, containing the

planned services, of which information is made publicly available via the timetable, (b) a

rolling stock resource layer, involving the physical train units used to run the services, and

(c) a crew resource layer, containing the personnel required to operate the trains. (Although

we focus on railways, analogous formulation and dynamical layering is applicable to other

transport systems.) For railways, resources and services couple by the condition that at least

one rolling stock unit and at least two crew members (one driver and one conductor) are

needed to run a service, leading to dynamic couplings—interdependencies—that link these

layers along the (train) service routes. These interdependencies serve as the potential path-

ways for delay cascading in the following manner. Under regular circumstances, the layers

act (largely) independently due to built-in local spare resource capacities and scheduled

buffer times between service activities. However, new delays are generated when, con-

strained by local unavailability of on-time resources (i.e., when delays exceed buffer times

and no spare resources are available), already-delayed ones are reused to run new services,

activating ‘delay cascading’ (i.e., a process of delay generation at specific network nodes).

Subsequently, these newly generated delays then get geographically transported along the

service routes, and possibly create a similar constrained situation at some other node. (Most

train services do not cross national borders, making cascading mainly a national problem,

seen in Fig 1.) In this manner, constraints, cascading and subsequent transport of delays

reinforce each other to make a localised delay perturbation amplify towards a large-scale dis-

ruption—this is exactly why we refer to these elements as the building blocks of large-scale

disruptions.

Before we build these concepts into a physical model and quantify cascading, let us start

with defining delay itself. All services and resources have planned and realised activity times;

the planned ones constitute the predefined scheme of the railway operator. For a train service,

every (discrete) activity a—in the forms of departures, arrivals or passings-by—can have a

nonzero delay value d(a) = treal(a) − tplanned(a), i.e., the activity is executed at a realised time

treal later [d(a)> 0] or earlier [d(a)< 0] than the planned time tplanned. The change in delay of

a train service’s activity a with respect to its previous activity is referred to as the delay jump
δ(a). For example, consider a crew member coming from service X that needs to transfer in 10

minutes (i.e., the buffer time) to another service Y. Given that he is 16 minutes late from ser-

vice X, the buffer time is exceeded and part of his delay from service X is transmitted to service

Y if no replacement crew is available: it will cause a delay jump of 6 minutes for service Y’s

next activity. Delay jumps in such situations can be suppressed by the use of spare resources or

by buffers built in the schedule. Although affected by numerous factors, many large delay
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jumps are caused by delays cascading from one layer to another via resource-service interde-

pendency [as illustrated in Fig 2(a)–2(c)].

3 The model

The model is built on the following premise: if a service line, rolling stock unit or crew member

is delayed, then the delay is transported along the rest of its route, minus the buffers. We

develop three variants of the model, all in the same vein of linking the full system’s resource

schedules as discrete events: (1) the ‘monolayer model’, containing only the train services,

wherein we explicitly incorporate the transport of delays along the service routes (it has no cas-

cading), (2) the ‘bilayer model’, where we link the rolling stock layer to the monolayer model,

and (3) the ‘trilayer model’, where we add the crew layer to the bilayer model. In the bi- and

trilayer models delay also propagates cumulatively via rolling stock and crew: delay (minus

built-in buffers) is passed on from one activity of a resource to the next activity performed by

the same resource. The model we build has similarities to existing max-plus transport models

[28], but is novel in (a) incorporating both rolling stock and crew layers, and (b) utilising real

schedules for all resources at the full-system scale (see sections B and C for details in S1 File).

Fig 2. Illustration of delay cascading mechanism in the Dutch railways. Panels (a)-(c): Routes in the Dutch railways of (a) the train service 3028 from

Nijmegen to Alkmaar via Amsterdam, (b) a rolling stock unit used in part of this service and (c) a crew member (partly) executing this service. The

schedules for 3 December 2017 are used, a day selected randomly from the dataset. Dark brown lines mark the route they share between Nijmegen and

Alkmaar, after which they go their separate ways—marked in light brown lines and yellow arrows. While the service continues along its service route in

panel (a) towards Den Helder, the rolling stock unit is coupled in Alkmaar onto another service to the south-east (leaving the service with only part of its

original rolling stock)—via Schiphol Airport back to Nijmegen shown in panel (b). Panel (c) shows that the crew member transfers towards another service

to the south-west—via Amsterdam to Leiden and The Hague, proceeding via Utrecht to Leiden and eventually ending in Utrecht. If service 3028 would

have an initial delay dinit > 0, so does the rolling stock and crew executing the service; meaning that if scheduled buffer times for the resource transfers in

Alkmaar would be exceeded by the delay (and no replacement resource would be available), then the subsequent services of these resources would become

delayed as well. In other words, service 3028’s delay will potentially be transmitted to other services, and subsequently carried to other geographical regions.

Panel (d) shows the dinit-γ plot: γ remains zero for dinit < 23 minutes as the entire delay is absorbed by scheduled buffer times for resource transfers.

However, with dinit = 23 minutes, a first resource delay overcomes the transfer buffer and adds delay to another service: namely the rolling stock unit in

Alkmaar, going towards Nijmegen. As dinit grows, more and more transfer buffers are overcome and delay is added to many service lines throughout the

country. Panel (e) contains the same information as in panel (d), for for a log-linear plot, revealing the near-exponential increase of γ as a function of dinit.

Abbreviations used in the panel depict Alkmaar (Amr), Nijmegen (Nm), Schiphol Airport (Shl), Hoofddorp shunting yard (Hdfo) and Den Helder (Hdr).

The dotted black lines in panels (d-e) correspond to γ = dinit; γ becomes larger than dinit for dinit� 38 minutes.

https://doi.org/10.1371/journal.pone.0246077.g002
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Following the prescribed scheme of the railway operator, the model is formally described as

follows. Consider activity a of a certain train service line. Then consider the recent past activi-

ties {a0} of all resources (activities performed by the personnel, rolling stock units, and service

line activities) used to execute a prior to a. Then, having denoted the delay for activity a0 by

d(a0), the buffer between activities a0 and a by β(a0, a) and the Heavyside theta function by

H [i.e., HðxÞ ¼ 1 if x> 0, and 0 otherwise], the model calculates d(a) as

dðaÞ ¼

(max
fa0g
fH½dða0Þ � bða0; aÞ�g if fa0g is non � empty

0 otherwise:
ð1Þ

In our related works, we have also experimented with an added noise term z to this model,

allowing us to analyse the sensitivity of the results to noise. In general, it turns out that the cas-

cading mechanism has a much stronger impact on the delay evolution than (Gaussian distrib-

uted) noise because cascading copies and amplifies existing delay rather than creating new

(noisy) delay from scratch. In this paper however, we do not include the noise term, lest avoid-

ing confusion between model noise and interpreted noise in the real data, as in Fig 4 (see also

SI section C). Initialised at some time t0, i.e., being constrained to the train operator’s scheme

predefined at t0, the model propagates initial delays to future (t> t0) ones via Eq (1).

For clarity, let us provide an example calculation of d(a). Imagine a train activity a that is

ran by a train service s. Its previous activity aprev had 30 seconds delay (no buffer), and we are

interested in the delay of activity a. One of the rolling stock unit used for a came from else-

where, where it had 300 seconds delay, with a buffer of 120 seconds (for recombining into ser-

vice S). Two crew members transferred to service S, one (member I) with 720 seconds delay

(with buffer 600) and one (member II) with 540 seconds delay (with buffer 600). Table 1 sum-

marizes these numbers. The set {a0} in Eq 1 contains four activities, of which the buffers (third

column) should be subtracted from their delays (second column), to get the potential contri-

bution (fourth column) the delay of their combined activity, d(a). The corresponding delay

jumps δ(a) are calculated by comparing the resulting d(a) for each model to the delay of the

previous activity of the service d(aprev). In the monolayer model, we obtain dmono(a) = max

{30} = 30 (such that δmono(a) = 0), in the bilayer model dbi(a = max{30, 180} = 180 (such that

δbi(a) = 150) and in the trilayer model dtri(a) = max{30, 180, 120, 0} = 180 (such that δtri(a) =

150).

4 Quantification of cascading

In Fig 2(d)–2(e) we plot the delay cascading metric γ, defined as the cumulative sum of all

resource transfer-related delay jumps, i.e., γ = ∑a δ(a), consequential to some initial delay dinit

due to planned service 3028 on 3 December 2017 at the city Alkmaar. Given a predefined

buffer time scheme, the higher dinit is, the more buffers are exceeded; i.e., the more positive

delay jumps occur, and the more γ increases. Stated differently, the ‘tighter’ the buffer times

Table 1. An example calculation of delay propagation in case of resource transfers. All values are stated in seconds.

Resource Delay d Buffer β Potential contribution

Train service 30 0 30

Rolling stock 300 120 180

Crew member I 720 600 120

Crew member II 540 600 0

https://doi.org/10.1371/journal.pone.0246077.t001
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are planned—often the tendency of benefit-to-cost optimisations—the more prone transport

and logistic systems would become to large-scale disruptions.

In real-time operations, cascading like this will of course not go unnoticed, as railway dis-

patchers will take mitigation measures in real time. Rescheduling of rolling stock and crew,

and service cancellations constitute mitigation measures; in effect, for t> t0, they simply allevi-

ate (some of) the constraints imposed on the model by the operator’s scheme defined at t0. To

briefly showcase how the model reproduces delay build-up in a real situation, let us now use it

to evolve an actual delay snapshot of the entire system, and compare the results to the real data.

To this end, we choose 11 December 2017 as a case study, another day with a severe blizzard

(similar to the Dutch case shown in Fig 1). On this day, a code red weather alert was issued

from 12:00h onward, in anticipation of which, the Dutch railways used an adapted schedule.

Notwithstanding, the west and center of the country got disrupted to the point that almost no

train traffic was possible around Utrecht and Amsterdam in the afternoon. Having initialised

the model with the system snapshot at t0 = 19:00h—meaning also that the model is constrained

to the operator’s predefined scheme at 19:00h—we compare the model predictions for the evo-

lution of delay to the observed data at 20:00h in Fig 3. The aim of this figure is to illustrate

whether our model reproduces amplification (in terms of delay magnitude) and geographic

spread of delay well, when we initialise the model at a certain moment of time. Similarities

between reality [panel (a)] and the model output [panel (b)] can be found in the center and

east of the country, whereas differences can be seen in the south and north (such differences

affect the model’s performance, analysed later). The total delays [panel (c)] for the mono- and

bilayer models are seen to decrease quickly, while the trilayer model predicts the (increasing)

evolution of the total delay rather well for the first 90-120 minutes. Note that the trilayer

model prediction considerably overshoots the real data after 21:00h in panel (c). [In Sec. 4, we

will demonstrate that the period 19:00-21:00 happens to coincide with a large number of miti-

gation measures (Fig 4a), suggesting that the dispatchers have mitigated much of the delay

that the model predicts (this is consistent with the overestimation of the delay by the trilayer

model)]. Still, the overall better performance of the trilayer model is logical, since in terms of

modelling the entire system’s dynamics, this model is the most complete, and therefore it

Fig 3. Model simulations of a real situation. Comparison of simulation and observed data on 11 December 2017. All models were initialised with the

system snapshot at 19:00h. Panels (a) and (b) show the spatial distribution of delay at 20:00h in the real data (a) and simulation outcome of the trilayer

model (b). Panel (c) shows the total delay evolution in time for the observed data and simulation outcomes of the three models. The trilayer model predicts

the total delay well up to 120 minutes, after which it decays while in reality the total delay increased again. The differences between the monolayer model

and the bi-/trilayer models stem from delay cascading, built in the latter ones. Only delays larger than 3 minutes are shown for visualisation purposes.

https://doi.org/10.1371/journal.pone.0246077.g003
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captures the fullest extent of the cascading effects. For this reason, we henceforth exclusively

consider the trilayer model, referring to it simply as “the model”.

In order to quantify the role of delay cascading in large-scale disruptions, we resort to a

comparison of the delay jumps predicted by the model prediction and the operational data, as

extracting this directly from the operational data is not possible since no cascading-related

information, such as explanations for mitigation measures and cascading events, are logged.

By initialising the model every 15 minutes between 06:00h on a day and 01:00h on the next, we

first compute allmodel-predicted delay jumps with 15 minutes lead time. This lead time is

chosen based on a high performance of the model (quantified below by C in Fig 5c–5f). We

then heuristically classify them, upon comparing with operational data, in the following six

categories: cascading due to (I) crew and (II) rolling stock transfers, mitigated cascading due

to (III) rescheduling and (IV) cancellations, (V) other larger incidents (delay jumps> 10 min-

utes), and (VI) net noise (i.e., all other unaccounted for delay jumps), as follows (details in SI

section C). If there was a positive delay jump at a rolling stock/crew transfer point in the opera-

tional data, and the model indicated a cascading event, then the delay jump is accordingly cate-

gorised as I or II. Other large and small delay jumps in observed data are categorised as V and

VI respectively. Lastly, large delay jumps indicated by the model but not found in the opera-

tional data, upon cross-checking with the latter, are attributed to mitigation measures by

rescheduling (III) or cancellations (IV). Note that category III concerns crew only; we lack

Fig 4. Origins of delay jumps. Total (summed) delay jumps, sorted by various mechanisms that cause them, and subdivided in ‘labels’, for Panel (a) one

case study (11 December 2017), and panel (b) their proportions averaged over four days each for four day classes (‘Black’, ‘Red’, ‘Neutral’ and ‘Green’) for

the Dutch railways. The origins of the delay jumps were identified by comparing observed data to model output. Magnitudes [panel (a)] and relative

magnitudes [panel (b)] were calculated for time windows of 5 minutes, with a 30-minutes smoothening window used for display purposes. Four types of

delay jumps that act as delay sources are distinguished: (I) delay cascading due to crew transfers (purple), (II) delay cascading due to rolling stock transfers

(red), (V) other larger incidents (blue) and the positive part of (VI) net noise. Three types of delay jumps that act as delay recovery are distinguished: (III)

mitigated cascading due to rescheduling (yellow), (IV) mitigated cascading due to cancellations (green), and the negative part of (VI) net noise. The positive

part and the negative part are plotted separately in a cumulative sense—up- and downward, respectively. In panel (b), the total identified delay cascading

(observed plus mitigated) is highlighted in hours.

https://doi.org/10.1371/journal.pone.0246077.g004
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real-time rolling stock rescheduling data since the Dutch railways infrastructure company Pro-

Rail does not record them. Further, the distinction between categories V and VI is artificial: it

is primarily meant to demonstrate the occurrences of ‘large’ vs. ‘small’ incidents across day

classes in Fig 4(b).

For clarification purposes, let us provide an example for the delay jump classification. Con-

sider a train that departs from station A with 600 seconds delay, while earlier, upon arrival at

this station (i.e., its previous logged activity), it had 180 seconds delay, resulting in an observed

delay jump of dobs = 600 − 180 = 420 seconds. With 15 minutes lead time, the model however

happens to produce dsim = 360 seconds delay. Since dobs > 0 and dsim > 0, we check the

resource schemes, and find that the train re-departed from station A with a different crew than

it had upon arrival at station A, and one of these crew members was delayed. We therefore

mark the observed delay jump of 420 seconds as category I: cascading due to crew. Carrying

out this procedure for all activities and associated delay jumps in the data, and adding their

contribution together (per time window) results in the data that are shown in Fig 4.

Fig 4(a) shows the delay jump contribution of these categories for our case study day 11

December 2017 (note: this is the same day as in Fig 3); the respective contributions of these

categories to the delay jumps can be seen to fluctuate heavily through the day—this is in fact

typical for any day. In particular, many mitigation measures are found on this day, mostly in

the evening, after 18:00h. By scaling up to four days each for four unique day-classes as used by

the Dutch railways (Black, Red, Neutral and Green days), we show the relative contribution of

each delay jump category in Fig 4(b). Quantitative details on this classification, can be found

Fig 5. Predictability performance of the model. Panel (a), above diagonal: Mitigation measure Pt0 ðtÞ (blue), where both the model initialisation time t0
and crew activity time t are read from the horizontal axis. Panel (a), below diagonal: Model performance Ct0 ðtÞ (red), plotted similarly to Pt0 ðtÞ, but times

are read from the vertical axis. See also text for details. The contours Ct0 ðtÞ ¼ 0:35� 0:1 and Pt0 ðtÞ ¼ 0:7� 0:05 are marked respectively in blue and red

lines. The data in this panel is smoothened using a Gaussian-averaging for visualisation purposes. Panel (b): Horizons for P (blue) and C (red) for the same

three values of c and p as in panel (a), measured as the horizontal and vertical distances to the diagonal of the P and C contours, respectively. Panel (c)-(f):

Model performance Ct0 ðtÞ (horizontal) versus crew schedule invariance Pt0 ðtÞ (vertical) on multiple instances of the day (t = 11:00h, 12:00h, . . ., 22:00h),

with various lead times (t0 up to 1.5 hours before t), for the Green, Neutral, Red and Black days also analysed in Fig 4—16 days in total. Colours depict lead

time: red indicates small lead times (i.e., predictions are closely up front), blue indicates large lead times. Averages on 15 min intervals are shown in large

circles, with extra emphasis on the C values of these averages for 15 min and 30 min lead times (marked at bottom of each panel). Calculations of Ct0 ðtÞ and

Pt0 ðtÞ are performed at t0 = 6-minutes time resolution [15 minutes for (c)-(f)], with a 30-minutes window around t.

https://doi.org/10.1371/journal.pone.0246077.g005
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in SI section A. ‘Black’ days refer to days with many service cancellations and severe delays,

while ‘Green’ days refer to days with barely any cancellation and only small delays (with ‘Red’

and ‘Neutral’ in between). For communication reasons we keep the label names as is used by

railway practitioners.

Shown in approximate absolute hours Fig 4(b) are the aggregated contributions of each of

the categories. When deriving the role of cascading from this figure, it is important to realise

that categories I and II (cascading through crew and rolling stock) indicate a baseline portion

of cascading: those that were detectable using the heuristic described two paragraphs above.

The sizable magnitude of mitigation categories III and IV in Fig 4(a) indicates that many cas-

cading-induced delay jumps were prevented by railway dispatchers. Further, categories V

(‘other large incidents’) and VI (‘net noise’) cover a combination of externalities, coincidences,

but also more cascading (which could not be captured by the heuristic) and secondary effects

of cascading. It is for this reason that we identify the aggregated contributions of categories

I-IV as theminimum (average) cascading metric γ for real-time operations. Fig 4(b) shows

that γ decreases with the day-severity decreases: on Black days, we find an average of γ = 21

hours, while on Green days, this is only γ = 6 hours. The relation between γ and day-severity

suggests that cascading indeed becomes increasingly important in more disrupted situations.

(Also, the mitigation measures devised by the Dutch railways are evidently seen to be quite

effective.).

5 Predicting the evolution of large-scale disruptions

Finally, we address the matter of predicting the evolution of large-scale disruptions using the

model. How accurate the model predicts this evolution is referred to as the ‘model perfor-

mance’. The relevance of model performance is twofold: for validating the model, and for pro-

viding (early) warnings to predict the evolution of disrupted situations in real-time operations.

For the former, comparing model performance across multiple types of days (‘Green’, ‘Black’,

etc.) may identify the cases wherein cascading, built in the model’s mechanisms (i.e., the three

building blocks from Sec. 2), indeed played an dominant role in delay propagation (in cases

when the performance is high), or when other (excluded) factors played a significant role (in

cases when the performance is low).

In general, prediction by any delay propagation model suffers from two limiting factors:

(i) large, poorly predictable, new incidents external to the system (captured partly by the blue

and the gray areas in Fig 4), and (ii) mitigation measures (yellow and green areas in Fig 4) that

alleviate constraints on the model imposed by the operator’s predefined scheme at initialisa-

tion time t0. By leaving these out by construction, our model outputs how delay would build

up in their absence [this, in fact, is the qualitative explanation for the discrepancy between

Fig 3(a) and 3(b), as remarked earlier]. The model’s prediction accuracy therefore gets limited

to a certain lead time (t − t0)—the longer it is, the more negative influence (i-ii) have on its

performance. We therefore define a predictability horizon (t − t0), for which the condition

Ct0ðtÞ ¼ c holds for some c. Here Ct0ðtÞ is the cosine of the angle ϕ, obtained from the dot

product between the system-wide real and model-determined departure delay vectors

~D ¼ ½dða1Þ; dða2Þ; . . . ; dðanÞ�, obtained by aggregating all the train services in the time window

W(t, Δt)� [t − Δt/2, t + Δt/2] with window size Δt = 30 minutes:

Ct0ðtÞ � cos ½�t0ðtÞ� ¼
~DrealðtÞ � ~Dmodel; t0

ðtÞ

j~DrealðtÞjj~Dmodel; t0
ðtÞj

: ð2Þ

We use this quantity as themodel performance metric, with values between 0 (performing
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poorly) and 1 (performing perfectly). Although cosine similarity (like many other correlation

metrics) does not incorporate absolute delay magnitudes when comparing model output to

observed data since they are scaled out in Eq (2), the quantity C does take into account the spa-

tial distribution as well as the corresponding relative magnitudes of delays (of which larger

delays are of particular interest) over the entire network.

The lead time should in principle correlate well to the cosine similarity modulo the absence

of the two limiting factors (i-ii). While we have little means to quantify (large external) inci-

dents, we can quantify mitigation measures by Pt0ðtÞ, defined as the ratio (determined using

the scheme at t0):

Pt0ðtÞ ¼
executed crew actions scheduled to be inWðt;DtÞ
all crew actions scheduled to be inWðt;DtÞ

: ð3Þ

(Ideally one should also account for rolling stock rescheduling in the interval [t0, t], but as

pointed out earlier, we do not have data on live rescheduling of rolling stock.) Analogous to

the predictability horizon, one can also define themitigation horizon (t − t0) for which the con-

dition Pt0ðtÞ ¼ p holds for some p.
Using the definitions (2-3), we first investigate the predictability horizon for our case study

day 11 December 2017 (as in Figs 3 and 4a). Starting at 6:00h on the day, the model is initia-

lised every 6 minutes, run forward, and both C and P are calculated at every time point (at 1

minute resolution) up to 01:00 AM on the next day for each run. The results are shown in Fig

5(a); both the horizontal and vertical axes display time of day. The diagonal represents t = t0,

on which C = P = 1 trivially holds. Using the time-stamps displayed on the horizontal axis, in

Fig 5(a) we plot Pt0ðtÞ in blue at every point on the left of the diagonal—e.g., for the little black

circle—where t0 is the model initialisation time-stamp of the point, and t is the crew activity

time-stamp, corresponding to the intersection point of a horizontal line (shown by the right

arrow) from that point and the diagonal. A similar process is followed for plotting Ct0ðtÞ in red

on the right of the diagonal, but this time using the time-stamps displayed on the vertical axis.

The blue and the red contours for several values of c and p then respectively correspond to the

mitigation and predictability horizons; they respectively measure how far ahead in time the

crew schedule remains invariant enough, and how far up front in time the delay situation can

be predicted. For example, the large distance of the P and C contours to the diagonal at

t = 16:00h (following the arrows) means that the crew (that were working around 16:00h) were

barely rescheduled prior to 16:00h, and the model also performed well to predict the delay

state at 16:00h. Similarly, distance of the P-contour to the diagonal dropped considerably after

16:00 hour, resulting in large amounts of cascading mitigation, as in Fig 4a.

We expect that the two horizons to track each other for large-scale disruptions (the larger

P is, the less the constraints at model start-time t0 are alleviated, meaning that the higher the

model performance C ought to be). The relation between the two is explored in the C-P dia-

grams in Fig 5(b) and 5(c) in two different ways. The scatter of points in Fig 5(c) denote the

C and P values for five different colour-coded lead times (t − t0) at hourly values of t, for the

same four large-scale disruption (Black) days as in Fig 4(b). While there is a large scatter in

Fig 5(c), their averages, plotted in circles marked with lead-time values, indicate a near-linear

relation between C and P for lead time up to an hour. The same is seen in Fig 5(b), wherein

the contour bands Ct0ðtÞ ¼ 0:35 � 0:1 and Pt0ðtÞ ¼ 0:7� 0:05 from Fig 5(a) on 11 Decem-

ber 2017 are also seen to track each other well with an offset all through the day. Finally, Fig

5(d)–5(f) we compute the C-P diagrams for the other days as in Fig 4(b). For a given lead

time, we find two distinct trends with increasing day-severity: (i) P decreases significantly

[ostensibly to facilitate mitigation measures, as seen in Fig 4(b)], (ii) notwithstanding that,
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the model performance C—the cosine similarity—improves (in particular, the 30-min lead

time averages improves from 0.43 and 0.51 on Green and Neutral days to 0.59 on Black

days). This is indeed counterintuitive, but is explained by the following. The delay spreading

mechanisms are better captured by the model on Black (severely disrupted) days in contrast

to the Green days, for which delay spreading is dominated by incidents and noise events

external to the model [covered by the blue and the gray areas in Fig 4(b)]. This corroborates

our central message—namely that delay cascading dominates large-scale disruption events:

despite more mitigation measures, more buffers are systemically exceeded on Black days

than on, e.g., Green days.

6 Conclusion and outlook

To summarise: we show that large-scale delay evolution during railway disruptions emerge

from the complex interactions of resources and services. Central to large-scale disruptions are

the processes of delay amplification and spreading on the (fixed or time-invariant) infrastruc-

ture network. We find that these processes require a dynamical interplay among three building

blocks: (a) constraints (the required resources are delayed), (b) cascading (this delay is passed

on secondary services), and (c) transport (the secondary services spread the delay across long

spatial and temporal time scales), wherein cascading playing the key role for delay amplifica-

tion. Although we consider only railway systems here, the conceptual similarity in resource

allocation and scheme-based dynamics in other systems like airways and logistic systems sug-

gests that cascading can be an important driver to large-scale disruptions in these systems as

well.

Although, in this paper we focus on railway transport with a wider outlook to transport and

logistic systems at large, our work connects to a wider class of dynamical processes taking

place on networks. In the introduction we have already pointed out that the problem we study

here—spreading phenomena on fixed (time-invariant) railway infrastructure network—

belongs to the type of dynamics on networks. Well-studied examples of this type are diffusion-

related phenomena on networks (e.g., in various (bio)chemical reaction-diffusion, or activa-

tion-inhibition processes running on networks [53, 54]), network epidemiology [55], and the

spreading of rumours and opinions over social networks [51, 56]. Even though one can make a

distinction among these regarding nature-made or human-made systems subtypes, the spread-

ing mechanism we identify here, viz., delay cascading across multiple layers of resources and

service elements, is a rich (and supported by real life data) addition to literature of dynamics

on networks. The constraint-cascading-transport mechanism of (delay) spreading, which we

derive here using the example of railway transport, adds to the understanding of the spreading

dynamics on complex networks. While we hope that our work will stimulate a wider search

into spreading phenomena on complex networks, we also note that the multi-layer coupled

dynamics can also be formulated as a temporal network [57], which is however beyond the

scope of the the current work.

Finally, for the specialist field of transport research, we foresee two effective measures to

arrest cascading, potentially averting large-scale disruptions. First, the introduction of ample

spare resource capacities and buffer times, to ensure that local constraints do not get easily

activated. The trilayer model pinpoints precisely where vulnerabilities lie within the railway

operator’s scheme: e.g., in Fig 2 we show that delays in the Dutch city of Alkmaar (north-west)

at a particular moment in time has the potential to cause delays in the city of Nijmegen (east)

at a later point in time: a form of building long-range causal correlations in the system. Spare

crew in Alkmaar would not only prevent this specific spread, but upscaling the model’s results

to long-term statistics would also provide any transport system’s dispatcher with data to
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pinpoint ideal locations and quantities of spare resources—an analysis we plan to execute in

the future. (Having said this, we acknowledge that optimising the system for benefit-to-cost

ratios will limit the possibilities of having spare resources.) A second measure to prevent cas-

cading is a modular design approach for the transport functionalities. Modular designs (like

the Danish railway system), by definition, do not reuse resources from one area to another,

which prevents delay cascading between these regions. Modular design approaches have been

considered in the context of operational rescheduling during disruptions [21, 58]. We hope

that our paper prompts new research into the trade-offs and complexity of how to design

transport systems resilient to disruption spreading.
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