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At supranuclear densities, explored in the core of neutron stars, a strong phase transition from hadronic matter
to more exotic forms of matter might be present. To test this hypothesis, binary neutron-star mergers offer a
unique possibility to probe matter at densities that we cannot create in any existing terrestrial experiment. In this
work, we show that, if present, strong phase transitions can have a measurable imprint on the binary neutron-star
coalescence and the emitted gravitational-wave signal. We construct a new parametrization of the supranuclear
equation of state that allows us to test for the existence of a strong phase transition and extract its characteristic
properties purely from the gravitational-wave signal of the inspiraling neutron stars. We test our approach using
a Bayesian inference study simulating 600 signals with three different equations of state and find that for current
gravitational-wave detector networks already 12 events might be sufficient to verify the presence of a strong
phase transition. Finally, we use our methodology to analyze GW170817 and GW190425 but do not find any
indication that a strong phase transition is present at densities probed during the inspiral.
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I. INTRODUCTION

Neutron stars (NSs) are remnants of core-collapse super-
novae and contain matter at the highest densities that we can
observe in the Universe, up to several times nuclear satura-
tion density, nsat = 0.16 fm−3, which corresponds to a mass
density of 2.7×1014 g cm−3. Hence, NSs are perfect labora-
tories to determine the unknown equation of state (EOS) of
dense matter. The EOS relates the pressure with the energy
density in the NS interior and is determined by the fundamen-
tal degrees of freedom inside the NS and their interactions
among each other. Each possible EOS determines the global
structure of NSs, i.e., their masses and radii, in a unique
way. Therefore, detailed astronomical observations of NSs, in
particular of binary NS (BNS) coalescences, are of extreme
importance to nuclear physicists and allow us to constrain the
dense-matter EOS. To date, most EOS constraints stem from
NS mass measurement [1–3] or radius extractions from x-ray
observations [4–6]. The latter however, suffer from relatively
large statistical [5] or systematic [7] uncertainties. In addi-
tion to electromagnetic (EM) observations, the remarkable
observation of gravitational waves (GWs) from a BNS merger
in 2017, GW170817, by Advanced LIGO [8] and Advanced
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Virgo [9] provided another avenue to determine NS properties
and the EOS [10–12]. Numerous efforts have been made to
extract information on the EOS from the GW signal of BNS
mergers, see, e.g., Refs. [13–32]; cf. Ref. [33] for a recent
review and further references.

Constraints from GW170817 arise either purely from the
analysis of the GW signal, e.g., Refs. [10,34–38], from a com-
bination of GW and EM information, e.g., Refs. [32,39–44],
or from analyses of large sets of possible EOSs con-
strained by nuclear-physics theory at low densities, e.g.,
Refs. [20,22,24,26,30,32,45]. Furthermore, the NS mass dis-
tribution, and therefore also the maximum density in the NS
core, is bounded from above by the NS maximum-mass con-
figuration. This is the highest NS mass that can be supported
against gravitational collapse by the dense matter in the NS
interior and depends on the EOS. While this maximum mass
can in principle be as high as 3–4M� (see, e.g., Ref. [24]), the
EM observation of the kilonova associated with GW170817
has constrained the maximum mass to be much smaller, of the
order of 2.2–2.3M� [41,46,47]. Most NS observations so far
have explored NSs in a mass range of 1.4–2.1M� and hence
below the maximal possible density. In contrast, the coales-
cence of two typical NSs of approximately 1.4 M� creates
an object that is likely above the maximum mass and truly
explores the EOS at the highest densities in the Universe.

In the context of the dense-matter EOS, an important prob-
lem is to determine the nature of matter inside of NSs. For
example, at very high energy densities the fundamental the-
ory of strong interactions, quantum chromodynamics, predicts
that matter undergoes a phase transition to quark matter but
it is unknown at what densities such a transition occurs. A
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long-standing question is whether NSs explore such phase
transitions to new and exotic forms of matter in their cores or
whether they solely consist of nucleonic matter [48–50] and
whether these transitions are observable [51,52]. Among NSs
that explore a phase transition, “twin stars” are a particular
family. For these stars, the phase transition in the EOS is
sufficiently strong so that the mass-radius curve around the
phase transition is disconnected and contains two or more
branches [53,54].

For EOSs where a phase transition is present, two scenarios
can be distinguished based on its onset density. First, it is
possible that the transition happens at very high densities, i.e.,
only in heavy stars. In this case, the phase transition is probed
only after the collision of the two individual stars; see, e.g.,
Refs. [55–60]. A second possibility is that the onset density
of the phase transition is at lower densities explored in typical
NS around 1.4 M�, that are probed already during the inspiral
phase of the NS merger, e.g., Refs. [61,62]. In the latter
case, one could imagine scenarios in which a mass asymme-
try between the two stars in the BNS leads to one (lighter)
star containing only nuclear matter, while in the other (more
massive) star a quark core is already present. In such a case
the two individual stars could have very different radii and
tidal deformabilities while their masses are comparable.1 This
is of particular importance since a number of existing GW
analyses, e.g., Refs. [35,37], and multimessenger constraints
on the EOS, e.g., Refs. [39,40,42–44], rely on the assumption
that both inspiraling objects are NSs following some given
quasiuniversal relations [35,66,67]. In the presence of a phase
transitions those quasiuniversal relations might be violated,
in which case their employment in GW analyses are likely
to lead to biases of the determined binary properties and the
EOS.

While the current analysis of GW170817 seems to disfavor
NSs with too-large radii and tidal deformabilities, consis-
tent with the appearance of phase transitions, the data from
this single event is insufficient to conclusively answer this
question; see, e.g., Ref. [27]. Many recent works have ad-
dressed the question of whether GWs allow us to constrain
the existence of hybrid stars, i.e., NSs that explores strong
phase transitions to exotic forms of matter in their cores, and
in particular twin stars [29,30,55,56,59,61,68]. For example,
Ref. [29] searched for the presence of a phase transition by
applying quasiuniversal relations. In particular, the presence
of a strong phase transition was probed via observing the
breakdown of quasiuniversal relations. Reference [29] found
that the mass at which the phase transition occurs, Mt , can
be measured with 50–100 detections and the corresponding
microscopic parameters can be estimated via quasiuniversal
relations. Furthermore, Refs. [27,28] looked for indications
of phase transitions in GW data using a nonparametric in-
ference approach to the EOS. By combining heavy pulsar
observations, GW170817, and the recent NICER observation
[5], a Bayes factor in favor of the presence of multiple stable
branches of 1.8 ± 0.2 [28] was found.

1The tidal deformability �2 = (2/3)k2(c2R/GM )5 with the Love
number k2, radius R, and mass M determines the deformation of the
star in an external gravitational field [63–65].

When looking for the imprint of a phase transition in the
GW170817 data, these previous works have mainly searched
for the presence of multiple stable branches in the mass-radius
relation. However, this is only one among various scenarios.
In this work, we aim at quantifying whether we are capable
of determining the presence of a strong phase transition from
GW data even when only one stable branch is present. In
particular, we ask the question how many GW observations
are necessary to observe a phase transition and recover the
parameters of an injected EOS from GW data. We focus on
three different EOS that experience a phase transition in the
typical mass range explored in BNS systems and which show
three different behaviors in the mass-radius relation.

For this purpose, we introduce a method, based on a new
parametrization for EOSs at supranuclear densities, of testing
GW data from the inspiral phase of a BNS merger for the
appearance of a strong phase transition. This new approach
is based on Bayesian inference methods and can be used with
current GW detectors. Simulating 600 signals for three differ-
ent EOSs, we find that already 12 events might be sufficient to
confidently find the presence of a phase transition. However,
when analyzing the signals GW170817 and GW190425 with
our method, we do not find a hint of a strong phase transition.

The major differences between previous studies and our
work are that we simultaneously (i) analyze EOSs with differ-
ent phase-transition signatures, i.e., one EOS with a twin-star
solution which is commonly searched for, but also two EOSs
with phase transitions leading to single-branch solutions;
(ii) analyze both simulated data and actual events with
state-of-the-art Bayesian GW data analysis techniques, which
allows for hypothesis testing and parameter estimation at
once; and (iii) explicitly demonstrate that our method is able
to measure the microscopic characteristics of strong phase
transitions by comparing injected with recovered parameters.
Hence, our method allows us to make statistically robust state-
ments on the presence of strong phase transitions.

The paper is structured as follows. We describe our meth-
ods and our mock data setup in Secs. II and III, respectively.
Main results are shown in Sec. IV, and in Sec. V we apply
our method to GW170817 and GW190425. We conclude in
Sec. VI.

II. PHASE TRANSITIONS AND THEIR IMPRINT
ON THE GW SIGNAL

A. The equation of state of NS matter

The structure of NSs is completely determined by solv-
ing the Tolman-Oppenheimer-Volkoff (TOV) equations. The
only necessary input is the EOS, a relation between the pres-
sure, energy density, temperature, and composition inside the
NS. The EOS is determined by the microscopic degrees of
freedom in the NS interior and their interactions. At lower
densities, these are mostly neutrons with a few percent of
protons interacting via nuclear forces, but at higher densities
new degrees of freedom might appear. With typical radii of
the order of 12 km and masses of 1–2M�, the densities inside
NSs are so large that thermal energies are much smaller than
typical Fermi energies, except in the most violent astrophys-
ical scenarios. Hence, for isolated NSs and NSs during the
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inspiral phase of a BNS merger, finite temperature effects can
be neglected and the EOS is simply a relation of pressure and
energy density for a given composition.

From the theoretical side, the EOS of cold dense matter at
the densities explored in the NS core is very uncertain. There
exists a multitude of models for the EOS which explore a
wide range of pressures at densities beyond nsat, leading to
large uncertainties for the radii of typical NSs. The models
can differ both in the degrees of freedom that they assume
and in the effective interactions among them. At low densities
explored in the NS crust and outermost core, where experi-
mental input on, e.g., saturation properties or extractions of
the symmetry energy are available to constrain models, the
EOS can instead be constrained rather reliably. In this density
regime, approaches ranging from density functionals [69] or
relativistic mean-field models [70,71] to ab initio calculations
using a variety of models for the nuclear interactions, e.g.,
Refs. [72,73], lead to consistent results.

In recent years, important constraints on the EOS of NS
matter at low densities have been obtained from microscopic
calculations of neutron matter using systematic interactions
from chiral effective field theory (EFT) [73–78]. Chiral EFT
[79,80] represents a systematic low-momentum expansion
of nuclear forces, which is connected to the symmetries of
the fundamental theory of strong interactions, quantum chro-
modynamics. Instead of using quark and gluon degrees of
freedom, it uses the fact that quarks are confined to hadrons
at low densities and models interactions in terms of effective
degrees of freedom, nucleons, and pions. Chiral EFT natu-
rally includes two-body and many-body interactions among
nucleons and provides an order-by-order scheme for the in-
teractions among nucleons in terms of contact interactions,
whose couplings are fit to experimental data, and long-range
pion-exchange interactions. By going to higher orders in this
expansion, calculations increase in difficulty, but results be-
come more precise and accurate. In addition, the systematic
order-by-order scheme can be used to obtain theoretical uncer-
tainty estimates [81,82]. Hence, calculations of neutron matter
with chiral EFT interactions provide constraints on the EOS
with reliable uncertainties.

However, chiral EFT calculations are valid only within the
radius of convergence of the theory. Typically, the momentum
expansion breaks down at momenta of the order of 500–
600 MeV; see, e.g., Ref. [82] for a recent analysis. Hence, in
neutron matter the chiral EFT approach might be reliable only
up to (1 − 2)nsat, but most likely fails beyond that [30,78].
Therefore, at densities beyond two times saturation density,
currently no reliable statement about the EOS can be made
from microscopic nuclear theory. At these densities, models
suffer from the absence of available experimental data and our
ignorance of strong interactions in this regime. In particular,
while we know the relevant degrees of freedom at lower den-
sities to be nucleons, it is not clear which degrees of freedom
appear at larger densities. While many astrophysical EOSs
assume nucleonic degrees of freedom to be valid in the whole
NS, a phase transition to new degrees of freedom, e.g., quark
matter or exotic condensates, might occur [68]. This phase
transition might be strong and of first order, in which case it
can lead to interesting features in the mass-radius relation, like
kinks or disconnected branches [52].

To extend microscopic low-density results for the EOS
to higher densities, the uncertainty in the degrees of free-
dom must be taken into account. This is typically done by
applying general extension schemes, e.g., by using sets of
polytropes for the energy density and pressure [20,73,83] or
an expansion in the speed of sound [24,25,29]. An extension
of this approach are nonparametric inference schemes which
have prior support for all possible EOS curves [84] and have
recently been combined with chiral EFT calculations [30].
Such extension schemes abandon explicit assumption about
the degrees of freedom at higher densities but instead model
all EOS curves permitted by the chosen functional form in the
case of parametric extensions2 and general physics consider-
ations such as causality. By sampling all allowed functions,
uncertainties at low densities can be systematically extended
to high densities.

These general EOS sets contain both smooth EOSs, i.e.,
EOSs for which the change of pressure with energy density
is continuous at all densities, as well as EOSs with drastic
changes in the pressure. While EOSs of the first type might
be obtained by using a purely nucleonic description of NSs,
the latter type contains EOSs with strong first-order phase
transitions. Such transitions can be modeled within a Maxwell
or Gibbs construction, depending on the properties of the
considered phases.

In a Maxwell construction, no mixed phases appear and the
phase transitions can be modeled by an EOS segment where
the speed of sound, c2

S = ∂ p/∂ε = 0, vanishes. This EOS
segment, and hence the phase transition, can be described by
its onset density, where the speed of sound becomes 0, and
its width, i.e., the density jump between the two phases with
nonvanishing speed of sound. Depending on these properties,
different features might be observed in the M-R relation (or
the M-� relation). In Fig. 1, we show two examples of such
phase transitions, which we have selected from the EOS set
of Ref. [24]. This EOS set was constrained by microscopic
chiral EFT calculations below nuclear saturation density, in-
cluding a consistent NS crust [85], and extended to larger
densities by using a speed-of-sound extension scheme. Hence,
it ensures NS stability (cS > 0) and causality (cS < c, with
c the speed of light) by design. For one of the two chosen
EOS (labeled KINK, orange line), an intermediate width is
chosen for the phase transition which leads to a visible kink
in the mass-radius curve. For the other EOS (labeled TWIN,
blue line), a larger width leads to a stronger phase transition
which results in the appearance of two disconnected branches
in the mass-radius relation, a so-called twin-star solution. For
both EOS, the onset density is chosen such that the interesting
feature appears already in typical NSs.

In the Gibbs construction, on the other hand, a mixed phase
appears and smoothens the resulting EOS around the phase
transition. In that case an EOS with a phase transition might

2Because no particular choice for the functional form of the EOS
is made in nonparametric inference schemes, they are less limited
in this sense. However, in this work we choose a parameterized
approach for the EOS because it is straightforward to implement
a c2

s = 0 segment that appears in case of a strong first-order phase
transition.
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FIG. 1. Density-pressure relations (a) and mass–tidal-deformability relations (b) of the three EOSs (solid) used in this work and the
least-squares Maxwell fits (dashed) to the the EOSs. The Maxwell parametrization successfully captures all features, including the phase
transition, for both the EOS and the mass-radius curve. Moreover, both the EOSs and the EOSs’ best fits support heavy NSs.

be indistinguishable from a purely nucleonic EOS, which is
known as the masquerade problem [51]. We compare the two
EOSs TWIN and KINK with the model ALF2 [51], which
is a hybrid EOS with a phase transition to quark matter that
leads to the formation of a mixed phase. For all three EOS
models, the maximum mass is greater than 1.93 M� and,
hence, consistent with observed masses of heavy NSs [2,3].

B. Imprint of phase transitions on the GW signal

A possible phase transition can imprint itself on the GW
signal in different ways during the inspiral and during the
postmerger phase.

1. Inspiral

During the inspiral, the GW signal depends on the prop-
erties of the two binary stars (masses, spins, and tidal
deformabilities), as well as on the source location and ori-
entation. Of particular importance for the description of tidal
effects are the parameters
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with the symmetric mass ratio ν = m1m2(m1 + m2)−2 =
m1m2/M2, which captures additional contributions at sixth PN
order.

The presence of a phase transition in the EOS might lead
to a significant change in the radii and tidal deformabilities
for almost equal mass systems, if in any of the two stars
the onset density for the transition is already reached in the

core, cf. Fig. 1. In Fig. 2, we show the expected GW signal
for a nonspinning BNS system with component masses of
1.50 M� and 1.45 M� for the three EOSs that we have chosen
in this work. For the two EOSs with strong first-order phase
transitions, due to the different tidal deformabilities of both
stars, we find a dephasing of the waves compared to the ALF2
EOS. Since the leading-order tidal contribution enters at the
fifth PN order [63–65,86], the dephasing is most prominent in
the late-inspiral phase.

In addition to the GWs for the EOSs described above, we
also present as dashed lines the waveforms when we assume
that the quasiuniversal relation of Refs. [67,87] holds for
TWIN, KINK, and ALF2. To apply this relation, we fix the
tidal deformability of the lower-mass star and compute the
tidal deformability of the primary component by using the
quasiuniversal relation. We find that the resulting waveform
significantly deviates from the full waveform for EOSs with
a very strong phase transitions, i.e., TWIN, but approximates
the waveform well in the other cases. These differences sug-
gest the failure of the quasiuniversal relation with respect
to EOSs with strong phase transitions like TWIN, while the
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FIG. 2. The GW waveforms for a nonspinning BNS system with
component masses of 1.50M� and 1.45M� for the three EOS used
in this work. The dashed lines are the waveforms assuming that the
Binary-Love relation [67,87] holds.
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relation holds approximately for the KINK EOS. For smooth
EOSs, like ALF2, there is no observable difference and the
quasiuniversal relation seems to be valid. This suggests that
detecting a phase transition that does not result in a twin-star
solution will be challenging if a methodology purely based on
quasiuniversal relations is employed.

2. Postmerger

In cases in which the phase transition happens at densities
beyond the ones probed during the inspiral, the postmerger
signature can change if a phase transition is present, as out-
lined in, e.g., Refs. [29,55,56,59–61,68]. In most cases, the
presence of a phase transition will lead to a different (of-
ten shorter) lifetime of the remnant and a shift of the main
postmerger GW emission mode. However, due to the missing
sensitivity of existing GW detectors in the high-frequency
range [9,88] and the absence of high-quality GW models
describing the postmerger evolution of BNS mergers—see
Refs. [89–94] for some first attempts—it seems natural to
investigate, at the current stage, possible phase transition ef-
fects that can be extracted from the GW signal during the
inspiral.

C. EOS parametrization for phase transitions

When analyzing NS observations, one needs to assume
an EOS describing the relation between pressure and energy
density. For the “true” NS EOS realized in nature, however,
the functional form is unknown. Hence, an EOS parametriza-
tion needs to be flexible enough to capture the various effects
one might encounter in nature, in particular phase transi-
tions. In this work, we consider the three EOSs of Fig. 1 as
three possible “true” EOSs. In order to capture all features
of these EOSs, in particular the first-order phase transitions,
here we propose to use a five-parameter piecewise-polytrope
EOS parametrization scheme, which we refer to as Maxwell
parametrization. This scheme is similar to the parametrization
proposed in Refs. [83,95].

In our Maxwell parametrization, at low densities up to
nuclear saturation density, we use an EOS constrained by the
chiral EFT calculation of Ref. [78] (VE ,1 parametrization).
This EOS contains a consistent inner crust and uses the BPS
model for the outer crust. For the high-density part beyond
nsat, we use a modified five-parameter four-piece polytrope.
Each polytrope is characterized by the starting pressure pi and
the adiabatic index �i. Therefore, our extension starts with
eight free parameters: {p1, p2, p3, p4} and {�1, �2, �3, �4}.

To ensure continuity for the first polytrope, the starting
pressure p1 is chosen to be the pressure of the chiral EFT EOS
at the nuclear saturation density, pCEFT(ρ0). The adiabatic
index of the second polytrope, �2, is set to be zero to represent
a Maxwell construction for a phase transition extended across
a density gap of 	ρ. Therefore, p2 = p3 = ptr, where ptr

is the phase transition pressure. Furthermore, we choose the
transition pressure between the third and fourth polytropes to
be 5 times the phase transition pressure, p4 = 5ptr. Fixing p4

reduces the numbers of free parameters and therefore helps
during the recovery. The particular value of 5ptr is chosen
ad hoc by comparison against various different EOSs. We
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FIG. 3. Sketch of the Maxwell parametrization, which is char-
acterized by the adiabatic indices {�1, �3, �4}, the phase transition
onset pressure ptr, and the transition density jump 	ρ.

have also explored leaving this parameter free, but this only
improved the fitting performance marginally. Therefore, to
reduce dimensionality, we have fixed this parameter. A sketch
of the parametrization is shown in Fig. 3 and its capability
of representing the three EOSs is shown in Fig. 1. We find
that the Maxwell parametrization works well for EOSs where
phase transitions appear between 1 and 4nsat, corresponding to
a NS in a typical mass range. As suggested in Refs. [96,97],
we have found that our parametrization introduces system-
atic uncertainties due to imperfect fits to the “true” EOSs.
Yet, as shown in the right panel of Fig. 1, the error is over-
all small and will be below the statistical uncertainty of an
EOS measurement [98]. However, it might be necessary to
verify the generality of this assumption assuming different
parametrizations. Because of the large computational cost,
this is not part of this work. Furthermore, we do not expect
systematics induced by our parametrization to significantly
affect the present study and its main goal, namely to identify
strong phase transitions and their parameters.

In total, our parametrization is described by five parame-
ters: �1, �3, �4; the phase transition onset pressure ptr; and
the transition density jump 	ρ. In practice, in case of an EOS
with a twin-star solution, it is possible to have NSs with the
same mass but different radii, i.e., NSs that live on different
branches of the M-R relation. These NSs have central densi-
ties around the onset density of the phase transition. Because
in this case the NS mass cannot be used to distinguish the
individual stars—see Fig. 1 (right panel)—we need to add two
extra parameters B1 and B2 for each of the two NSs to indicate
on which branch the star lives. Therefore, the EOS parameters
�E are given by

�E = {log10 ptr, log10 	ρ,�1, �3, �4, B1, B2}
= { �Ec, {Bi}}, (3)

where �Ec denotes the common parameters of all stars, assum-
ing they follow the same EOS.
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III. MOCK DATA SIMULATION

A. Bayesian analysis

According to Bayes’s theorem, the posterior p(�θ |d,H) ≡
P (�θ ) on the parameters �θ under hypothesis H and with data d
is given by

P (�θ ) = p(d|�θ,H)p(�θ |H)

p(d|H)
≡ L(�θ )π (�θ )

Z (d )
, (4)

where L(�θ ), π (�θ ), and Z (d ) are the likelihood, prior, and
evidence, respectively. The prior describes our knowledge of
the source or model parameters prior to the experiment or
observation. The likelihood and evidence quantify how well
the hypothesis describes the data with the given set of pa-
rameters and over the whole parameter space, respectively. By
assuming Gaussian noise, the likelihood L(�θ ) that the data d
is a sum of noise and a GW signal h with parameters �θ is given
by [99]

L(�θ ) ∝ exp
(− 1

2 〈d − h|d − h〉), (5)

where the inner product 〈a|b〉 is defined by

〈a|b〉 = 4Re
∫ fhigh

flow

ã( f )b̃∗( f )

Sn( f )
df . (6)

Here ã( f ) is the Fourier transform of a(t ), ∗ denotes complex
conjugation, and Sn( f ) is the one-sided power spectral density
of the noise. In our study we will set flow and fhigh to 20 Hz
and 2048 Hz, respectively. The evidence Z is given by

Z =
∫

L(�θ )π (�θ )d�θ, (7)

which is the normalization constant for the posterior distribu-
tion.

Moreover, we can compare the plausibilities of two hy-
potheses, H1 and H2, by using the odd ratio, which is given
by

O1
2 ≡ p(d|H1)

p(d|H2)

p(H1)

p(H2)
≡ B1

2�
1
2, (8)

where B1
2 and �1

2 are the Bayes factor and prior odds, respec-
tively. If O1

2 > 1, then H1 is more plausible than H2 and vice
versa. Throughout this study, we have the prior odds set to 1,
in which case the Bayes factor is the same as the odd ratio.

Within the Bayesian framework we can combine the in-
formation from multiple detections. For parameters that are
expected to be the same across several detections (e.g., EOS
parameters), the combined posterior for common parameters
Pc(�θc) can be obtained as

Pc(�θc) = π (�θc)1−N
N∏

i=1

Pi(�θc), (9)

where �θc are the common parameters and Pi(�θc) is the poste-
rior including the ith detection. We can also combine the odds

ratios into a catalog odds ratio O1 (cat)
2 , which is given by3

O1 (cat)
2 = �1

2

N∏
i=1

B1
2,i = �1

2B
1 (cat)
2 , (10)

where B1
2,i is the Bayes factor for the ith detection and B1 (cat)

2
is the catalog Bayes factor. As we have the prior odds set to 1,
the catalog odd ratio O1 (cat)

2 is the same as the catalog Bayes
factor B1 (cat)

2 .

B. Waveform approximants

In this paper, we restrict our studies to the PN model
TaylorF2. This model was also employed in the analysis of
GW170817 and GW190425 by the LIGO and Virgo Collabo-
rations; see, e.g., Refs. [36,38,100].

The version of TaylorF2 we use is based on on a 3.5
PN order point-particle description [101–105] that includes
spin-orbit effects [106] and spin-spin effects [107–110]. Tidal
effects are added up to 7.5 PN following Refs. [86,111].
We note that we also incorporate the EOS-dependency of
the 2PN and 3PN spin-spin contributions. For this purpose,
we use quasiuniversal relations outlined in Ref. [66] to
connect the spin-induced quadrupole moments to the tidal
deformability of the NS stars. This approach is commonly
used for GW data analysis and was by default used here,
but a phase transition could also affect the employed
quasiuniversal relation. This might introduce additional
biases. Sampling over the individual quadrupole moments
of the NSs (see, e.g., Ref. [112]) would cause an increase of
the computational costs and it seemed more appropriate to
employ the quasiuniversal relations of Ref. [66] than simply
neglecting the EOS imprint on the quadrupole moment.
However, since all simulated signals are nonspinning, we
do not expect that any significant biases appear during our
analysis and refer to the study of Ref. [113], where it was
shown that potential biases only arise for high spins.

C. Injection setup

We choose to use an astrophysically motivated distribution
for the parameters of the simulated sources. We distribute the
sources uniformly in a comoving volume with the optimal
network SNR range ρ ∈ [30, 100]. Thus, a relatively high
lower bound on SNR is assumed. Indeed, to probe the phase
transition, an accurate measurement of �i is needed, which
cannot be achieved with BNS signals that have low or medium
SNR [98].

The orientation (ι, ψ ) and the sky location (α, δ) of the
sources are placed uniformly on a sphere. Since NS spins are
expected to be small [114], we set them to zero for all simu-
lated sources. The component masses of the binaries are sam-
pled from the uniform distribution [1 M�, MTOV], where MTOV

is the maximum allowed mass of a NS with the given EOS.

3By cataloging odd ratios with simple multiplication, the infor-
mation that some parameters are shared across detections is not
included. This conservative choice is dictated by computational lim-
itations; see the discussion in Sec. IV B.
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For the EOSs, we want to investigate under what circum-
stances one can distinguish between the existence and the
absence of a strong phase transition. Therefore, we choose two
EOSs that have phase transitions with different onset pressure
and density jumps but that lead to an observable and distinct
feature within the mass range of [1, 2]M� in the mass-radius
curve, labeled as TWIN and KINK; cf. Sec. II. In addition,
we choose another EOS with phase transition but a smooth
density dependence of the pressure. As the phase transition
masquerades, this model is indistinguishable from a purely
nucleonic EOS model, see Fig. 1. Here we choose the ALF2
EOS described in Ref. [50] because of its plausibility based on
the multimessenger analysis of GW170817 [39,44]. The three
EOSs are all able to support the observed heavy NSs [1–3].

The simulated GW signals are injected coherently into the
data of the Advanced LIGO and Advanced Virgo detectors.
The detector noise is simulated as stationary Gaussian noise
with the power spectral density to be that of the design sensi-
tivities of each detectors [9,88].

D. Implementation

Our analysis follows a similar approach as previous works
[18,27,31]. The analysis consist of a two-stage process:

(I) Estimation of the posterior of the macroscopic parame-
ters P (�θmacro) based on a GW analysis.

(II) Estimation of the posterior of the microscopic parame-
ters (i.e., the EOS parameters) P ( �E ) with P (�θmacro) given.

For stage I, the posterior P (�θmacro) is estimated with
the Nested Sampling algorithm [115] implemented in
LALInference [116] with a prior of mi ∈ [0.5, 3.0] M� and
�i ∈ [0, 5000]. For stage II, the posterior P ( �E ) is given by

P ( �E ) ∝ π ( �E )L( �E )

= π ( �E )
∫

d�θmacro
π (�θmacro| �E )

π (�θmacro|I )
P (�θmacro), (11)

where π (�θmacro| �E ) and π (�θmacro|I ) are the priors on �θmacro

with and without the EOS given, respectively. For our study,
the macroscopic parameters of interest are the component
masses m1,2 and the corresponding tidal deformabilities �1,2.
Therefore the likelihood L( �E ) is given by

L( �E ) =
∫

dmid�i
π (mi,�i| �E )

π (mi,�i|I )
P (mi,�i )

=
∫

d�idmi

∏
i δ[�i − �(mi; �E )]

π (�i|mi, I )

π (mi| �E )

π (mi|I )
P (mi,�i )

=
∫

dmi
P (mi,�i )

π (�i|, mi, I )

∣∣∣∣
�i=�(mi; �E )

, (12)

where �(m, �E ) is the tidal deformability as a function of mass
with an EOS given. We have also chosen the priors π (mi| �E )
and π (mi|I ) to be the same.

Therefore, the joint posterior P ( �E , mi ) is given by

P ( �E , mi ) ∝ π ( �E )
P (mi,�i )

π (�i|mi, I )

∣∣∣∣
�i=�(mi, �E )

. (13)

The joint posterior is estimated with the Nested Sampling
algorithm Multinest [117] implemented in PyMultinest

[118]. The posterior P ( �E ) is then obtained via marginalizing
P ( �E , mi ).

For the stage II process, we choose the prior for the
parameters to be mi ∈ [0.5, 3.0] M�, �i ∈ (1, 10],
log10 ptr (dyne cm−2) ∈ [33.7, 38.0], and log10 	ρ (g cm−3)
∈ [13.85, 16]. We also impose the constraints of
MTOV � 1.93 M� as part of the prior. To increase efficiency,
sampling over masses is done in terms of the chirp mass M
and ln 	ν rather than individual masses. The chirp mass M
and ln 	ν are given by

M = (m1m2)3/5

(m1 + m2)1/5
, (14)

ln 	ν = ln

(
1

4
− ν

)
. (15)

IV. LOCATING PHASE TRANSITIONS
FROM GW SIGNALS

A. Method description

Because the pressure p within a compact star is monotoni-
cally decreasing from pc in the center to p = 0 at the surface,
only the part of the EOS with pressures below the central
pressure pc is observable. With this in mind, we define the
hypotheses to be tested as follows:

(i) HPT: The phase transition pressure ptr is below pc for
one or both of the stars and the phase transition experiences a
density jump 	ρ > 0;

(ii) HNPT: The phase transition density jump 	ρ is zero
or ptr is larger than pc, and therefore the transition is not
observable.

For HNPT, we found that it is sufficient to test for the
condition 	ρ = 0. Within our parametrization, the condition
ptr > pc is equivalent to fitting the whole observable EOS
with a single polytrope (instead of three to four polytropes
in the case of ptr < pc), which is penalized by the fit. More-
over, a significant decrease of the number of fit degrees of
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FIG. 4. The distribution of lnBPT
NPT for injections with the TWIN,

KINK, and ALF2 EOSs. The presence of a strong phase transition
does shift the distribution of lnBPT

NPT toward larger values.
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FIG. 5. The distributions of lnBPT (cat)
NPT for injections with the TWIN, KINK, and ALF2 EOSs. Each catalog consists of 5 events (a), 9

events (b), or 12 events (c). The presence of a strong phase transition can be recognized from the distributions for 9 or more events. The 5σ

threshold, indicated by the black dashed line, is estimated with respect to the log Bayes factor distribution for the ALF2 EOS using a Gaussian
kernel density estimation (the smooth gray curve).

freedom complicates our interpretation of the evidence and,
correspondingly, the Bayes factors.

The evidences for the two hypotheses are given by

ZPT =
∫

d �E dmi L( �E , mi )

×π [ �E , mi | (ptr < pc,1 or ptr < pc,2) and 	ρ > 0],

(16)

and

ZNPT =
∫

L( �Ec, mi ) π ( �Ec|	ρ = 0) d �Ec dmi, (17)

where the central pressure pc,i is estimated via interpolation
of mi-pc,i for given EOS parameters �E .

The Bayes factor BPT
NPT between HPT and HNPT is given by

BPT
NPT = ZPT

ZNPT
. (18)

By examining the Bayes factor BPT
NPT, one can deduce whether

a phase transition is observed.

B. Method validation

With 200 BNS merger signals for each EOS, the parame-
ter estimation is performed and the evidence is estimated as
described in Sec. IV A.

The probability distribution functions of the log Bayes
factors lnBPT

NPT obtained from all 200 injections for each of
the three EOSs are shown in Fig. 4. In our simulations, 85%,
98%, and 70% of the injections lead to a positive lnBPT

NPT for
the TWIN, KINK, and ALF2 EOSs, respectively. Even though
the EOSs with a strong phase transition, KINK and TWIN,
do shift the distribution of lnBPT

NPT toward larger values, the
shift is not pronounced enough to draw a statistically robust
conclusion. Furthermore, while there is no strong first-order
phase transition in the ALF2 EOS, HPT is favored over HNPT

for the ALF2 injections. However, in HPT, the EOS below pc

is fitted with three to four polytropes while in HNPT it is fitted
with only one to three polytropes. The additional degrees of

freedom for HPT improve the fit to the M-� curve and lead to
a higher evidence.

To improve on the situation, we follow the catalog tech-
nique described in Sec. III A, and estimate the catalog log
Bayes factors lnBPT (cat)

NPT . In Fig. 5, we show the distributions
of lnBPT (cat)

NPT with 5, 9, and 12 events per catalog for the three
EOSs. We find that the presence of a strong phase transition in
the EOS can be clearly recognized from the distributions for
9 or more events per catalog. For both the TWIN and KINK
EOSs, with 12 events per catalog, all the catalogs result in
a higher than 5σ statistical significance with respect to the
catalogs estimated for the ALF2 EOS.

Before continuing, we note that by combining the Bayes
factors with simple multiplication we are not making use of
the knowledge that all BNSs share the same EOS. The in-
clusion of this additional constraint would require us to do the
analysis on all BNSs in a catalog simultaneously, which would
be computationally very demanding. While our procedure is
suboptimal, it is a conservative one. Most importantly, we see
that by using our catalog Bayes factor as a detection statistic
for strong phase transitions, with 12 sources we can already
draw significant conclusions, regardless of the interpretation
of the Bayes factor.

Returning to Fig. 5, we see that the phase transition in the
KINK EOS is easier to identify than the TWIN EOS, even
though the TWIN EOS has the more pronounced feature in
the M-R relation. Moreover, in the case of TWIN, the pa-
rameters B1 and B2, which indicate on which branch the stars
live, are not redundant, and one would think that this should
boost the evidence in that case. However, the individual �i

for each component in a BNS are not well measured;4 as a
result, the inclusion of the {Bi} does not necessarily lead to
the evidence being elevated. In addition, as seen in Fig. 1, our
parametrization can fit the KINK EOS better than the TWIN
EOS, which contributes to the higher evidence of KINK com-
pared to TWIN.

4This results from the poor measurement of δ�̃ with second-
generation detectors [98].
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FIG. 6. Maximum a posteriori (MAP) and 95% credible interval evolution for log10 ptr (a) and log10 	ρ (b) for the TWIN and KINK
EOSs. The dashed lines indicate the true values, which are found to lie within the extracted 95% credible interval for both EOS.

In addition to observing the presence of a phase transition
with statistical significance, we can also probe its character-
istics. In particular, the phase transition onset pressure ptr,
and the phase transition density jump 	ρ, can be measured.
In Fig. 6, we show the maximum a posteriori (MAP) and
95% credible interval evolution for log10 ptr and log10 	ρ

with an increasing number of events, where we only include
events with positive lnBPT

NPT for TWIN and KINK. Indeed,
we expect that events with positive lnBPT

NPT will tend to
have pc > ptr and hence be informative for the estimation
of log10 ptr and log10 	ρ; this is something we will return
to momentarily. Looking at the results, for both EOSs the
true phase transition parameters are recovered within the 95%
credible interval. For log10 	ρ, the true value is recovered
after ∼10 events are included. The statistical errors decrease

as more events are combined, though the rate of decrease
appears to slow down after ∼10 events. We note that the
credible intervals for the parameters of the phase transition
are not dominated by the one or two loudest events. Instead,
in order to detect the phase transition, we need to map-out
a significant part of the M-� curve, which requires multiple
detections.

In Fig. 7, we show the joint posteriors for log10 ptr

and log10 	ρ with 25 combined events for the TWIN and
KINK EOSs. For both EOSs, the phase transition parameters
(log10 ptr, log10 	ρ) are measured with �10% statistical un-
certainty, with the true values lying within the 95% credible
interval.

Finally, for the same 25 events, we show the distribution of
the central pressure pc for both stars in Fig. 8. For the majority
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FIG. 7. The joint posteriors for log10 ptr and log10 	ρ with 25 combined events for the TWIN EOS (a) and the KINK EOS (b). The dashed
lines indicate the 95% credible interval and the solid lines the true value. For both EOSs, the true values of the phase transition parameters
(log10 ptr, log10 	ρ ) are constrained with �10% statistical uncertainty.
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FIG. 8. The distribution of the central pressure pc for the 25
events included in the joint parameter-estimation analysis with the
phase transition pressure for the two EOSs indicated by the dashed
line. Most of the events have both of the components’ central pres-
sure above the phase transition pressure. In particular, none of the
events have both components’ central pressure below phase transi-
tion pressure.

of the events, both stars have a central pressure above the
phase transition onset pressure. This matches our expectation
from the positive lnBPT

NPT and provides a valuable crosscheck
for our analysis.

Based on our findings, we conclude that:
(i) it is possible to establish the presence of a strong first-

order phase transition with twelve BNS observations;
(ii) with ∼10 BNSs, the phase transition parameters

(log10 ptr, log10 	ρ) can be measured with �10% statistical
uncertainty.

Because we are imposing a strict bound on the MTOV during
the stage II analysis, systematics might be induced as sug-
gested in Refs. [28,119]. However, since we are not interested
in recovering the full EOS or MTOV but the parameters of the
phase transition, the simple hard cut on MTOV is sufficient for
the purposes of this analysis. Also, no significant systematics
are observed with respect to the simulation.

C. Limitations of our analysis

As we have shown in the previous section, it is possible
to confirm the existence of a phase transition and extract its
parameters. However, our approach is limited to such EOSs
where the phase transition is Maxwell-like, i.e., it is described
by a segment with cS = 0. As the comparison with the ALF2
EOS clearly shows, our approach cannot establish the exis-
tence of a phase transition in case a mixed phase appears that
smears out an observable EOS feature. Due to the masquer-
ade problem [50], macroscopic structure properties (M-R or
M-� relations) for such EOS cannot be distinguished from
purely nucleonic EOS. As only such properties affect the GW
waveforms, the inspiral phase does not provide information
on the phase transition in this case. Should such a case be
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FIG. 9. Corner plots showing the posterior distribution of ntr

and 	n in terms of nsat with GW170817 and GW190425 combined
(blue) on top of the prior with heavy pulsars constraint (gray). The
dashed lines mark the 95% credible intervals. The posterior does not
significantly deviate from the prior.

realized in nature, information might only be obtained from
the postmerger GW signal.

Furthermore, we can only observe a Maxwell-like transi-
tion that is strong enough to leave an observable feature, e.g.,
at least a kink, in the M-� curve. Should the density jump
be too small, the M-� curve would be smooth and, again,
the inspiral phase would not provide information on the phase
transition.

Finally, our method only works if inspiraling NSs have
central pressures above the onset of the phase transition. If NS
masses in binaries are limited to be around 1.4 M�, exploring
lower central pressures, but phase transitions appear at much
higher pressures in heavier stars, then it will only be probed
by the postmerger GW signal. However, the observation of
GW190425 shows that also BNS mergers of heavy NS might
be observed by GW interferometers (note that GW190425
could potentially have been a neutron-star–black-hole merger
[120–122]). Should the phase transition appear at low pres-
sures or densities, in NS below 1 M�, such that both NS
in a binary are hybrid stars, our method might also not be
able to identify its presence. In this case, while the observed
macroscopic NS observables represent integrals over the EOS
at all densities in the star, and, hence, in principle include
information of the phase transition, observations might not be
able to distinguish between the “true” EOS and an EOS that
connects smoothly between the low-density nuclear-physics
constraints and the observed part of the M-R curve. However,
in this case the phase transition onset would likely be between
1 and 2nsat, at low energy densities, which might be identified
using other analysis techniques [30].
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These shortcomings highlight that GW observations alone
might not be able to answer the question of whether phase
transitions exists in NSs. Hence, interdisciplinary studies in-
cluding both nuclear physics and GW astrophysics are crucial.

V. ANALYSIS OF GW170817 AND GW190425

Having shown with simulations that our methodology
is in principle capable of uncovering and characterizing
strong phase transitions, we now apply it to the real signals
GW170817 [10] and GW190425 [100]. The former can con-
fidently be assumed to have come from a BNS inspiral. We
will also assume that the latter was emitted by a BNS. For
both events, we take the publicly available posterior samples

[123,124] as the input for the stage II analysis as described in
Sec. III D.

Table I shows the log Bayes factors lnBPT
NPT and

the Kullback-Leibler (KL) divergence for the two events

TABLE I. The log Bayes factor lnBPT
NPT and the KL divergence

estimated with the two BNS event.

Event lnBPT
NPT KL divergence

GW170817 0.889 ± 0.113 0.809
GW190425 0.441 ± 0.085 0.371
Combined 1.330 ± 0.141 0.865
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separately and combined. The KL divergence is estimated
from the posterior and prior for the EOS parameters, i.e.,

KL divergence =
∫

P ( �Ec) ln
P ( �Ec)

π ( �Ec)
d �Ec, (19)

and it quantifies to what extent the posterior distribution is
different from the prior distribution. A KL divergence of zero
indicates that the two distributions are identical.

Based on the values of KL divergence for the two events,
it would seem that GW170817 is carrying more information
regarding the EOS, while GW190425 is not very informative,
similar to the findings of Ref. [28].

In order to make a statistically robust statement, we would
need to have a reliable distribution of lnBPT (cat)

NPT in the ab-
sence of strong phase transitions, which we could use as
“background” to estimate the significance of the “foreground”
values in Table I. This would require (i) an accurate or at least
representative simulated BNS population and (ii) a justifiable
representation of EOSs without a strong phase transition.
One can systematically generate a representative ensemble
of EOSs by using parameteric or nonparameteric methods
and used them to calculate a background distribution for
lnBPT (cat)

NPT , but the required computational resources will be
significant. Due to the uncertainty in the BNS population and
the limitation of available computational resources, such an
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estimation is currently not achievable. Instead, we follow the
interpretation of the Bayes factor described in Ref. [125] and
find no strong evidence for or against the presence of a strong
phase transition.

In addition to the Bayes factors, a small value for the KL
divergence indicates similarity of posterior and prior, and the
extracted phase transition parameters are strongly influenced
by the priors. The combined posteriors for the phase transition
onset density, ntr, and the corresponding density jump in terms
of nsat, 	n, are shown together with the prior in Fig. 9.5 The
posteriors distributions for log10 ptr, log10 	ρ, m1, m2, and �̃

for GW170817 and GW190425 are shown in Figs. 10 and 11,
respectively. We conclude that our measurements of ntr and
nsat are not very informative, as could be expected based on
the KL divergence.

VI. CONCLUSION

In this paper, we have presented a reliable way of searching
for phase transitions in supranuclear matter using the inspiral
waveform of binary NS mergers, which is successful if the
resulting mass-radius relation has only one or multiple stable
branches. In contrast to previous works, which calculated the
preference for multiple stable branches to search for strong
phase transitions [27,28,30], our approach searches for an ex-
tended segment with cS = 0, i.e., we do not explicitly assume
a multiple-branch feature in the M-R curve.

As long as there is some observable imprint of the phase
transition in the mass-radius relation, our method can recover
injected phase-transition parameters and, hence, represents
an important step forward in the search for a possible
phase transition. We have explicitly demonstrated this by
injecting simulated BNS mergers with different equations
of state into synthetic stationary Gaussian noise. We have
shown that our method can detect the presence of phase

5Initially, we have priors ntr ∈ [1, 4]nsat and 	n ∈ [0.26, 37]nsat,
but the presence of heavy pulsars constrained both priors to more
narrow ranges.

transitions at 5σ confidence with 12 signals. Moreover,
the phase-transition onset pressure and the corresponding
density jump (log10 ptr, log10 	ρ) were recovered with
�10% statistical uncertainty with ∼10 events. Finally, we
have applied the method to GW170817 and GW190425 but
found no strong evidence for or against the presence of strong
phase transitions.
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