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Abstract
We consider families of Hamiltonian systems in two degrees of freedom with an
equilibrium in 1:2 resonance. Under detuning, this “Fermi resonance” typically leads
to normal modes losing their stability through period-doubling bifurcations. For cubic
potentials, this concerns the short axial orbits, and in galactic dynamics, the resulting
stable periodic orbits are called “banana” orbits. Galactic potentials are symmetric with
respect to the coordinate planes whence the potential—and the normal form—both
have no cubic terms. This Z2 × Z2 symmetry turns the 1:2 resonance into a higher-
order resonance, and one therefore also speaks of the 2:4 resonance. In this paper, we
study the 2:4 resonance in its own right, not restricted to natural Hamiltonian systems
where H = T +V would consist of kinetic and (positional) potential energy. The short
axial orbit then turns out to be dynamically stable everywhere except at a simultaneous
bifurcation of banana and “anti-banana” orbits, while it is now the long axial orbit that
loses and regains stability through two successive period-doubling bifurcations.

Keywords Normal modes · Period doubling bifurcation · Symmetry reduction ·
Invariants · Normal forms · Perturbation analysis

Mathematics Subject Classification 37J35 · 70H06 · 70H33 · 70K45 · 70K75

1 Introduction

Symmetries play a fundamental role in the mathematical modelling of physical sys-
tems. Either exact or approximate, they produce extra conservation laws or constrain
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the structure of relevant equations indicating the way to solve the problem at hand
(Kozlov 1991). A particularly striking example is provided by Hamiltonian systems
close to resonance around an elliptic equilibrium. The structure of the normal form
is largely determined by discrete symmetries affecting the degree of the lowest-order
resonant terms (Tuwankotta and Verhulst 2000). Consider in two degrees of freedom
the lowest-order genuine 1:2 resonance (Cushman et al. 2007), its prototype is the
Fermi resonance and a simple mechanical example is the spring-pendulum (Broer
et al. 1998). When enforcing approximate reflectional symmetry with respect to both
degrees of freedom, a higher-order normal form becomes necessary. Indeed, the cubic
resonant terms are removed from the normal form and the first non-vanishing resonant
terms are of sixth-order—squaring cubic terms yields invariance under reflections. We
follow Contopoulos (2004) and denote the resulting problem as 2:4 resonance. How-
ever, it shares several features of the lowest-order case and can be investigated with
analogous techniques.

A classical example is that of the motion of a star in an elliptical galaxy whose
gravitational potential possesses mirror reflection with respect to each symmetry
plane (Verhulst 1979; Marchesiello and Pucacco 2013b). When the flattening is small,
motion in the core is well-approximated by a perturbed symmetric 1:1 oscillator (de
Zeeuw and Merritt 1983; Pucacco and Marchesiello 2014). But when the flattening
is high, the dynamics can be closer to the symmetric 1:2 resonance (Miralda-Escudé
and Schwarzschild 1989; Marchesiello and Pucacco 2013a). Axial orbits of arbitrary
amplitude exist and may suffer instability at some threshold. At such a threshold, a
periodic orbit in general position (Sanders et al. 2007) bifurcates off from the axial
orbit together with a symmetric counterpart forming a mirror-symmetric pair. This has
interesting consequences for the structure of the system.

Remark 1.1 For the banana orbits, it is straightforward to “see” the two mirror-
symmetric members of the pair. The two trajectories of the anti-banana (figure-eight)
pair are instead simply going in opposite direction on the same orbit in configuration
space.

Let us consider a family of Z2 × Z2 symmetric Hamiltonian systems in two degrees
of freedom close to an elliptic equilibrium, which is equivariant with respect to the
reflectional symmetries

�1 : (x1, x2, y1, y2) �→ (−x1, x2,−y1, y2) (1a)

�2 : (x1, x2, y1, y2) �→ (x1,−x2, y1,−y2) (1b)

where (x, y) denote the canonical coordinates. Assuming the Hamiltonian to be an
analytic function in a neighbourhood of the equilibrium, its series expansion about the
equilibrium point can be written as

H(x, y; δ) =
∞∑

j=0

H2 j (x, y; δ) (2)
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where H2 j are homogeneous polynomials of degree 2( j+1) in the coordinates (x, y);
we discuss the dependence on the parameter δ ∈ R below. Note that in force of the
reflectional symmetries (1), odd degree terms are not present in the expansion. The
quadratic part

H0(x, y; δ) = ω1

2
(x2

1 + y2
1 ) + ω2

2
(x2

2 + y2
2 ) (3)

of (2) describes two oscillators with frequencies ω j = ω j (δ) ∈ R, j = 1, 2 coupled
by the nonlinear terms in (2) which we consider as a perturbation of (3). The dynamics
of the linear Hamiltonian system defined by (3) is readily analysed. The (x1, y1) plane
and the (x2, y2) plane both consist of periodic orbits, and the rest of the phase space
is foliated by invariant 2-tori. Our aim is to understand what happens under addition
of higher-order terms. Persistence of invariant 2-tori is addressed by kam Theory.
The linear approximation H0 of H has a constant frequency mapping and thus fails
to satisfy the Kolmogorov condition (5). To obtain an integrable approximation of H
that does satisfy the Kolmogorov condition, we compute a truncated normal form K
with respect to H0, see Boccaletti and Pucacco (1999) and references therein. If there
are no resonances

k1ω1 + k2ω2 = 0, 0 �= k ∈ Z
2

of order |k| := |k1| + |k2| ≤ n, then the normal form of order n depends on (x, y)
only as a function of the invariants

τ1 = x2
1 + y2

1

2
and τ2 = x2

2 + y2
2

2
. (4)

Such a Birkhoff normal form

K = ω1τ1 + ω2τ2 + ω11

2
τ 2

1 + ω12τ1τ2 + ω22

2
τ 2

2 + . . .

generically satisfies the Kolmogorov condition

det(ωi j )i j = ω11ω22 − ω2
12 �= 0 (5)

and/or the iso-energetic non-degeneracy condition

2ω12ω1ω2 − ω11ω
2
2 − ω22ω

2
1 �= 0. (6)

Therefore, our analysis of the unperturbed system essentially remains valid for (2). The
non-degeneracy conditions (5) and (6) require the computation of the Birkhoff nor-
mal form of order n ≥ 4; hence, these considerations do not apply to resonances
up to order 4. Next to the 1:1 and 1:−1 resonances, this excludes the 1:±2 and
1:±3 resonances. Correspondingly, in Sanders (1978), all other resonances are called
higher-order resonances.
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In two degrees of freedom, all normal forms are integrable, but the normal form
truncated at order 4 of a resonance of order |k| ≤ 4 generically contains extra “resonant
terms” of order |k|. The resulting dynamics depend thus on the lower-order resonance
at hand. Also for higher-order resonances a reliable approximation of the dynamics
of (2) might require the normalization to be performed at least up to the order at which
the first resonant term appears (Contopoulos 2004).

1.1 Approach to the Resonance

Here, we consider the problem of determining the phase space structure of the per-
turbation of a 1:2 resonant oscillator invariant under the symmetries (1). To catch the
main features of the orbital structure, we make our parameter δ a detuning parameter
(Verhulst 1979) by assuming

ω1 =
(

1

2
+ δ

)
ω2 (7)

and proceed as if the unperturbed harmonic part were in exact 1:2 resonance, thus
including the detuning inside the perturbation. In this way, we turn (3) into

H0 = ω2

(τ1

2
+ τ2

)
(8a)

while the perturbation becomes

+δω2τ1 +
∞∑

j=1

H2 j (x, y; δ) (8b)

where the dependence of H2 j , j ≥ 1 on δ may be arbitrary, e.g. polynomial; for
definiteness, we assume that the parameter δ ∈ R only appears in the detuning with
all H2 j = H2 j (x, y) independent of δ (and discuss below in how far this captures the
behaviour of general 1-parameter families).

We aim at a general understanding of the bifurcation sequences of periodic orbits
in general position from the normal modes, parametrized by the “energy” E , the
detuning parameter δ and the independent coefficients characterizing the nonlinear
perturbation. This problem was already studied in the case of “natural Hamiltonians”
(Marchesiello and Pucacco 2013a), i.e. in case the potential depends only on the
“spatial” variables x , and therefore H2 j = H2 j (x) for j ≥ 1. Here, we consider the
more general system (8). We follow a different, geometric approach that allows not
only to reproduce the results of Marchesiello and Pucacco (2013a), but also to extend
these and, under certain assumptions, to deduce the generic behaviour of (8). The
results obtained are summarized in Theorems 5.2 and 5.3 . Actually the value E of
the Hamiltonian H does not always correspond to the energy of the system now, but
colloquially we shall still call E the (generalized) energy.

As remarked above, in the presence of symmetries, the minimal truncation order
necessary to include at least one resonant term in the normal form depends not only
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on the order |k| of the resonance, but also on the symmetries at hand. For the reflec-
tional symmetries (1), the minimal truncation order increases to 2|k|, see Contopoulos
(2004); Hanßmann (2007); Sanders et al. (2007). Thus, in this point of view, the sym-
metric 1:2 resonance behaves as a higher-order resonance, and as said we shall speak
of 2:4 resonance.

1.2 What is New

The approach we take to study the 2:4 resonance has become rather standard, compare
with van der Meer (1985), Cushman et al. (1999), Iñarrea et al. (2006), Marchesiello
and Pucacco (2014), Efstathiou et al. (2019) and references therein. Normalizing about
the periodic flow of the resonant oscillator introduces an extra continuous symmetry, cf.
Boccaletti and Pucacco (1999), Sanders et al. (2007), while preserving already existing
symmetries of the system. Studying the normal form dynamics in their own right allows
to reduce to one degree of freedom, cf. Cushman and Bates (1997), Efstathiou (2005).
We follow the treatment of resonant normal modes in the 3D Hénon–Heiles family
in Hanßmann and van der Meer (2002) and first consider the insufficient fourth-order
normal form before turning to the sixth-order normal form necessary for the fine
structure, see also Tuwankotta and Verhulst (2000). Aspects of the dynamics that are
persistent under addition of higher-order normalized terms have a chance to persist also
when “perturbing back” to the original system (of which normal forms of increasingly
high-order form an increasingly close approximation).

The normal form turns out to have an S
1 ×Z2 symmetry, where the second factor is

inherited from the second factor of the originalZ2×Z2 symmetry and the first factorS1

is an improvement upon the originalZ2 due to normalization. Reducing this symmetry
by means of invariants allows to get a global picture of the (reduced) dynamics, see
Figs. 1, 3 and 4 below. The cuspidal form of the singularity corresponding to the
family of short axial orbits explains why here bifurcations of banana and anti-banana
orbits now happen simultaneously. This perspective also allows to decide at once that
going to any higher-order than 6 in the normalization process does not again lead to
qualitative changes, but only to quantitative ones.

We introduce the (truncated) normal form for the system (8) in Sect. 2 and reduce
the dynamics to one degree of freedom. We do this in two steps, first reducing the
S

1 symmetry and then the remaining Z2 symmetry. Then, by a geometric approach,
we study the equilibria of the reduced system and describe the possible bifurcation
sequences in Sects. 3 and 4 . In Sect. 3, we restrict to the normal form of order 4, while
the improvements due to the normal form of order 6 are given in Sect. 4. The results so
obtained are used in Sect. 5 to deduce the dynamics of the original system. Section 6
demonstrates our results for a specific class of examples. Some final comments and
conclusions follow in Sect. 7.

2 Reduction

Let us zoom in on the neighbourhood of the equilibrium at the origin by introducing
a perturbing parameter ε > 0, scaling coordinates as
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(x, y) �→ (εx, εy) (9a)

and also the detuning (7) as
δ �→ ε2δ, (9b)

so that it can be treated as a second-order term in the perturbation. Scaling furthermore
time as

t �→ ε2ω2

2
t (9c)

no ε remains in the unperturbed resonant oscillator (8a), while we get ω2 = 2 for the
frequencies in the Hamiltonian (8), thereby turning (8) into

H = τ1 + 2τ2 + 2ε2δτ1 +
∞∑

j=1

ε2 j H2 j . (10)

The system defined by (10) is in general not integrable, even after truncation of the
convergent series. The flow ϕ

H0
t of the unperturbed system (8a) yields the S

1-action
ϕH0 on R

4 ∼= C
2 given by

ϕH0 : S
1 × C

2 −→ C
2

(�, (z1, z2)) �→ (e−i�z1, e−2i�z2)
(11)

where

z j = x j + iy j , j = 1, 2.

The perturbed Hamiltonian (10) is in general not invariant under this action; however,
we can normalize H so that the resulting normal form does have the oscillator sym-
metry (11). A set of generators of the Poisson algebra of ϕH0 -invariant functions is
given by

τ1 = z1 z̄1

2
, τ2 = z2 z̄2

2

introduced in (4) together with

σ1 = Re z2
1 z̄2

2
, σ2 = Im z2

1 z̄2

2
(12)

and it is constrained by τ1 ≥ 0, τ2 ≥ 0 and the syzygy

R(τ, σ ) := 2τ 2
1 τ2 − (σ 2

1 + σ 2
2 ) = 0. (13)

See Cushman and Bates (1997), Cushman et al. (2007), Hanßmann (2007) for more
details. The normalization allows us to reduce the dynamics to one degree of freedom
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as the Poisson bracket onR4 induced by (4) and (12) has two Casimir elements, namely
R and H0 = τ1 +2τ2. For a fixed value η ≥ 0 of H0, we can eliminate τ2 = 1

2 (η−τ1).
The dynamics are constrained to the reduced phase space

Vη =
{

(τ1, σ1, σ2) ∈ R
3 : Rη(τ1, σ1, σ2) = 0, 0 ≤ τ1 ≤ η

}
(14)

with Poisson structure

{ f , g} = 〈∇ f × ∇g | ∇Rη〉,

where

Rη(τ1, σ1, σ2) = (η − τ1)τ
2
1 − (σ 2

1 + σ 2
2 ).

The normal form for the 2:4 resonance (10), truncated at order 6 in the original vari-
ables (x, y), has the general structure

K (τ, σ ; δ) = K0(τ ) + ε2K2(τ ; δ) + ε4

[
μ

σ 2
1 − σ 2

2

2
+ νσ1σ2 + K4(τ ; δ)

]

(15)

with

K0 = H0 = τ1 + 2τ2 = η

K2 = 2δτ1 + α1τ
2
1 + α2τ

2
2 + α3τ1τ2

K4 = ρ1δτ
2
1 + ρ2δτ

2
2 + ρ3δτ1τ2 + α4τ

2
1 τ2 + α5τ1τ

2
2 + α6τ

3
1 + α7τ

3
2 .

The coefficients μ, ν, ρ j , j = 1, 2, 3 and αi , i = 1, . . . , 7 depend on the coefficients
of the polynomial terms H2 j in the original Hamiltonian (10). To keep our analysis
as general as possible, here and in the following, we prefer to work with the normal
form (15) with the most generic coefficients. Afterwards, in Sect. 6, we give an appli-
cation to an explicit class of systems. We assume at least one of the coefficients μ

and ν to be non-vanishing, otherwise the first order at which the normal form yields
stabilized dynamics would be higher.

Remark 2.1 The δ-dependent terms with coefficients ρ j in K4 are an artefact of the
normalization procedure and if we decide to normalize to higher order also the resulting
K6, K8, . . . are going to depend on the detuning δ. In case the H2 j in (8b) do depend
on δ, we develop these dependencies into series and adjust the passage from the H2 j
in (8) to the H2 j in (10) according to the scaling (9b). While this does affect the
quantitative values of the ρ j , once these changed values are computed, there are no
further adjustments to be made, and in particular, the qualitative statements in the
sequel remain unchanged.
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The Z2 ×Z2 symmetry of (10) generated by (1) is inherited by the normal form (15).
In fact, for � = π , the S

1-action (11) yields the reflectional symmetry (1a); corre-
spondingly, none of the invariants in (4) and (12) changes under (1a). The remaining
symmetry (1b) becomes

(τ, σ ) �→ (τ,−σ) (16)

whence the normal form (15) depends on σ1, σ2 only via 1
2 (σ 2

1 − σ 2
2 ) and σ1σ2. We

perform a further reduction to explicitly divide out this symmetry, by introducing
variables (Hanßmann and Sommer 2001)

u := τ1

v := 1
2 (σ 2

1 − σ 2
2 )

w := σ1σ2.

(17)

Note that since the reduced phase space is a surface of revolution, by rotation, we can
always eliminate one of the two variables v,w from the Hamiltonian (recall that we
do not consider the case μ = ν = 0 here). For definiteness, we assume from now on
μ > 0 and ν = 0.

Remark 2.2 If the system is reversible, then ν = 0 from the start, but μ might be
negative, and in applications, it is not always helpful to actually perform a π -rotation
to achieve μ > 0. Therefore, we sometimes also comment on the case μ < 0. For the
same reason, we do not simply scale to μ = 1.

The normal form (15) then becomes, after neglecting constant terms and scaling one
more time by ε2,

K η(u, v, w; δ) = (2δ + αη)u + λu2 + ε2 [
μv + K η

4 (u; δ)
]

(18)

where

K η
4 (u; δ) = β1δu

2 + β2δηu + γ1u
3 + γ2ηu

2 + γ3η
2u (19)

and

λ = α1 + α2

4
− α3

2
, α = α3

2
− α2

2
, β1 = ρ1 + ρ2

4
− ρ3

2
, β2 = ρ3

2
− ρ2

2
,

(20a)

γ1 = −α4

2
+ α5

4
+ α6 − α7

8
, γ2 = α4

2
− α5

2
+ 3α7

8
, γ3 = α5

4
− 3α7

8
. (20b)

To prevent that for any η ≥ 0, there is the detuning δ = − 1
2αη for which K η = O(ε2)

we make the genericity assumption λ �= 0 on the coefficients of the fourth-order terms
H2(x, y) in (2)/(10).

123



Journal of Nonlinear Science (2020) 30:2513–2544 2521

Table 1 Isotropy subgroups of the S
1-action (11), H0 = η �= 0, combined with the Z2-action (16)

C
2 Pη Isotropy subgroup Dynamics Period

1
2 |z1|2 = η �= 0, z2 = 0 = τ2 Q2 Z2 First normal mode Long

τ1 = 0 = z1, |z2|2 = η �= 0 Q1 {0, π} × Z2 Second normal mode Short

Note that in case η → 0, the phase space Pη shrinks to the equilibrium at the origin, with corresponding
isotropy subgroup S

1 × Z2

Remark 2.3 We follow a perturbative approach, introducing ε as a small perturbing
parameter and looking for the bifurcation curves in the (δ, η) plane as power series
in ε. The results obtained are reliable only for small values of ε, i.e. if the original
system is not too far from the equilibrium at the origin and if the resonance ratio (7)
is not too far from the 2:4 resonance—the detuning being scaled as in (9b).

The (twice) reduced phase space

Pη =
{

(u, v, w) ∈ R
3 : Sη(u, v, w) = 0, 0 ≤ u ≤ η

}
(21)

has the Poisson structure

{ f , g} = 〈∇ f × ∇g | ∇Sη〉,

where

Sη(u, v, w) = (η − u)2

2
u4 − 2(v2 + w2).

Correspondingly, the equations of motion take the form

d

dt

⎛

⎝
u
v

w

⎞

⎠ = ∇K η × ∇Sη

on Pη ⊆ R
3 whence the singular points Q1 := (0, 0, 0) and Q2 := (η, 0, 0) are

always equilibria for the reduced system. The corresponding isotropy subgroups of
the S

1 × Z2-action combining (11) with (16) are given in Table 1.

Remark 2.4 Note that H0 is an integral of motion for the reduced system (15) and not
for the original system (10), which is in general not integrable, the Hamiltonian being
its only integral of motion. In Broer et al. (1998), the value η of H0 is also referred to
as distinguished parameter. In Sect. 5, we shall describe the bifurcations of the original
system in terms of the detuning δ and of the (generalized) energy E .

We aim at understanding the dynamics on the reduced phase space Pη. In particular,
we look for the critical curves in the (δ, η) plane corresponding to the bifurcations,
together with the possible bifurcation sequences (which would then depend also on
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the coefficients of the normal form, actually not on all of them, as we shall see). Then,
we use the information obtained from the normal form to deduce the dynamics of the
original system. We start by investigating the equilibria of the system defined by (18).

3 First-Order Approximation

In this section, we treat the 2:4 resonance as a higher-order resonance. As there are
no cubic resonance terms, this means that we work with an approximating Birkhoff
normal form of order 4 in the original variables (x, y), i.e. we first look at its first-order
approximation, obtained by neglecting the second-order term in ε of (18) and study
the dynamics defined by

K η
δ (u, v, w) = (2δ + αη)u + λu2 (22)

on (21) where δ, η are parameters with η distinguished with respect to δ and λ, α are
non-vanishing constant coefficients. Note that this puts the conditions α3 �= α2 and
α3 �= 2α1 + 1

2α2 on the αi in (15), but there are no conditions on β and γ in (19);
recall that μ > 0 in (18). Later on we furthermore require α + 2λ �= 0, a genericity
assumption that puts the additional constraint α3 �= 4α1 on the αi in (15).

3.1 The Equilibria on the Reduced Phase Space

The reduced phase space (21) has a cuspidal singularity at Q1 = (0, 0, 0) and a
conical singularity at Q2 = (η, 0, 0), and these are always equilibria (see Fig. 1). The
intersections of Pη with the level sets

Kη
δ (h) :=

{
(u, v, w) ∈ R

3 : K η
δ (u, v, w) = h

}
(23)

for

h = K η
δ (Qi ), i = 1, 2

consist of the isolated Qi , whence both equilibria are stable.

Remark 3.1 The origin Q1 reconstructs to the family of short axial orbits as predicted
by Lyapunov’s Centre Theorem (Sanders et al. 2007) and is singular already on Vη.
For the 1:2 resonance, the point (τ1, σ1, σ2) = (η, 0, 0)—which corresponds to the
family of long axial orbits and gets reduced to Q2—is not a singular point of Vη

and correspondingly Lyapunov’s Centre Theorem does not apply here. The extra Z2
symmetry turns the 1:2 resonance into a 2:4 resonance whence also the family of long
axial orbits becomes a normal mode, see again (Sanders et al. 2007). The relation
between normal modes and singular points of the reduced phase space extends to
n degrees of freedom, and we refer to Meyer et al. (2018) for more information.
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The remaining (non-empty) intersections

Pη ∩ Kη
δ (h) ⊆ R

3, h = (2δ + αη)u + λu2, 0 < u < η (24)

yield “great circles” on the surface of revolution Pη as the level sets Kη
δ (h) consist of

two vertical planes perpendicular to the u-axis (recall that we assumed λ �= 0). From
the equations of motion

u̇ = 0

v̇ = 4w
∂K η

δ

∂u

ẇ = −4v
∂K η

δ

∂u

we infer that these great circles are periodic orbits, except when Kη
δ (h) is a double

plane where the circle consists of equilibria. Since

∂K η
δ

∂u
= 2δ + αη + 2λu

the corresponding double root is given by

u = u0 := −2δ + αη

2λ
(25)

and it gives a circle on the reduced phase space only if

0 < u0 < η . (26)

This restricts the parameter values to

Dα
λ :=

{
(δ, η) : −λη − αη

2
< δ < −αη

2

}
if λ > 0 (27a)

Dα
λ :=

{
(δ, η) : −αη

2
< δ < |λ|η − αη

2

}
if λ < 0 (27b)

and outside of the closure Dα
λ of Dα

λ the dynamics is indeed what is expected (Sanders
1978) from a higher-order resonance; the phase flow consists of a family of periodic
orbits extending between the two singular equilibria, which therefore must be stable
(see Fig. 1). Higher-order terms in ε clearly change the shape of the intersections (24).
However, for ε small enough, the dynamics qualitatively stays the same. In two degrees
of freedom the singular equilibria reconstruct to the two normal modes and the periodic
orbits reconstruct to a single family of invariant 2-tori satisfying the Kolmogorov and
the iso-energetic non-degeneracy condition. We have recovered the description of
the dynamics given in the introduction, which indeed is valid for all higher-order
resonances.
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u

v

Fig. 1 Possible intersections between the level sets (23) and the reduced phase space. Such intersections
correspond to stable singular equilibria or to periodic orbits. Here, we depict only level sets of (23) that do
not degenerate into a double plane (for those the circle consists of equilibra)

The dynamics become more intricate (and interesting) if the equation defining (24)
has two coinciding roots, i.e. where (δ, η) ∈ Dα

λ . In this case, second-order terms in
the reduced Hamiltonian (18) are not negligible and they are needed to describe the
phase portrait of the system. We defer this full treatment of (18), with ε > 0, to Sect. 4
below. Note that for λ = 0, which we excluded, the reduced phase space Pη consists
of equilibria of (22) when 2δ + αη = 0 and then all aspects of the dynamics of (18)
are determined by the higher-order terms.

3.2 The Bifurcation Diagram

The reduced dynamics on (21) is governed by the parameters δ and η, the latter being
distinguished with respect to the former, while the coefficients (λ, α) ∈ R

2 obtained
from the Birkhoff normal form via (20a) determine the shape of Dα

λ and thus where
bifurcations take place. Indeed, the double planes pass through the singular point
Q1 = (0, 0, 0) ∈ Pη when 2δ + αη = 0 and through Q2 = (η, 0, 0) ∈ Pη when
2δ + (α + 2λ)η = 0. This yields the bifurcation diagram in Fig. 2, with structurally
stable dynamics on Pη for (δ, η) /∈ Dα

λ and a great circle of equilibria for (δ, η) ∈ Dα
λ .

Note that the red boundary cannot be vertical since α �= 0 and the requirement
α + 2λ �= 0, i.e. α3 �= 4α1, ensures that the blue boundary cannot be vertical as well.
This is an additional genericity assumption, ensuring that next to the value

η0 = −2δ

α
at Q1 (28)

also the value

η0 = − 2δ

α + 2λ
at Q2 (29)
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Fig. 2 Bifurcation diagram for
ε = 0, depicted with parameter
values α = −0.5 and λ = 0.15.
Along the red line, the
equilibrium Q1 is degenerate.
The green sector represents the
set Dα

λ defined in (27)—for
(δ, η) ∈ Dα

λ the dynamics has
one great circle of regular
equilibria next to the singular
equilibria Q1 and Q2. The
equilibrium Q2 is degenerate
along the blue line. In Fig. 5, this
corresponds to the case V–III
(below-middle)

δ

η

is finite. This requires δα ≤ 0 and δ(α + 2λ) ≤ 0, respectively, since η0 cannot be
negative.

The boundary ∂Dα
λ marks the transition from the regime where the 2:4 resonance

behaves as a higher-order resonance to the regime where the inclusion of a sixth-order
resonance term to dissolve the continuum of equilibria becomes crucial. A bifurcation
sequence along a straight line passing through Dα

λ consists of the structurally stable
flow developing a degenerate singular equilibrium at ∂Dα

λ , the resulting great circle of
equilibria moving through the reduced phase spacePη to the other singular equilibrium
which then becomes degenerate and leading back to the structurally stable flow, but
now with the direction of the periodic orbits reversed.

4 Second-Order Approximation

By kam Theory, most of the invariant 2-tori reconstructed from the family of great
circles extending between the two singular equilibria Q1 and Q2 persist the pertur-
bation from (22) to the original system (10), while it is generic for resonant tori to
break up and not persist the perturbation. The great circles that consist of equilibria
already break up under the integrable perturbation from (22) to (18), subject to the
genericity conditions μ > 0 and λ �= 0 (recall that we furthermore assume α �= 0 and
α + 2λ �= 0). We therefore aim at understanding the dynamics around the degenerate
case

h = h0 := − (2δ + αη)2

4λ
(30)

when the equation in (24) has two coinciding roots (25) satisfying (26). What happens
when we look at the normal form up to second-order terms in the perturbation, i.e.
at (18) with ε > 0, is that single vertical planesKη

δ (h), h away from h0, get replaced by
almost vertical surfaces that still lead to intersections with the reduced phase space Pη
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that are periodic orbits, while near the double vertical planes Kη
δ (h0), these level sets

become almost parabolic cylinders, touching Pη at elliptic equilibria where the rest
of the level set lies outside of Pη and at hyperbolic equilibria where part of the level
set lies inside of Pη ⊆ R

3. For energy levels between these equilibria, the parabolic
cylinders intersect Pη in periodic orbits circling around such an elliptic equilibrium.

From the elliptic and hyperbolic equilibria, the so-called banana and anti-banana
orbits are reconstructed. In astronomical systems, the stable orbits are usually called
bananas and the unstable ones anti-bananas. Here, we consider more general systems,
and prefer to follow a different nomenclatura, by calling anti-bananas the figure eight
orbits that correspond to tangencies on the upper part of Pη. We call banana orbits the
orbits corresponding to tangencies on the lower part of Pη, independent of whether
they are stable or not; compare with Miralda-Escudé and Schwarzschild (1989).

4.1 Singular Equilibria and Their Stability

Let us start by investigating the stability of the singular equilibria. In particular, we
want to find the critical values of η (if any) that correspond to a stability/instability
transition of the singular equilibria. Indeed, while the mechanism how this happens is
more transparent when varying δ, the parameter η is distinguished with respect to the
detuning δ and this point of view allows to look at bifurcations when solely changing
the initial conditions. Such instability transitions produce new (regular) equilibria for
the reduced system, bifurcating off from the singular equilibria. If the corresponding
critical values of η are not too high, this reflects in the bifurcation of periodic orbits
from the normal modes in the original system. We shall discuss this point in Sects. 4.4
and 5 . Since we are now looking at the system near h = h0, we consider the level
sets

Kη,h0
δ,ε (k) :=

{
(u, v, w) ∈ R

3 : K η(u, v, w; δ) = h0 + ε2k
}

which give a family of third-order curves when intersecting with the (u, v) plane, with
equation

v(u) = 1

μ

[
k − λ

ε2 (u − u0)
2 − K η

4 (u; δ)

]
, (31)

where u0 was obtained in (25) in the first-order approximation. The ε2 in the denom-
inator lets the parabolic part of the curve (31) dominate over the cubic part K η

4 .
At Q1 = (0, 0, 0) the reduced phase space section Pη ∩ {w = 0} has a cuspidal

singularity. Suppose that (31) passes through the origin (u, v) = (0, 0) with non-
vanishing first derivative (see Fig. 3). Let us denote the corresponding value of k
by k0. Recall that we assumed for definiteness that μ is positive and first take λ > 0, so
λμ > 0 and the derivative of (31) at 0 is positive if u0 > 0, compare with Fig. 3 (right).
Hence, values of k higher than k0 shift (31) upward and correspond near Q1 to empty
intersections of the energy levelsKη,h0

δ,ε (k) with the reduced phase spacePη and thus to
no dynamics. Values of k lower than k0 shift (31) downward and lead to periodic orbits
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u

v

u

v

Fig. 3 Possible configurations between the (thick black) phase space section Pη ∩ {w = 0} and a second-
order approximation of (31) for δ = 0.25, α = −1, λ = 0.35, μ = 0.25, ε = 0.2 and η = 0.4 (left),
η = 0.6 (right). For values of k corresponding to the (thick) red curve, we have a stable equilibrium at
the origin (left) or a stable equilibrium at the origin and a periodic orbit around it (right). For values of k
slightly different (thin grey curves), we can have periodic orbits around the origin or no dynamics; in the
right figure, we furthermore have periodic orbits around a regular equilibrium

around Q1; in both cases, there may furthermore be periodic orbits where the second
leaf of the parabolic-cylinder-like level set Kη,h0

δ,ε (k) intersects Pη, again compare line
with Fig. 3 (right). For u0 < 0 values of k higher than k0 yield periodic orbits (as
v′(0) is negative), there are no additional intersections for k < k0, compare line with
Fig. 3 (left). The equilibriumQ1 is therefore stable for v′(0) �= 0, and it can be unstable
only if the curve (31) passes through the origin (u, v) = (0, 0) with vanishing first
derivative. This happens for

v′(0) = − 1

μ

[
2δ + αη

ε2 + β2δη + γ3η
2
]

= 0. (32)

Since we are following a perturbative approach, we look for a solution of this equation
in the form of a power series η = η0 + ε2η2 in ε. For α �= 0 and δα ≤ 0, we obtain
the critical value

η = η1 := −2δ

α
+ 2ε2δ2

α3 (β2α − 2γ3) , (33)

with η0 from (28) in the first-order approximation.

Remark 4.1 This answers an open question from Marchesiello and Pucacco (2013a)
where this critical value for η was found with an “empirical” approach. The two
families of periodic orbits, namely banana and anti-banana orbits, bifurcate for the
two-degree-of-freedom system defined by the normal form and up to second-order
terms in the perturbation this happens simultaneously, at the same critical value of η.
Since Q1 is a cusp point, this has a geometric reason and in particular subsists through
all orders of the perturbation.

Note that

v′′(0) = − 2

μ

[
λ

ε2 + β1δ + γ2η

]
, (34)
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therefore we can assume that v′′(0) does not vanish for small values of ε, thus there
is no degeneracy. In case λ < 0—and hence λμ < 0—the curve (31) has a minimum
instead of a maximum near u0, interchanging the effects of shifting (31) upwards
and downwards. The above discussion applies mutatis mutandis, leading to the same
formula (33) when α �= 0.

Remark 4.2 Equation (32) is of second order in η, therefore in general, it admits two
solutions for η. However, only one of these two solutions is convergent for ε → 0 and
has a truncated series expansion as in (33). The second solution, once expressed as

truncated power series of ε, reads η = − α
γ3ε2 +

(
2δ
α

− β2
γ3

)
. We aim at an approximation

of the dynamics of the original system (10) in a neighbourhood of the origin and at low
energies. Therefore here and in the computation of (37) below, we disregard solutions
that are divergent for ε → 0 and limit the description of the dynamics only to low
values of η. Note that η can be related to the (generalized) energy in a similar fashion
as in (50).

At Q2 = (η, 0, 0), the reduced phase space has a conical singularity. The intersection
of the reduced phase space Pη with the (u, v) plane is given by

Cη
± = Pη ∩ {w = 0} =

{
(u, v) ∈ R

2 : v = ±1

2
(η − u)u2, 0 ≤ u ≤ η

}

(35)

whence the slope of the two contour lines constituting (35) at (u, v) = (η, 0) is ∓ 1
2η2.

By the same argument we used above, the corresponding equilibrium can be unstable
only if the slope of the curve (31) at (u, v) = (η, 0) takes values in the interval
]− 1

2η2, 1
2η2[. Thus, to find the critical values for η which correspond to stabil-

ity/instability transitions of the equilibrium, we need to solve

v′(η) = ∓η2

2
. (36)

Proceeding as before, we look for solutions of the form η = η0 + ε2η2 with η0
from (29). We arrive at the two solutions η = η± given by

η± := −2δ

α + 2λ
+ 2ε2δ2

(α + 2λ)3

[
2β1(α + 2λ) + β2(α + 2λ) − (γ ± μ)

]
,

(37)

where γ = 6γ1 + 4γ2 + 2γ3. Such solutions are acceptable if α + 2λ �= 0 and
δ(α + 2λ) ≤ 0. Since

v′′(η) = − 2

μ

[
λ

ε2 + β1δ + (3γ1 + γ2)η

]
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and λ �= 0, we can (as in (34)) conclude that there is no degeneracy. Note that the
difference between the threshold values in (37) is

η− − η+ = 4ε2δ2μ

(α + 2λ)3 . (38)

Therefore, the equilibrium is unstable for η− < η < η+ if α + 2λ < 0 and for
η+ < η < η− if α + 2λ > 0. For μ < 0, it is the other way around.

4.2 Regular Equilibria

Regular equilibria correspond to points where the level sets Kη,h0
δ,ε (k) touch (i.e. are

tangent to) the reduced phase space Pη. The normal form (18) is independent of the
variable w, whence the level sets Kη,h0

δ,ε (k) are cylinders (consisting of lines parallel
to the w-axis) on the basis of the curve (31). However, a tangent plane to the surface
of revolution Pη can contain the w-axis only at points (u, v, w) with w = 0. Thus,
Kη,h0

δ,ε (k) and Pη can touch each other only at points in the (u, v)-plane; this is what
we achieved when rotating to ν = 0. The intersection of Pη with the (u, v)-plane is
given by (35) whence regular equilibria correspond to the points u ∈ ]0, η[ in which
(31) and (35) intersect with coinciding slopes. As we can always adjust the second-
order part k of the energy to make (31) and (35) intersect where desired, this gives the
equation

2δ + αη + 2λu − ε2
[

3(2γ1 ± μ)
u2

2
+ [2δβ1 + η(2γ2∓μ)]u + δβ2η + γ3η

2
]

= 0

for the slopes to coincide. Looking for a solution of the form u = u0 + ε2u2, we find
the two solutions

u = u± := u0 + ε2u±
2

subject to 0 ≤ u± ≤ η, where

u±
2=4λ(2δ + αη)[2δβ1+η(2γ2∓μ)] − 8ηλ2(δβ2+γ3η)− 3(2γ1 ± μ)(2δ+αη)2

16λ3

and u0 as in (25). Solving u± = η for η = η0 + ε2η2, we recover (37), while solving
u± = 0, we recover (33).

Therefore, as expected, the bifurcation of regular equilibria is related to the tran-
sition to instability of singular equilibria. Since at Q1 = (0, 0, 0), there is a cusp
singularity, the corresponding equilibrium is unstable only at η = η1. However at this
critical value, two tangency points appear/disappear simultaneously, and therefore two
regular equilibria bifurcate off from the origin. On Pη, they correspond to two points
U± = (u±, v±, 0) with
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Fig. 4 Possible tangencies between the parabola (39) and the phase space section Pη ∩ {w = 0} in (35)
for increasing values of η and fixed values δ = −0.25, μ = 0.25, λ = 0.1, α = 1 and ε = 0.3 of the
detuning and the other parameters. Two regular equilibria appear successively from the conical singularity
and subsequently disappear simultaneously on the singular equilibrium at the origin. The equilibrium on
the upper contour of the phase space is unstable, while the equilibrium on the lower contour is stable.
Upper left: η = 0.418. First a stable equilibrium appears from the singular equilibrium Q2 = (η, 0, 0),
which as a consequence becomes unstable. Upper right: η = 0.43. Then, an unstable equilibrium appears
from the singular equilibrium Q2, which becomes stable after the bifurcation. Lower left: η = 0.49. Both
regular equilibria are going to disappear when reaching the stable singular equilibrium Q1 = (0, 0, 0) at
the cusp singularity. Lower right: η = 0.55. Both regular equilibria disappeared and the only equilibria are
the singular ones, both stable

v+ = −1

2
(η − u+)u2+ and v− = +1

2
(η − u−)u2− ,

one lying on the lower and one on the upper contour of the reduced phase space.
The singular equilibrium Q2 = (η, 0, 0), on the other hand, can change its stability
twice, since it corresponds to a conical singularity. Each stability/instability transition
is associated with the appearance or disappearance of only one regular equilibrium.
The bifurcating equilibria correspond to the point U− on the upper contour of the
reduced phase space for η = η− and to the point U+ on the lower contour for η = η+.
We discuss the implications for the original system in Sect. 5.

Let us conclude this section with the analysis of the stability of the regular equilibria.
Once we know that the two curves (31) and (35) touch, to study the stability of the
corresponding equilibrium, we need to know “how” they touch. Indeed, for small value
of ε, the curvature of (31) is determined by its second-order approximation given by
the parabola P defined by

v = P(u) := 1

μ

[
k − λ

ε2 (u − u0)
2
]

. (39)
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Moreover, the smaller the value of ε, the greater in absolute value the curvature of
such a parabola. Along the limit ε → 0 the curvature of (31) can always be set greater
in absolute value than the curvature of the contour of the reduced phase space at a
tangency point.

To fix the ideas, let us consider the case when the parabola touches the phase space
section at its lower arc Cη

− “from outside”, i.e. there is no intersection point other than
the tangency point. Let k+ be the corresponding level for k. We can always assume
the curvature of P to be high enough (in absolute value) so that this can happen only
if the parabola is upside down, i.e. concave; as μ > 0 this is equivalent to λ > 0.
Higher values of k+ then shift the parabola upward and correspond to closed orbits
around the equilibrium—which therefore is stable (see Fig. 4 upper right)—until the
maximum of P reaches the upper contour.

If the parabola (39) is convex, then it touches the lower contour of the phase space
“from inside”, i.e. there are two further intersections on the upper contour of the phase
space. In this case, the equilibrium is unstable. This happens for λ < 0 and qualitatively
amounts to flipping Fig. 4 upside down. The stable and unstable manifolds of the
equilibrium are determined by the intersection curves between the reduced phase
space Pη and the energy level set Kη,h0

δ,ε (k+), i.e. the surface corresponding to (31) for
h = h0 + ε2k+.

Similarly, for the stability analysis of the equilibrium on the upper contour of the
phase space, we find that it is stable for λ < 0 and unstable for λ > 0; for μ < 0, it is
the other way around.

Remark 4.3 The simple geometry of the parabola allows to immediately conclude
stability or instability of the equilibria and how these come into existence through
centre-saddle and Hamiltonian flip bifurcations. The corresponding formulas may as
well be searched for as double roots of the difference of the polynomials describing
phase space and energy level set (Efstathiou et al. 2019). For more involved expressions
than the present cubic, which is well-approximated by a parabola, an algebraic point
of view can support the present geometric approach, relying on the resultant of two
polynomials and related tools.

4.3 The Completed Bifurcation Diagram

The dissolution of the great circle of equilibria into a stable and an unstable equilibrium,
with a family of periodic orbits inside the separatrix of the latter surrounding the
former, allows to complete the bifurcation diagram obtained in Sect. 3.2. Indeed,
the region Dα

λ —the green sector in Fig. 2—no longer stands for structurally unstable
dynamics. The blue line in Fig. 2 splits into the two lines η− = η−(δ) and η+ = η+(δ).
Between these lines, the dynamics is as depicted in Fig. 4 (upper right/lower left). The
other boundary line of Dα

λ —the red line in Fig. 2—does not split but gets refined from
(28) to (33) and now stands for the simultaneous bifurcation at Q1 = (0, 0, 0) where
the two regular equilibria disappear into the singular equilibrium Q1.

The resulting possibilities are assembled in Fig. 5. The central (λ, α) plane allows to
distinguish the six cases I–IV to V–III—when passing through one of the lines {α = 0},
{λ = 0} and {α + 2λ = 0} the bifurcation diagram in the (δ, η) plane changes. The
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Fig. 5 Middle: diagram showing on the (λ, α) plane the regions corresponding to Cases I–V, in blue for
δ < 0 and in red for δ > 0. The black line gives the boundary α + 2λ = 0. Clockwise around: bifurcation
diagrams on the (δ, η) plane corresponding to the various cases (Case IV–I in the right above, Case III–V in
the middle above, etc.). The bifurcation thresholds η1, η− and η+ are in red, blue and green, respectively

bifurcation diagrams for α + 2λ > 0 and α + 2λ < 0 are related through a reflection
with respect to the η-axis, together with exchanging the blue and green thresholds.
Varying δ through 0 yields a passage through resonance, for reasonably small values of
η ≥ 0 near δ = 0. Note that since we reduced the dynamics on Pη through (17), every
regular equilibrium on Pη corresponds to two regular equilibria on Vη. Namely, the
equilibrium U− gives two equilibria A± on Vη. Such equilibria lie on the intersection
between Vη and the plane σ2 = 0 and are symmetric with respect to the plane σ1 = 0.
These reconstruct in two degrees of freedom to the anti-banana orbits. Similarly, the
equilibrium U+ corresponds to two equilibria B± on V η ∩ {σ1 = 0}, symmetric with
respect to the plane σ2 = 0. From these, the banana orbits are reconstructed in two
degrees of freedom.
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4.4 The Bifurcation Sequences

In the previous section, we have treated the detuning δ as a parameter. However, the
value η ≥ 0 of the integral H0 is a distinguished parameter with respect to δ and one
can in fact consider the three coefficients δ, α �= 0 and λ �= 0 in (18) as fixed with
α+2λ �= 0, takeμ > 0 (think ofμ = 1, although we refrain from explicitly performing
this re-parametrisation) and ignore the values of β1, β2, γ1, γ2, γ3 in (19) which—for
sufficiently small values of δ and η, cf. Remark 4.2—do not change the dynamics.
Varying η then yields the bifurcation sequence. While the signs of α and α + 2λ

determine the sign of the first-order approximation of (33) and (37), the sign of α+2λ

also decides the bifurcation order of U+ and U− in force of (38). To fix the ideas, let
us start by assuming δ < 0. The five possible cases I–V, which are described in the
following, are in accordance with the labelling in Fig. 5.

Case I. α < 0 < α + 2λ. In this case, the critical value η1 is not acceptable; the red
line in Fig. 5 (lower-right) does not pass through the left quadrant. Bifurcations
can occur only when η passes through the critical values η±, with η+ < η−. Since
λμ > 0 the parabola (39) is concave. From Sect. 4.2, we easily see that at η = η+
a stable equilibrium U+ appears from the singular equilibrium Q2 that becomes
unstable. At η = η−, the singular equilibriumQ2 turns stable again and an unstable
equilibrium U− appears. The equilibrium at Q1 always stays stable. Increasing η

beyond η− does increase the size ofPη, but the configuration of equilibria remains
qualitatively that of Fig. 4 (upper-right and lower-left).

Case II. 0 < α < α + 2λ. All critical values are positive now, with η+ < η− < η1.
The parabola P is still concave. As in the previous case, we see first the appearance
of one stable equilibrium U+ at η = η+, while Q2 becomes unstable. Then, an
unstable equilibrium U− appears for η = η− and Q2 comes back to stability.
The difference is that when η increases up to η = η1 both equilibria U+ and U−
disappear on Q1. For η > η1, the only remaining equilibria are the singular ones,
both stable. Note that the bifurcation sequence resembles the passage through
resonance. The possible configurations on the reduced phase space Sect. (35) are
shown in Fig. 4 for increasing values of η.

Case III. 0 < α + 2λ < α, i.e. λ < 0. In this case, the threshold values (33)
and (37) are still all positive; however, now η1 < η+ < η− and the parabola (39)
is convex, since λ < 0. Therefore, we see first the appearance of both equilibria
U− and U+ from the singular equilibrium at the origin. Since (39) is convex, the
equilibrium U− is stable and U+ is unstable now. Such equilibria disappear then
on Q2. The first equilibrium to disappear is the one at U+, for η = η+, while the
equilbrium Q2 becomes unstable. At η = η− also the equilibrium U− disappears
and the equilbrium Q2 turns back to stability. Also here the bifurcation sequence
resembles the passage through resonance.

Case IV. α + 2λ < 0 < α. In this case, the only acceptable threshold value is η1.
This implies that bifurcations can occur only from the equilibrium at the origin. At
η = η1 both equilibriaU− andU+ bifurcate off from the origin, the equilibriumU+
on the lower arc is unstable and U− is stable. No bifurcation occurs from the
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equilibrium at Q2, which is always stable. As in case I, increasing η beyond η1
merely increases the size ofPη, but does not change the configuration of equilibria.

Case V. α < 0 and α + 2λ < 0. All the critical values are not acceptable. Therefore,
the only equilibria are Q1 and Q2, both stable. In Fig. 5, this case corresponds to
the (empty) left quadrants of the remaining two lower bifurcation diagrams.

The regions on the (λ, α) plane corresponding to the sequences I–V are displayed in
Fig. 5, also for α+2λ < 0. In this case, the difference η+−η− changes its sign and the
parabola reverses its concavity. As a consequence the equilibria U+ and U− exchange
their stability and exchange themselves in the bifurcation sequence. Moreover, all
the inequalities on α, δ, λ must be inverted. For example, Case III occurs now for
α < α + 2λ < 0 and δ > 0, with U+ and U− exchanging their role in the bifurcation
sequence. For δ > 0, the cases shift to the red labelling in Fig. 5.

For δ = 0, the thresholds satisfy η+ = η− = η1 = 0 as all bifurcation lines
originate from the origin; recall that α �= 0 and α + 2λ �= 0 (next to λ �= 0). In
Cases I & IV (α and α + 2λ do not have the same sign), we also have for δ = 0
the configuration of equilibria U+ and U− next to Q1 and Q2 as in Fig. 5 (upper-left
and lower-right); otherwise (α and α + 2λ have the same sign) the situation is that
of Case V except that the critical values are all zero, i.e. at η = 0 the extreme of the
parabola (35) passes through Q1.

4.5 BifurcationMapping

We have seen in the previous section that the bifurcation sequences are determined
by the detuning δ and the coefficients α, λ. The coupling constant μ may take any
value, but the degenerate case μ = 0 is not included in the general approach; we could
easily scale μ = 1 and conclude μ > 0, but keep μ in the formulas to allow for fast
conclusions concerning reversible systems with μ < 0. By the results of the previous
section, the additional coefficients βi , γ j , do not modify the qualitative picture.

To give a more abstract view we can introduce—in analogy to what is done in
Pucacco and Marchesiello (2014)—the parameters

A := −2δ + αη

2λη
(40a)

C := − μδ

2λ(α + 2λ)
. (40b)

The first, the asymmetry parameter, measures how far is the system from the reso-
nance manifold. The second, the coupling parameter, is a measure of the strength of
resonant coupling. The Jacobi-determinant

det Dδ,η

(
C
A

)
= det

( −μ
2λ(α+2λ)

0
−1
λη

δ
λη2

)
= C

λη2

of the bifurcation mapping warns us to be careful where δ and/or η vanish. To cap-
ture the main qualitative features of the system, we assume that the non-vanishing
parameters are δ, α, λ, μ and put βi ≡ γ j ≡ 0. The bifurcation thresholds then are
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Fig. 6 Bifurcation plot in the
(C, A) plane, see (40)

C

A

|
−1

|
1

− 1

η1 = −2δ

α
(41)

η± = −2δ

α + 2λ
∓ 2μδ2

(α + 2λ)3 . (42)

We see that the asymmetry parameter vanishes at the critical value (41),

A(η1) = 0 (43)

and that, to first order in δ,

A(η±) = 1∓ μδ

2λ(α + 2λ)
= 1 ± C . (44)

Then, we see that we can plot the straight lines (43) and (44), in the interval −1 ≤
C ≤ 1, to get the whole picture (see Fig. 6). We excluded the possibility of cases with
|C | > 1, which is equivalent to say that, at first order, η1 cannot stay between η+
and η−. For sufficiently small δ this is ruled out by the assumption λ �= 0 that also
ensures that A and C are well-defined.

In this plot, a vertical straight line represents a given system at varying the distin-
guished parameter η. Therefore, we can recapitulate the bifurcation scenario in the
light of the plot in Fig. 6. Let us recall the five cases enumerated in the previous
subsection.

Case I. α < 0 < α +2λ, C > 0 (right half-plane in Fig. 6). Since the critical value η1
is not acceptable, the red horizontal line disappears from the plot. Considering the
parameter (40a), a sequence with growing η goes from top to bottom. Bifurcations
occur when η passes first through η+ (green line), then through η− (blue line).

Case II. 0 < α < α + 2λ, C > 0. All critical values are acceptable now and the
sequence with growing η still goes from top to bottom: Since η+ < η− < η1, the
sequence is given by the green–blue–red passings.

123



2536 Journal of Nonlinear Science (2020) 30:2513–2544

Fig. 7 Sequence of x2, y2 surfaces of section (above) and corresponding x1, y1 surfaces of section (below)
in Case III.

Case III. 0 < α + 2λ < α, C < 0 (left half-plane in Fig. 6). All critical values are
still acceptable but now η1 < η+ < η− and the sequence with growing η goes
from bottom to top: the sequence is now given by the red–green–blue passings.

Case IV. α + 2λ < 0 < α, C > 0. Only η1 is acceptable, whereas η± are both not
acceptable: the only line present in the plot is the red one.

Case V. α < 0 and α + 2λ < 0. None of the thresholds is acceptable and the plot is
empty, no bifurcations occur.

In Fig. 7, a typical sequence of surfaces of section corresponding to Case III is shown
to give an impression on how the abstract Fig. 6 translates to the concrete dynamics.
The surfaces of section of the other cases are different, but the way how they relate to
the corresponding part of Fig. 6 is similar.

5 Bifurcations in the Original System

If a normalization is carried far enough to obtain only isolated equilibria (after symme-
try reduction), we know the essential characteristics of the system. Including higher
orders may shift the positions of the equilibria, but does not alter their number or
stability. Therefore, the isolated fixed points of (15) correspond to periodic orbits
for the original system. The results obtained can be trusted up to low energies, in a
neighbourhood of the central equilibrium and not too far from the resonance at hand.

To deduce the periodic orbits of the system from the equilibria of (15), we introduce
action angle variables

z j = √
2τ j eiϕ j , j = 1, 2. (45)
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The singular equilibria correspond to the normal modes of the system. Namely, Q1
corresponds to τ1 = 0 and τ2 = 1

2η, i.e. to the orbit along the x2-axis, in the following
also referred to as short axial orbit. Similarly, Q2 gives the orbit along the x1-axis,
also referred to as long axial orbit, determined by τ1 = η and τ2 = 0.

Remark 5.1 To be consistent with our previous papers, so that the conditions (46)
and (47) for banana and anti-banana are the same as in for example (Marchesiello and
Pucacco 2013b), one has to exchange sine and cosine in the following.

The regular equilibria correspond to periodic orbits in general position. The equilib-
rium U+ has coordinates (u, v, w) such that 0 < u < η, v < 0 and w = 0. From (17),
we see that it must then be v = −σ 2

2 and σ1 = 0. By expressing (12) in terms of (45),
we get the condition

σ1 = τ1

√
2τ2 cos(2ϕ1 − ϕ2) = 0 , τ1, 2τ2 ∈ ]0, η[.

This implies

2ϕ1 − ϕ2 ∈
{

π

2
,

3π

2

}
. (46)

Similarly, we recognize that the equilibrium U− corresponds to the condition

σ2 = τ1

√
2τ2 sin(2ϕ1 − ϕ2) = 0, τ1, 2τ2 ∈ ]0, η[

that gives

2ϕ1 − ϕ2 ∈ {0, π} . (47)

Orbits satisfying (46) and (47) are called, because of their shape in the (x1, x2) plane,
banana orbits and figure-eight or anti-banana orbits, respectively (Miralda-Escudé
and Schwarzschild 1989). We found in Sect. 4.1 the critical values (33) and (37) that
determine the bifurcations of the reduced system. However, η is not a constant for the
original system; nevertheless we can use (33) and (37) to find threshold values for the
bifurcations in terms of the (generalized) energy E . On the long axial orbit (τ1 = η,
τ2 = 0), the normal form (15) reads as

K = η + ε2(2δ + α1η)η + ε4(ρ1δ + α6η)η2. (48)

Here and in the following, since we refer to the original system, we express the formulas
in terms of the coefficients of the original normal form (15). By the scaling of time (9c),
we have

ω2

2
K + O(ε6) = H = E (49)
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and combining (48) and (49) we can express the (generalized) energy in terms of η as

E = ω2

2

[
η + ε2 (2δ + α1η) η + ε4(ρ1δ + α6η)η2

]
+ O(ε6). (50)

Substituting (37) into (50), we find the critical energy threshold values that correspond
to the bifurcations off from the long axial orbit, given to second order in δ by

E± := − 2ω2δ

4α1 − α3

+ 4ω2δ
2

(4α1 − α3)3

[
(4α1 − α3)(2β1 + β2 − 2α1 + α3) − 2(γ ± μ)

]
(51)

for banana (upper signs) and anti-banana (lower signs) orbits, respectively. Recall
β1 = ρ1 + 1

4ρ2 − 1
2ρ3 and β2 = 1

2ρ3 − 1
2ρ2 from (20a) and from (37) that γ =

6γ1 + 4γ2 + 2γ3 = 6α6 − α4. We inverted the detuning scaling (9b), so that (51)
and (52) are expressed in terms of the original detuning parameter. Similarly, for the
bifurcation off from the short axial orbit (τ1 = 0, τ2 = 1

2η), we use (33) and find to
second order in δ that

E1 = − 2ω2δ

α3 − α2
+ 2ω2δ

2

(α3 − α2)3

[
(α3 − α2)(2β2 + α2) − 8γ3

]
(52)

where β2 = 1
2ρ3 − 1

2ρ2 and γ3 = 1
4α5 − 3

8α7. However, above a certain threshold,
one should not expect that the formal series developed by the normalization procedure
stays close for a very long time to the solutions of the original problem. Since we
pushed the normalization up to including terms of sixth order in the phase space
variables (x, y), we can trust such quantitative predictions on the bifurcation and
stability of the periodic orbits up to the second order in the detuning parameter (since,
we recall, this is assumed to be a second-order term). We can summarize these results
as follows.

Theorem 5.2 Let us consider the dynamical systems defined by H, cf. (2) and its
normal form (15) with respect to the oscillator symmetry (11). Assume the coordinate
system to be rotated so that μ > 0 and ν = 0 in (15). In a neighbourhood of the
central equilibrium and for sufficiently small values of the detuning parameter δ,

(i) at the stability/instability transition of a normal mode, periodic orbits in general
position bifurcate. In particular, at each transition of the long axial orbit, a pair of
periodic orbits bifurcate (a pair of banana or a pair of anti-banana orbits). At the
instability of the short axial orbit, two pairs of periodic orbits (a pair of banana
and a pair of anti-banana orbits) bifurcate concurrently;

(ii) up to second order in the detuning, the instability/stability transition of the normal
modes occur at the critical energies (51) and (52) for the long and short normal
mode, respectively.

The coefficients α and λ determine the possible bifurcation sequences according to
the previous section. Recalling that 2(α + 2λ) = 4α1 − α3 and 2α = α3 − α2, the
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analysis that resulted into Cases I–V can be rewritten in terms of the periodic orbits
of the original system.

Theorem 5.3 Under the conditions of Theorem 5.2, the possible bifurcation sequences
are determined by the coefficients α1, α2, α3 in the normal form (15). For α3 �= α2,
α3 �= 2α1 + 1

2α2, α3 �= 4α1 and δ < 0, we have the following cases.

Case I. α3 − α2 < 0 < 4α1 − α3. The short axial orbit is always stable. The long
axial orbit changes its stability twice. At first, it suffers a transition to instability
at the critical energy E = E+ and a pair of stable banana orbits appears. At
E = E− a pair of anti-banana orbits appears, while the long axial orbit comes
back to stability.

Case II. 0 < α3 − α2 < 4α1 − α3. While the (generalized) energy passes through
the critical values E = E+ and subsequently E = E−, the bifurcation sequence
follows the previous case. However, a further bifurcation occurs at E = E1, when
both pairs of periodic orbits in general position disappear on the short axial orbit.

Case III. 0 < 4α1 − α3 < α3 − α2. At E = E1 a pair of banana and a pair
of anti-banana orbits bifurcate off from the short axial orbit. The banana orbits
are unstable and the anti-banana orbits are stable. At E = E+ banana orbits
disappear on the long axial orbits, which becomes unstable. At E = E− anti-
banana orbits disappear as well, and the long axial orbit turns back to stability.

Case IV. 4α1 − α3 < 0 < α3 − α2. At E = E1 a bifurcation occurs from the
short axial orbit, and the two pairs of periodic orbits in general position appear.
Banana orbits are unstable and anti-banana orbits are stable. The long axial orbit
is always stable.

Case V: 4α1 < α3 < α2. The only periodic orbits are the normal modes, both stable.

The undetuned system for δ = 0 behaves as in Cases I or IV (after the bifurcations) if
α3 − α2 and 4α1 − α3 have opposite signs and otherwise as in Case V.

Assuming the coordinate system to be such that ν vanishes in the normal form (15) is
not needed for qualitative predictions, but only for quantitative ones. And even here
the necessary rotation can simply be turned back. In fact, the presence of ν would not
change the possible bifurcation scenario of the system, but would affect the value of
the energy thresholds (51) and (52)—replacing μ by

√
μ2 + ν2.

Remark 5.4 Let us note one more time that for definiteness, we assumed μ positive and
δ negative. Taking δ > 0 yields the red cases I–V; as a demonstration, see the example
in Sect. 6. Since the difference in the bifurcation thresholds (51) is proportional to
μ(4α1 − α3)

−3, a change in the sign of μ would affect only the bifurcation order of
banana and anti-banana orbits that consequently would also exchange their stability
properties, as would a change in the sign of 4α1 − α3.
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6 Galactic Dynamics Under Power Law Potentials

To demonstrate our results with an example, let us consider the family of potentials

V (x1, x2; q, p) = 1

p

(
1 + x2

1 + x2
2

q2

)p/2

, 0 < p < 2,
1

4
< q ≤ 1. (53)

This gravitational potential is generated by a simple but realistic matter distribution
(Scuflaire 1995; Papaphilippou and Laskar 1996; Touma and Tremaine 1997; Scuflaire
1999; Belmonte et al. 2007). Its astrophysical relevance (Binney 1981; Binney and
Tremaine 2008) is based on the ability to describe in a simple way the gross features
of elliptical galaxies embedded in a dark matter halo. Here, the lower limit p → 0
corresponds to the logarithmic potential, while the upper limit p → 2 is dictated by
the assumption of a potential generated by a positive mass distribution.

The flattening is 1/q and we slightly extend its range from the range 1
2 < q ≤ 1

used in Marchesiello and Pucacco (2013b) that is typically associated with elliptical
galaxies (Miralda-Escudé and Schwarzschild 1989) as it is precisely at q = 1

2 that the
2:4 resonance occurs. Lower positive values of q can in principle be considered but
correspond to an unphysical density distribution. The truncated series expansion (2)
is “prepared” for normalization by setting

q = ω1

ω2
= 1

2
+ δ , (54)

the canonical variables and time are rescaled according to (9) and we expanded in
series of the detuning according to (54). The coefficients of the normal form (15) read
as

α1 = 3

2
B1, α2 = 6B1, α3 = 4B1, ρ1 = 3B1, ρ2 = −12B1, ρ3 = 0 (55a)

α4 = −56

3
B2

1 + 9B2, α5 = −2

3
(46B2

1 − 27B2), (55b)

α6 = 17B2
1 − 10B2

4
, α7 = −2(17B2

1 − 10B2), (55c)

μ = 3(2B2
1 − B2), ν = 0, (55d)

where

B1 = p − 2

8
and B2 = (p − 2)(p − 4)

48
, (56)

compare with Marchesiello and Pucacco (2013b). As the potential is scalar, the ensuing
system is reversible with respect to

(x1, x2) �→ (x1,−x2) (57)
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which through reduction turns into

(u, v, w) �→ (u, v,−w)

and explains why ν = 0. By substituting (55) into (20), we find

λ = −α = p − 2

8
< 0 and μ = 1

32
(p2 − 4) < 0. (58)

Note that the π -rotation (u, v, w) �→ (u,−v,−w) still allows to achieve μ > 0
in (58), if necessary. According to Theorem 5.3 and Remark 5.4, the coefficients α j ,
j = 1, 2, 3 determine the bifurcation sequences. Since 4α1 − α3 < 0 < α3 − α2 and,
concentrating on q > 1

2 , the detuning δ is positive, the bifurcation sequence follows
Case I of Theorem 5.3 (in which remember to reverse all the inequalities, according
to Remark 5.4). As μ is negative, bifurcations occur always from the long normal
mode, with bananas appearing at lower energies than anti-bananas. The critical values
of the energy that determine the bifurcations can be found by substituting (55d) and
(56) into (51) and, expressed in terms of the parameters of (53), in agreement with
Marchesiello and Pucacco (2013b) read as

E+ = 16

2 − p

(
q − 1

2

)
+ 8(41p − 10)

3(p − 2)2

(
q − 1

2

)2

(59a)

E− = 16

2 − p

(
q − 1

2

)
+ 8(53p + 14)

3(p − 2)2

(
q − 1

2

)2

(59b)

for the bifurcation of banana and anti-banana orbits, respectively. Numerical values
of the thresholds when applied e.g. to the logarithmic potential (taking p = 0), are
in good agreement with the bifurcation values obtained from numerical computations
(Miralda-Escudé and Schwarzschild 1989).

Remark 6.1 When modelling the dynamics in a rotating galaxy using the Hamiltonian
function

H(x, y) = y2
1 + y2

2

2
− �(x1y2 − x2y1) + V (x1, x2; q, p), (60)

we generalize (53) which is the limit of (60) as � → 0. Due to the rotation of the
galaxy, the Hamiltonian (60) does not respect the symmetries (1). However, after
diagonalization of the quadratic part, its series expansion still has the form (2). With
the assumption that the angular velocity � is a small parameter and 1

4 < q ≤ 1 as
above, the system can again be studied as a perturbation of an oscillator close to a
1:2 resonance. Since all the terms not respecting the symmetries (1) do not Poisson
commute with the 1:2 oscillator and odd-order terms are not present in the series
expansion of (60), a normalization of the (truncated) diagonalized Hamiltonian then
results in the normal form of a 2:4 (detuned) resonance, thus still of the form (15).
Compared with (53), the presence of quartic terms of odd order in the momenta in the
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diagonalized Hamiltonian produces non-vanishing ν. Modulo a rotation to eliminate ν,
Theorems 5.2 and 5.3 can be applied. The resulting families of periodic orbits would
however correspond to more “fancy” orbits for the original system (60), once the
diagonalizing transformation is inverted. We leave a deeper analysis of this problem
to future work.

Several results of the theory developed above can be extended to a three-dimensional
model of the form

H(x, y) = y2
1 + y2

2 + y2
3

2
+ V (x1, x2, x3) , (61)

in the cases in which the mirror symmetries (1) are extended to the third axis when
composing with the transformation law

(x3, y3) �→ (−x3,−y3). (62)

Each symmetry plane of the potential generates an invariant subset where the dynam-
ics essentially reduce to those investigated above. By introducing a further detuning
parameter associated to the second frequency ratio, bifurcation and stability of periodic
orbit families on the symmetry planes can be deduced. The validity of this approach
is supported by analogous results obtained with the 1:1:1 resonance (de Zeeuw 1985;
Cushman et al. 1999; Ferrer et al. 2000). For a deeper understanding, three-dimensional
normal forms of the symmetric 1:1:2, 1:2:2 and 1:2:4 resonances are necessary (van
der Aa 1983; van der Aa and Verhulst 1984; Sanders et al. 2007), which usually pro-
vide the properties of periodic orbits in general position. Note that a normal form of
the 1:2:2 resonance is always integrable, while already the cubic normal forms of the
1:1:2 and 1:2:4 resonances are not integrable (Christov 2012). However, the discrete
symmetries not only make the cubic terms vanish but may furthermore enforce some
of the non-trivial normal forms to be integrable, see Hanßmann et al. (2020).

7 Conclusions

We considered families of Hamiltonian systems in two degrees of freedom with an
equilibrium in 2:4 resonance, a 1:2 resonance with additional discrete symmetry. Under
detuning, this typically leads to normal modes losing their stability through period-
doubling bifurcations. This now concerns the long axial orbit, losing and regaining
stability through two period-doubling bifurcations. In galactic dynamics, one speaks
of banana and anti-banana orbits. The short axial orbit turns out to be dynamically
stable everywhere except at a simultaneous bifurcation of banana and anti-banana
orbits.

We excluded the case μ = 0 from our considerations since it would require further
normalization. Indeed, for μ = 0 the normal form (15) resembles (22) and leads to a
similar degeneracy, which to break requires higher-order terms that do depend on v (or
on w). One may speculate that for such a k:2k resonance, k ≥ 3 also the conical singu-
larityQ2 “turns into” a cusp and the two successive period-doubling bifurcations of the
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long periodic orbit occur simultaneously, as it happens to the two successive period-
doubling bifurcations of the short periodic orbit when the 1:2 resonance becomes the
2:4 resonance.
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