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Abstract: Lipids play Jekyll and Hyde in the liver. On the one hand, the lipid-laden status of hepatic
stellate cells is a hallmark of healthy liver. On the other hand, the opposite is true for lipid-laden
hepatocytes—they obstruct liver function. Neglected lipid accumulation in hepatocytes can progress
into hepatic fibrosis, a condition induced by the activation of stellate cells. In their resting state,
these cells store substantial quantities of fat-soluble vitamin A (retinyl esters) in large lipid droplets.
During activation, these lipid organelles are gradually degraded. Hence, treatment of fatty liver
disease is treading a tightrope—unsophisticated targeting of hepatic lipid accumulation might trigger
problematic side effects on stellate cells. Therefore, it is of great importance to gain more insight
into the highly dynamic lipid metabolism of hepatocytes and stellate cells in both quiescent and
activated states. In this review, part of the special issue entitled “Cellular and Molecular Mechanisms
underlying the Pathogenesis of Hepatic Fibrosis 2020”, we discuss current and highly versatile aspects
of neutral lipid metabolism in the pathogenesis of non-alcoholic fatty liver disease (NAFLD).
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1. Introduction

Chronic liver diseases affect hundreds of millions of people worldwide. Non-alcoholic fatty liver
disease (NAFLD) represents a wide range of liver diseases that are all caused by stimuli other than
excessive alcohol consumption, covering simple steatosis (the accumulation of fat in hepatocytes),
non-alcoholic steatohepatitis (NASH), fibrosis and its more severe form cirrhosis. Moreover, NAFLD is
a risk factor for the development of hepatocellular carcinoma, cardiovascular diseases and type 2
diabetes (reduced insulin sensitivity). Currently, NAFLD is viewed as the most frequent cause of
chronic liver failure, with a prevalence of approximately 20–30% in the Western world, and is expected
to rise significantly in view of the increased number of obese people worldwide [1]. NAFLD affects
the quality of life of almost 2 billion people worldwide [2]. In this review, we focus on the complex
lipid dynamics in NAFLD. Signaling pathways that mediate the livers’ inflammatory status caused by
lipid-laden hepatocytes in steatohepatitis are reviewed elsewhere [3].

The estimated number of lipid compounds (ranging between 30,000 and 180,000) exceeds by
far—at least theoretically—the number of genes reported in mammals [4,5]. This high number hints
to the existence of a highly regulated and complex system to fulfill the myriad of functions of lipids.
Furthermore, lipids are—by definition—poorly soluble in water, posing some physical-chemical
constraints since biological systems are dominated by aqueous environments.
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Virtually all eukaryotic cells have the capacity to store lipids in specific organelles, the so-called
lipid droplets (LDs). LDs are organelles specialized in the storage of hydrophobic components [6–8].
The organelle consists of a hydrophobic core containing neutral lipids—triacylglycerols (TAGs),
cholesteryl esters (CEs), acylceramides and/or retinyl esters (REs)—surrounded by a phospholipid
monolayer and proteins that facilitates structure, integrity and several enzymatic activities responsible
for synthesis or degradation of the LD content [6–8]. The most abundant LD proteins are perilipins,
of which five family members are described, encoded by the genes Plin 1–5 [9–12]. The formation of LDs
occurs in the ER, driven by a biophysical process in which neutral lipids segregate from phospholipid
bilayers and emerge from the cytosolic leaflet of the ER-membrane [7]. How this process is regulated
is still poorly understood. Several proteins (families) have been implicated to be players in this
process—FIT proteins (fat storage-inducing transmembrane protein 1 and 2), seipin, and, more recently,
LDAF (lipid droplet assembly factor 1, previously known as TMEM159) [13–16].

Some cell types are specialized and optimally suited for the storage of neutral lipids. Examples
include adipocytes, Leydig cells, and hepatic stellate cells (HSCs). In adipocytes, the main cells
in adipose tissue, TAGs are stored to secure long-term supply of fatty acids for energy production.
In Leydig cells, lipid droplets provide sufficient amounts of cholesterol for the synthesis of steroid
hormones. Liver-resident HSCs are specialized in the storage of vitamin A as REs, a fat-soluble vitamin
required for, e.g., vision, development, and reproduction. These cells are important players in NAFLD
and will be discussed in more detail later in this review.

In order to perform the various functions of a liver, such as biotransformation, coagulation factor
production, and lipid homeostasis, the organ harbors various cell types. The most abundant cells in
the liver are the hepatocytes, accounting for approximately 60–70% of all liver cells, whereas other cell
types are less abundant, e.g., HSCs (vitamin A storage, 5–15%) [17], Kupffer cells (liver macrophages,
10–15%) [18], cholangiocytes (bile duct cells, 3–5%) [19], and liver sinusoidal endothelial cells
(blood vessel lining, 15–20%) [20]. In a healthy liver, hepatocytes store limited amounts of neutral lipids
in LDs. In contrast, HSCs contain large LDs, responsible for the storage of most of the vitamin A in the
body [17,21]. When livers accumulate excessive amounts of lipids within hepatocytes, liver function is
hindered. Paradoxically, in response to hepatocyte lipid accumulation, HSCs lose their large vitamin
A-laden LDs and “transactivate” into an extracellular matrix (ECM)-producing phenotype, a hallmark
of liver fibrosis [17,21]. Therefore, strategies to keep HSCs in an LD-rich state and at the same time
lower LDs in hepatocytes are likely to be instrumental in the prevention or reversal of liver fibrosis.
This approach might, however, also negatively affect the lipogenic state of HSCs. This “fat” paradox
(Figure 1) [22] often complicates the effective treatment of liver disease. To provide some leads, we will
present an overview of lipid metabolism and LD dynamics in the liver, followed by a description of the
key players in lipid metabolism in hepatocytes and HSCs. We end with discussing recent promising
models to better study the mechanisms of liver disease and screen for potential therapeutic drugs in vitro.

2. Lipids and Liver Diseases

Lipids are essential structural components of cellular membranes, energy-storage molecules,
signaling mediators in and between cells, and regulators in inflammation. The liver is the
central organ in the regulation of lipid homeostasis in vertebrates, including production of lipids
(de novo lipogenesis, DNL), storage of lipids as TAGs in LDs, and secretion of lipids by albumin,
retinol-binding proteins, and lipoproteins. This last class is subdivided into at least three major
categories: very-low-density lipoproteins (VLDL), low-density lipoproteins (LDLs), and high-density
lipoproteins (HDLs). As a result, it is not a surprise that malfunction of one of these lipid-related
processes leads to liver pathology. Liver functions are mainly performed by the parenchymal cells
of the liver—the hepatocytes. The most prominent lipid-associated liver disease—with increasing
prevalence worldwide—is NAFLD, representing an accumulation of neutral lipids in hepatocytes.
Strikingly, 10–30% of the NAFLD patients progress towards NASH, of which a significant number
(20–30%) progress into the cirrhotic stage of the disease [23], highlighting the importance of preventing
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or reversing early hepatic lipid accumulation. Importantly, there is an increasing awareness that
NAFLD should not viewed as isolated liver disease. Rather, NAFLD is associated with features of
metabolic syndrome, a systemic disease that is represented by a cluster of conditions that occur together,
thus increasing the risk of heart disease, stroke, type 2 diabetes and obesity. Hence, it has recently
been proposed that the term metabolic-associated fatty liver disease (MAFLD) better reflects current
knowledge [24,25].

Figure 1. The “fat” paradox in liver. How to specifically target fat accumulation of hepatocytes?
Simplified cartoons of (left) healthy liver with normal hepatocytes flanked by a quiescent hepatic
stellate cell (HSC) with large lipid droplets (LDs), and (right) injured liver with lipid-filled hepatocytes
flanked by activated HSCs devoid of large LDs.

3. Lipid Accumulation in Hepatocytes

Although the liver plays a central role in the lipid homeostasis of the body, healthy hepatocytes
store only limited amounts of neutral lipids. As the body’s central lipid-distribution hubs,
however, hepatocytes are susceptible to anomalies in any of the systems that are involved in lipid
homeostasis. TAGs are used as indicators for the severity of NAFLD, but TAGs are by themselves not
hepatotoxic. This in contrast to other lipids that accumulate in fatty liver, such as free fatty acids (FFAs),
cholesterol, oxysterols, diacylglycerol, and phospholipids [26]. TAG synthesis might be a strategy to
prevent toxic FFA accumulation in hepatocytes [27]. We will discuss this possibility in more detail later
in this review.

Excessive TAG accumulation in hepatocytes can be either the result of (i) overload from exogenous
sources, (ii) endogenous overproduction, (iii) insufficient lipid catabolism, (iv) impaired secretion,
or a combination of these factors. Major external sources of lipids are free fatty acids from adipocytes
(responsible for approximately 60% of NAFLD patient livers) and dietary intake (ca. 14%). In addition,
excessive de novo lipogenesis accounts for the remaining 26% in NAFLD patient livers [28]. During an
imbalance in the lipid homeostasis caused by either one of the mechanisms mentioned above,
hepatocytes gradually accumulate neutral lipids. At some point, the LDs storing these lipids
coalesce and can eventually become so large that they fill most of the hepatocyte’s cytoplasm.
This phenomenon often coincides with a characteristic feature of NAFLD: hepatocytes with increased
diameters (1.5 to 2-fold), rarefied cytoplasms and cytoskeletal rearrangements, a feature referred to
as “ballooning” [29,30]. In addition, the composition of the various lipids within and surrounding
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the LDs changes upon high-fat diet [31]. For instance, the increase in TAGs is mainly driven by the
incorporation of saturated or monounsaturated fatty acids. Moreover, total amounts of diacylglycerols,
lysolipids and sphingolipids increase [31]. The variety in drivers of lipid accumulation are summarized
in Figure 2 and offers several potential strategies to limit the overload in hepatocytes, which will be
covered below.

Figure 2. Lipid droplet dynamics in hepatocytes. Cartoon of healthy (left) and lipid-laden
(right) hepatocytes showing key players in LD synthesis, stabilization and degradation.
ATGL, adipose triglyceride lipase; BC, bile canaliculi; DGAT2, diacylglycerol acyltransferase
2; FABP, FA-binding protein; iPLA2β, calcium-independent membrane phospholipase A2;
LDs, lipid droplets; LS, lysosome; N, nucleus; PLIN2, perilipin 2; PNLPLA3, Patatin-like phospholipase
domain-containing protein 3.

3.1. Limiting Overload of Lipids from Exogenous Sources

Non-esterified fatty acids (NEFAs) from adipocytes are taken up by hepatocytes via the surface
protein CD36 [32], in concert with caveolin-1 and plasma membrane (PM) FA-binding protein
(FABPPM) [33]. Fatty acid uptake by rat hepatocytes was found to be reduced by FABPPM-neutralizing
antibodies [34,35]. Furthermore, expression of CD36 was shown to be higher in obese patients
with NAFLD [36], and reduced lipid accumulation after interfering with CD36 has been reported
previously [37,38]. Mice on a high-fat diet and lacking hepatocyte-specific CD36 presented decreased
liver lipid accumulation and improved insulin sensitivity compared to mice with normal CD36
expression [37]. In miR-29aTg mice (expressing transgenic miRNA-29a), both expression of CD36
and fat diet-induced hepatic lipid accumulation was reduced. Moreover, other factors indicative for
steatohepatitis were reduced: pro-inflammatory cytokines such as IL-6 and MCP1, and markers for the
epithelial mesenchymal transition such as Snail and Vimentin [38]. This observation is in line with
other reports describing positive effects of miRNA-29a on liver fibrosis [39,40]. Interestingly, CD36 was
also implicated as a negative regulator of lipophagy in hepatocytes (lipophagy is discussed later) [41].
Together, reduced CD36-mediated lipid uptake reduces lipid accumulation in hepatocytes.

Fatty acid influx rates are also affected by calcium-independent membrane phospholipase A2
(iPLA2β). Hepatocytes isolated from iPLA2β-deficient mice showed a 56% decrease in fatty acid influx
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compared to wild-type mice [42]. The protein itself does not display fatty acid binding affinity but
might interact with the fatty acid binding complex (with CD36, caveolin-1 and FABP).

3.2. Limiting Endogenous Overproduction of Lipids

De novo synthesis of lipids (DNL) is the second most important source of intrahepatic lipid
accumulation. In this process, the liver converts excess carbohydrates into lipids. Hence, an effective
way to minimize DNL is to limit sugar intake. Although glucose is the primary substrate for
DNL, fructose was shown to be highly lipogenic, possibly by bypassing a critical regulatory
step—phosphofructokinase-1 (PFK-1)—in the glycolysis [43,44]. Several transcription factors regulate
DNL, including as sterol regulatory element binding protein 1 (SREBP1), carbohydrate response
element binding protein (ChREBP) and liver X receptors [45–47].

Interestingly, DNL is upregulated in NAFLD patients. In one study, DNL was approximately
doubled in patients suffering from NAFLD in comparison with healthy individuals [48]. In another
study, DNL contributed to 11, 20 or 40% of the total hepatic lipid accumulation in cohorts of healthy,
obese or obese-NAFL individuals, respectively [49]. Data from the same study also suggest a link
between insulin resistance and rate of DNL in NAFLD [49] as insulin insensitivity promoted DNL.
Moreover, weight loss of patients resulted in decreased DNL and hepatic lipid accumulation.

The synthesis of TAGs, the main neutral lipids in LDs, is catalyzed by diacylglycerol
acyltransferases (DGATs). In mammals, two enzymes without shared homology, DGAT1 and DGAT2,
are described [50]. Although both enzymes utilize the same substrates, diacylglycerol and fatty
acid-coA, their functions are thought to be distinct. DGAT1, abundantly expressed in the intestine [51],
is suggested to be responsible for the (re)esterfication of exogeneous fatty acids to prevent ER-stress [52].
By contrast, DGAT2 is believed to be the main player in the esterification of de novo synthesized fatty
acids [53,54]. In liver, DGAT2 is highly expressed [51]. As discussed earlier, TAG synthesis might prevent
the toxic effects of FFA accumulation in hepatocytes [27], and DGAT2 inhibition to treat NAFLD and/or
NASH was met with skepticism. Indeed, a study in which DGAT2 of mice on a methionine and choline
deficient diet was targeted using antisense oligonucleotides did show decreased TAG accumulation but
did not reduce liver inflammation and fibrosis (in fact, liver inflammation increased) [55]. In another
study, the decreased levels of plasma TAGs and VLDL apolipoprotein B observed in obese mice treated
with DGAT2 inhibitors could not be reproduced in rhesus primates, questioning the potential of DGAT2
inhibition in humans [56]. Nevertheless, several recent studies report more encouraging results [57–59].
A recent multicenter, double-blind, randomized, placebo-controlled study with 44 overweight patients
revealed a safe and effective inhibition of DGAT2 by antisense oligonucleotides. In this investigation,
a significant reduction in liver fat was observed in the treated group. Other lipid parameters including
total cholesterol, TAGs and lipoprotein level remained unaffected throughout the treatment period
and a follow-up period of almost three months. Most promising was the observation that hepatic
inflammation and fibrosis were reduced in patients that responded well to the treatment and showed
reduced hepatic triglyceride levels [58]. Another study with healthy human participants treated with
orally administered DGAT2 inhibitors showed that this treatment was successful in reducing hepatic
lipid levels. Importantly, also this reduction was accompanied by increased markers associated with
liver function, as well as a reduction in liver fibrosis [59]. Combined, these studies highlight the
potential of DGAT2 as a druggable target for the treatment of NASH.

3.3. Promoting Lipid Catabolism and Lipid Secretion

Enhancing the utilization of lipids might be another strategy to reduce hepatic lipid
accumulation. For example, beta-oxidation can be upregulated by the activation of carnitine palmitoyl
transferase-1 (CPT-1), a mitochondrial enzyme responsible for the formation of acyl carnitines.
Indeed, stimulated expression of CPT-1 by pharmaceuticals reduced hepatic lipid levels [60–62].

A reduction in hepatic lipid levels by the induction of LD degradation is also possible. LDs in
hepatocytes are degraded via two distinct pathways [63]: classical lipolysis or selective autophagy
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of LDs, also referred to as lipophagy [64]. Recently, it has been shown that interference in either one
of the pathway results in distinct LD phenotypes [63]. The inhibition of adipose triglyceride lipase
(ATGL), which blocks classical lipolysis, resulted in large LDs, whereas lysosomal inhibition gave rise
to smaller LDs. Interestingly, combined inhibition of both pathways also caused larger LDs, suggesting
that autophagy plays a role downstream of ATGL lipolysis. Several studies reported dysfunctional
autophagy in livers from NAFLD patients [65,66]. It was shown that blocking autophagy results in
increased lipid accumulation in liver [67], while activation of the pathway alleviated NAFLD [68,69].
Nevertheless, specific targeting lipophagy in hepatocytes remains challenging, and non-specific
activation of autophagy will go hand in hand with undesired side-effects.

Perilipins are thought to protect LDs from degradation [70]. Deletion of Plin2, the most abundant
perilipin in hepatocytes, was therefore investigated for its role in hepatocyte lipolysis [71,72].
Plin2-null mice were protected from obesity and showed enhanced lipid hepatic lipid levels
as well as improved insulin sensitivity [72]. Liver-specific Plin2 knockout showed similar
effects [71]. Interestingly, lipid analysis in these mice revealed that phosphatidylethanolamine
(PE) to phosphatidylcholine (PC) conversion mediated by the enzyme phosphatidylethanolamine
N-methyltransferase (PEMT) was affected [71]. Higher PE/PC ratios on LDs are associated with liver
injury in rats [73]. More recently, the specific role of Plin2 in hepatocytes was studied in more detail by
comparing full-body and liver-specific Plin2 deletion. This investigation showed that although both
hepatic and extra-hepatic Plin2 are involved in liver steatosis, Plin2 expressed in hepatocytes plays a
specific role in immune cell recruitment and fibrogenesis [74].

Recently, a study showed that the breakdown of hepatic LDs and TAG secretion is promoted by
insulin [75]. These findings are remarkable, as insulin promotes TAG synthesis and LD formation
in, e.g., adipocytes [76]. It was suggested that this mechanism facilitates the controlled release of
TAG-filled lipoproteins, which are known to be virtually unchanged during feeding–fasting cyles [77].
When insulin levels raise, phosphatidic acid on hepatic LDs elevates, which in turn triggers kinesin-1
motors to transport LDs to the smooth ER of the hepatocyte’s periphery. Here, LDs are broken down,
packaged into lipoproteins and secreted [75].

The lipid secretion via lipoproteins can be regulated to some extent. Although the number of
VLDL particles are similar in NAFLD patients and non-patients [78], total TAG-secretion was found to
be higher in NAFLD patients due to higher amounts of TAG per particle. Nevertheless, it has been
proposed that there is an upper limit in VLDL sizes that can pass the sinusoidal endothelial pores [79],
and thus, that there is a maximal capacity of neutral lipid secretion via lipoproteins.

3.4. A Reduction in Lipid Accumulation by Other Mechanisms

A common variant (Ile148Met) of Patatin-like phospholipase domain-containing protein 3
(PNPLA3), an ATGL homologue, has been reported to be an important risk factor for hepatic
steatosis [80–83]. The mutant protein was shown to accumulate on the surface of LDs [84] as a result of
disrupted ubiquitylation and proteasomal degradation [85,86]. However, how this mutation results in
lipid accumulation is not fully understood. Although PNPLA3-Ile148Met has a lower lipase activity
than the wild-type protein—which might explain the lipid accumulation—PNPLA3-null mice do
not accumulate lipids [87,88]. It has been proposed that the LD-coated PNPLA3 Ile148Met-variant
may recruit CGI-58, a factor responsible for decreases lipolysis [84]. Another hypothesis is that the
accumulation of the mutant protein on LDs might affect the presence or concentration of other proteins
by a mechanism referred to as molecular crowding [89,90]. Combined, enhancing ubiquitylation of
PNPLA3-Ile148Met might be a target to limit hepatic lipid accumulation of patients with this mutation,
but effective targeting of this variant for the use as clinical therapeutics will be challenging [91].

It should be noted that lipid accumulation in hepatocytes is largely heterogeneous and often
dependent on zonation—the distribution of differentially expressed hepatocytes along the lobule
axis. For instance, pericentral hepatocytes, cells that are relatively sparse in nutrients and oxygen,
are more likely to accumulate lipids [92,93]. Zonation might have implications for targeting strategies.
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Driven by the advances in RNAseq technology in recent years, single-cell transcriptomics have
revealed the zonal gene expression of healthy hepatocytes in great detail [94]. Intriguingly, these zonal
gene expression signatures are highly affected in response to high-fat diets [95]: both periportal and
pericentral hepatocytes downregulate many of their typical zonal markers. Intriguingly, high-fat diets
further upregulate the expression of a number of genes linked to lipid droplet formation in pericentral
hepatocytes, providing an explanation for the extreme zonal distribution in lipid accumulation of
steatosed livers [95].

Taken together, lipid homeostasis in hepatocytes is the result of a complex interplay between
many players, and perturbations in any of those systems give rise to lipid accumulation.
Extreme lipid-overload conditions compromise hepatocyte function and trigger a cascade of events,
e.g., secretion of stress factors, inflammation of the liver, activation of Kupffer cells, and—covered in
the next sections and one that drives fibrosis—activation of HSCs.

4. Hepatic Stellate Cells in Healthy and Diseased Liver

HSCs, also referred to as Ito cells, fat-storing cell, star-like cells, or lipocytes, are highly specialized
cells in the liver, responsible for the storage of most of the body’s retinoids (vitamin A or retinol and
its metabolites). Together with Kupffer cells and liver sinusoidal endothelial cells (LSECs), HSCs are
non-parenchymal liver cells and are located in the space of Disse, the perisinusoidal space between
the parenchymal liver cells (hepatocytes) and a liver sinusoid [17]. Although total numbers of HSCs
account for only 5–15% of the total liver cells [17,21,96], the vast majority of the hepatic retinoid stores
are found in this cell population. Retinol is mainly stored as RE, the esterified form of retinol. These REs,
predominantly retinyl palmitate in HSCs, are highly hydrophobic and are stored in the core of LDs.
Vitamin A-storing stellate cells are mainly described for the liver, but morphologically similar cell types
have been observed in a few other organs, e.g., pancreas and intestine. Yet, the involvement of these
cells in pancreas and/or intestinal diseases are not as thoroughly studied as the HSCs. Amounts of REs
found in LDs are reported to be 13–68% of the total neutral lipid content, depending on the dietary
retinoid intake [97,98]. Furthermore, HSC LDs appear to be relatively large in size and small in number.
Although diameters up to 8 µm are reported, most investigators report average LD diameters between
1.1 and 2.0 µm, depending on the animal, dietary status or imaging technique [99–102].

Upon various types of damage to the liver (e.g., caused by excessive hepatic lipid accumulation or
viral insults), the quiescent and lipid-laden HSCs transdifferentiate into an activated, myofibroblast-like
phenotype, devoid of the characteristic large and RE-positive lipid droplets. These activated cells
produce significant amounts of extracellular matrix (ECM), a hallmark of fibrosis. Hence, the activation of
HSCs is one of the major drivers of hepatic fibrosis. In line with the zonation in lipid accumulation observed
in hepatocytes, activation of HSCs is heterogeneous [103] and primarily found in the periportal zone [104].

4.1. Lipid Droplet Dynamics in Activating HSCs

Although two activities that catalyze retinol esterification are reported, the predominant activity in
quiescent HSCs is exhibited by the enzyme lecithin: retinol acyltransferase (LRAT). LRAT esterifies retinol
utilizing the sn-1 fatty acid of PC. Mice lacking LRAT store hardly any REs in the liver [105–107]. By contrast,
hepatic RE-levels are not affected in mice lacking Dgat1 (diacylglycerol O-acyltransferase 1), an enzyme
that, besides its primary involvement in TAG-synthesis, also has the capacity to synthesize REs [108].

An early report showed that rats kept on a vitamin A-deficient diet for eight weeks did not
have the large LDs that are so characteristic for HSCs [109]. Later, transmission electron microscopy
revealed that also LRAT-/- livers from mice lack these large LDs in HSCs [107], an observation that was
confirmed by flow cytometry [110]. This lack of LDs is surprising as HSC lipid droplets do not solely
contain REs, but also TAGs and CEs [101]. Indeed, studies of isolated LRAT-/- HSCs under cell culture
conditions show that these cells still have the intrinsic ability to synthesize small TAG/CE-containing
LDs [111]. Why LRAT-/- HSCs lack their large and RE-positive LDs in vivo remains to be elucidated.
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A characteristic feature of HSCs is their ability to differentiate into a myofibroblastic cell type
during liver injury/inflammation. During this process, RE-containing lipid droplets are degraded,
while fibrillar collagen and growth factors are secreted. This “activation” process can be mimicked
in vitro by culturing freshly isolated HSCs in plastic dishes containing medium with fetal bovine serum
(FBS) [17]. This in vitro activation, most likely triggered by the combined stiffness of the dish [112]
and pro-fibrotic components in the serum, results in the upregulation of typical activation markers
such as α-smooth muscle actin (α-SMA) and collagen α1(I), accompanied by the loss of retinoids [17].
However, it should be noted that this activation procedure results in gene expression patterns that
only partly matches those from activated HSCs in vivo [113] and obtained data should be interpreted
with caution.

In HSCs isolated from rats, in vitro activation is accompanied by more than a 2-fold decrease
in LD size 4 days [101], while numbers of LDs per cell dramatically increase. LD localization shifts
from perinuclear to peripheral within a week (Figure 3). This change in morphology and intracellular
localization is followed by a change in neutral lipid composition. Amounts of RE drops with more than
50% in 4 days, and after a week less than 20% of the original levels are still present. By contrast, the other
neutral lipids found in LDs, CEs and TAGs show opposite dynamics. The increase in TAGs is driven
by a pronounced increase in TAGs containing polyunsaturated fatty acids (PUFAs). Whether these
described in vitro data reflect activating HSCs in vivo is unclear. Loss of REs was reported in fibrotic
livers [102,114], but data about other neutral lipids in these cells are limited.

A number of morphological features of HSCs in fibrotic livers were studied by electron
microscopy [115,116]. In both studies, liver biopsies of human patients with chronic hepatitis C
were imaged. In healthy livers, large LDs were observed in HSCs. In livers with increasing fibrosis
severity scores, numbers of LD-containing HSCs decreased [116]. Even in the most pronounced
fibrotic stages, LDs did not disappear completely [115]. In addition, a comparison of HSCs isolated by
two different FACS (Fluorescent Activated Cell Sorting) protocols underlined the relation between
LD size and activation status: retinoid autofluorescence-sorted cells—associated with a quiescent
state—display larger LDs than cells sorted by GFP under a collagen promotor—typically linked to a
more activated state [100].

The counteracting dynamics of the different types of neutral lipids are intriguing:
large vitamin A LDs appear to be replaced by smaller LDs containing polyunsaturated TAGs.
Interestingly, early literature already proposed the existence of two types of LDs in HSCs [99,109,117].
Moreover, recent work from our group shows that HSCs cultured for a few hours have a non-uniform
retinoid distribution over LDs. As revealed by retinoid autofluorescence, large LDs contain more
vitamin A than smaller peripheral LDs [118]. These observations suggest the existence of distinct LD
pools: an “original” LD pool and an emerging “new” LD pool [119]. We will further elaborate on their
different metabolic characteristics in the next section.

4.2. Interfering by Targeting Specific LDs

The remarkable loss of lipid droplets in activating HSCs raises the question of how this loss
is linked with activation. Do the cells need the content of the LDs for energy, membrane building
blocks and/or signaling to facilitate activation, or are the big LDs a burden for the cell in a changing
environment where its physiological role is different compared to its role in healthy livers?
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Figure 3. Lipid droplet dynamics in quiescent and activating hepatic stellate cells. HSCs have two
distinct metabolic LD pools: “original” LDs, associated with quiescent HSCs (left) and “new” LDs
that emerge during HSC activation (right). While “original” LDs (1) are predominantly degraded by
lysosomes (2), “new” LDs are quickly recycled by repetitive synthesis by ACSL4 and DGAT1 (3) and
degradation by neutral lipases (4). ACSL4, long-chain fatty acid:CoA ligase 4; ATGL, adipose triglyceride
lipase; chol, cholesterol; DGAT1, diacylglycerol acyltransferase 1; FFA, free fatty acid; HSC, hepatic
stellate cell; LAL, lysosomal acidic lipase; LDs, lipid droplets; LRAT, lecithin retinol acyltransferase;
LS, lysosome; N, nucleus; PLIN5, perilipin 5; RE, retinyl ester; ROH, retinol.

4.2.1. Targeting the “Original” LD Pool

Despite numerous reports that studied the relation between retinoids on the one hand and HSC
activation and liver fibrosis on the other hand, the exact role of retinoids remains unclear. Whereas some
early publications show that retinoids can suppress HSC activation and/or liver fibrosis [120–125],
others have also reported the opposite [126,127]. These puzzling outcomes clearly indicate that the
role of vitamin A and its numerous metabolites in liver injury is complex and that multiple factors are
involved. Further, limitations of the culture and in vivo models, species differences, liver toxicity due to
the administration of high concentrations of retinoids [128], and differences between endogenous and
exogenous retinoids could affect outcomes. To overcome at least these last two considerations, a mouse
model without endogenous stores of hepatic REs was studied [105–107]. Although the distribution and
number of HSCs in these LRAT-/- livers—almost devoid of hepatic REs—were not affected, HSCs lacked
their characteristic large vitamin A-containing LDs. Subsequently, acute liver fibrosis was induced
by bile duct ligation (BDL) or treatment with tetrachloromethane (CCl4). Remarkably, no signs of
increased fibrosis were found in LRAT-/- as compared to wild-type livers [107,110]. This finding argues
that the presence of LDs in HSCs is not inversely correlated to fibrosis.

Another approach to interfere with the “original” LD pool to study its role in HSC activation is
to block its degradation by inhibiting autophagy. Autophagy is a ubiquitous catabolic process that
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delivers molecules, cytoplasmic components and/or whole organelles to lysosomes for degradation [129].
A number of studies showed the involvement of autophagy in HSC LD degradation. First, in an
immortalized mouse stellate cell line, JS-1, LDs increased after treatment with either autophagy
inhibitor 3-methyladenine or lentiviral particles containing siAtg7, (impairing autophagy), as well as
the expression of Plin2, an established LD marker [130]. Similar findings were described for primary
murine and human HSCs [131]. Pharmaceutical inhibition of autophagy in these cells resulted
in a significant dose-dependent increase in the number of large LDs as well as co-localization of
BODIPY (lipid staining) and LC3B, a marker for autophagosomes [131]. Furthermore, inhibition of
lysosomal acid lipase (LAL), a lipase activity in lysosomes and associated with RE degradation [132,133],
was shown to attenuate LD degradation in HSCs, leading to accumulated vitamin A-positive structures
in lysosomes [133].

Several groups report that blocking autophagy in HSCs affects activation and subsequent
fibrogenesis. HSCs cultured in the presence of several autophagy inhibitors showed decreased
expression of established activation markers [131]. Another group showed a decreased expression
of α-SMA and collagen I in mouse HSC cell line JS-1 transduced with lentiviral particles containing
siRNAs against Atg5 or Atg7 (impairing autophagy), indicating a diminished myofibroblastic HSC
phenotype [130]. ATG-proteins are essential for autophagy, and knockdown results in suppression
of the pathway. Inhibition of LAL results in decreased expression of the HSC-activation marker
α-SMA [133]. The role of autophagy in HSCs was also confirmed in vivo. Making use of an
HSC-specific Atg7-knockout (Atg7F/F-GFAP-cre), less severe signs of liver fibrosis in the knockout
mice were observed after chemical induction of fibrosis [130]. Combined, these results indicate
that interference of the “original” LD pool could be an effective target to suppress HSC activation
(Figure 3). Obviously, it remains to be established whether the effect of autophagy on HSC activation is
mediated by LD breakdown, or more specifically, the breakdown of LD components such as retinoids,
CEs and/or TAGs into bioactive intermediates. Whether targeting liver autophagy could be used
as a clinical approach remains to be elucidated. Despite the promising effects on HSC activation,
inhibition of autophagy will also block LD degradation in hepatocytes and thus increase hepatic
steatosis, as discussed earlier in this review.

4.2.2. Targeting the “New” LD Pool

While the “original” LD pool predominantly consists of REs, the “new” pool is characterized
by TAG species containing PUFAs. A key role in the synthesis of this pool is played by long-chain
acyl-CoA synthetase 4 (ACSL4). This enzyme activates PUFAs to form fatty acid-CoA [134]. In contrast
to other family members (ACSL1, ACSL3, ASCL5 and ACSL6), which have other specific fatty acid
substrate preferences, both mRNA and protein levels of ACSL4 increased during HSC activation [135].
Immunofluorescence of HSCs revealed ring-like structures of ACSL4 surrounding lipid-dye LD540,
indicating LD localization. Knockdown of ACSL by RNAi resulted in a decrease in PUFA-containing
TAGs. Moreover, pharmacological inhibition of ACSL4 by the antidiabetic drug rosiglitazone shows a
dose-dependent suppression of α-SMA expression in cultured HSCs [135].

Also, DGAT1 is involved in the formation of the “new” LD pool. This enzyme, together with its
isoform DGAT2, is responsible for TAG formation by esterification of diacylglycerol with acyl-CoA.
In contrast to DGAT2, knockdown of DGAT1 resulted in decreased synthesis of PUFA-containing
TAGs in HSCs [136]. In addition, pharmacological inhibition of DGAT1 by T863 reduces the expression
of activation marker α-SMA in rat HSCs. In murine HSCs, however, this was not the case [136],
emphasizing species to species differences. The central role of DGAT1 over DGAT2 in HSCs is
interesting, as pharmaceutical inhibition of the latter was shown to be effective in preventing lipid
accumulation in hepatocytes (discussed earlier). Indeed, this treatment did not result in activation of
HSCs [59]. It is unlikely that the ability of DGAT1 to synthesize REs plays a role during HSC activation
as RE levels rapidly decline during this process and this activity is minimal in comparison to the
RE-synthesis capacity of LRAT [111]. Hence, the dependence on incorporation of exogenous fatty
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acids during HSC activation (mediated by DGAT1) may provide an interesting therapeutic window to
specifically target HSCs.

In contrast to the “original” LD pool, the “new” LD pool appears to be less sensitive to lysosomal
degradation. This pool is predominantly degraded by ATGL (also known as PNPLA2), which expression
in HSCs was reported by several groups [136–139]. The inhibition of ATGL shows contradictory
results. Although suppression of α-SMA expression was found in rat HSCs in the presence of
ATGL-inhibitor Atglistatin [136,140], this effect was not observed in HSCs isolated from mice [136,138]
(Figure 4). Whether this discrepancy can be explained by species differences or study design needs
further investigation.

Figure 4. Lipid droplet homeostasis and HSC activation. Summary of targets and techniques
that promote or suppress HSC activation as discussed in the main text. Numbers (1–4) refer to
the stages described in Figure 3. siX, siRNA treated; X-/-, genetic knockout; X ↑, overexpression;
ACAT1, acetyl-CoA acetyltransferase 1; chol, cholesterol; DGAT1, diacylglycerol acyltransferase
1; FAPB, FA-binding protein; FFA, free fatty acid; HSC, hepatic stellate cell; LDs, lipid droplets;
LS, lysosome; N, nucleus; ROH, retinol.

ATGL-dependent lipolysis is a highly regulated process, and several factors have been shown to
affect lipase activity of ATGL. For instance, LD-protein Plin5 was shown to be involved in reduced
lipolysis by biochemical ATGL-inhibition [141,142]. Interestingly, Plin5 is expressed in quiescent mouse
HSCs, and its expression is decreasing during activation. Moreover, the exogenous expression of
Plin5 suppresses activation and increased amounts of neutral lipids [143]. These observations fit in a
model where the “original” LD pool is ATGL protected by Plin5, while the “new” pool, Plin5 depleted,
might be more accessible for ATGL and its co-activators.

In addition to Plin5, fat-specific protein 27 (FSP27) was also shown to inhibit lipolysis by ATGL,
both on the transcriptional level [144] and by biochemical interaction [145]. Strikingly, a study on
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FSP27 in HSCs showed very similar characteristics as compared to Plin5. First, initial expression in
quiescent HSCs decreased during activation, and second, exogenous expression of FSP27 by lentiviral
transductions decreased established activation markers in in vitro activated HSCs [146]. Taken together,
these observations for both Plin5 and FSP27 in HSCs indirectly support the role of ATGL in HSC
activation (Figure 3).

Several other activities, with PNPLA3 as the most prominent one, have been linked to neutral
lipid degradation in HSCs. We refer the readers to Haemmerle and Lass [147] for more information
about this topic.

4.2.3. Targeting Cholesterol(esters)

Liver fibrosis is reported to be more severe in patients suffering hypercholesterolemia [148,149],
a condition characterized by elevated levels of cholesterol in the blood. Moreover, free cholesterol
(FC) and CEs were shown to accumulate in activated HSCs [101,148,149]. It was reported that FC
accumulation in HSCs impairs lysosomal degradation of toll-like receptor 4 (TLR-4), thereby initiating
a vicious cycle of increased sensitivity to TGFβ-induced activation and subsequent accumulation of
cholesterol and TLR-4 protein [148,149]. In addition, it was suggested that conversion from FC to
CE, stored in LDs, might be a target to break this loop; in HSCs lacking the predominantly expressed
isoform of acetyl-coA cholesterol acyltransferase, ACAT1, FC levels were further elevated, resulting in
increased expression of activation markers [150] (Figure 4).

Combined, the discussed data about LD dynamics in HSCs clearly show that the simple paradigm of
“good” high-fat HSCs and fibrogenic low-fat HSCs is not the complete picture. To better acknowledge
this subtlety in the screening of drugs targeting NALFD, systems containing both cell types are
of interest.

5. Advanced In Vitro Models for Studying Liver Disease

Freshly isolated hepatocytes rapidly lose their biotransformation capacity, e.g., P450 CYP activity
decreases to 30% within 24 h after isolation. For this reason, the establishment of a long-term
culture of hepatocyte-(like) cells is instrumental in the study of cause–effect relations between
hepatic lipid overload and lipotoxicity. Even more so, many more cell types other than hepatocytes
(e.g., HSCs, Kupffer cells) play important roles NALFD [151]. As a result, designing in vitro models that
include these cell types is essential to better understand the complex molecular details of the disease and
to screen the efficacy of potential drugs. Only these type of models will allow to study the interactions
between different cells, their feedback loops and substrate routing. Furthermore, when these model
systems contain cells that are directly derived from the patient in question, screening for personalized
medicine will come within reach.

Of course there is no better model to predict the response to particular drug treatments than
testing on the person itself, but not desirable for many practical and ethical reasons. Cell lines
(often tumor-derived) are very reductionistic model systems and have limited individual predictive
value. Rodent models, often highly inbred with little genetic variation, are widely used for drug
screening, but species-to-species differences hamper translation to the highly (genetically) variable
human clinical practice. Recent developments in liver organoid technology combine the best of both
worlds [152]. A practical definition describes an organoid as “an in vitro 3D-multicellular cluster
derived from stem/progenitor cells, capable of self-renewal and self-organization, that recapitulates
the function of the tissue from which it was derived” [153,154]. Organoids can be produced from
individuals, and—especially in combination with other cell types—mimic real life to a certain
functional degree. Mouse liver organoids were first described in 2013 by the Clevers group [155].
In the following years, liver organoids from humans, dogs, and rats have been described [156–158].
For cats, we reported a protocol to differentiate feline liver ductular stem cell-derived organoids into a
hepatocyte-like phenotype with hepatocyte features such as albumin expression and CYP activity [159].
These organoids accumulate lipids when they are cultured in medium supplemented with exogenous



Cells 2020, 9, 2244 13 of 22

fatty acids. Interestingly, an inverse correlation was observed between hepatocyte neutral lipid levels
and cell survival [159]. This simplified model system allowed us to screen for various compounds
which reduce neutral lipids in hepatocytes [160]. A limitation for the progression from a simplified
NAFLD model (lipid-laden hepatocytes) to a simplified NASH model is the lack of profibrogenic
stellate and inflammatory cells. To this end, a combination of hepatocyte-like cells (HepaRG) and
stellate cells was introduced by the Van Grunsven group [161]. More recently, the same group generated
HSCs from human iPS cells [162]. A co-culture of organoids with several patient-specific cell types
was recently published by the Takebe group from Cincinnati, Ohio [163]. They reported an in vitro
organoid model composed of hepatocyte-like, stellate-like, and Kupffer-like cells derived from iPS cells
from healthy individuals and patients with steatohepatitis. These multicellular organoids acquired a
steatohepatitis phenotype after fatty acid supplementation. The stiffness of these organoids increased,
which is indicative of a fibrotic insult. Moreover, FGF19, the intestinal derived FXR-agonist, reverted
some of the FFA-induced effects. This model represents the most advanced in vitro model for human
liver fibrosis currently available and offers a promising opportunity to screen for antifibrotic drugs
for personalized medicine. Several pharmaceutic targets have been suggested. For lipid-associated
liver diseases, promising results were achieved after stimulation with the FXR-agonist obeticholic
acid. The treatment improved lipid profiles of serum LDLs and other biochemical parameters such
as γ-glutamyltransferase, alanine aminotransferase, FGF19 levels, and weight loss—all associated
with beneficial effects for NASH patients [164–168]. Pharmaceutical targeting of the nuclear receptors
Peroxisome Proliferator-Activated Receptor-α and -δ (PPAR-α and -δ), both playing central roles
in the regulation of lipid metabolism, is currently under various stages of development [169–171].
For instance, the PPAR-α and -δ agonist GFT505/Elanfibror was shown to improve serum lipid profiles
of patients [169–171].

6. Conclusions

“Love your liver, lower your lipids” could be a suitable slogan for a liver-disease-prevention
campaign. However, just like most catchphrases, this simple one liner does not do justice to the
immense complexity of lipid diversity and dynamics. A better understanding and appreciation of
the diverse role of lipid metabolism in the many liver cell types will be key to prevent, halt, or cure
liver fibrosis in the future. Lifestyle interventions such as lowering the caloric uptake and improving
exercise are useful strategies to prevent or limit the risk for NAFLD [172]. However, pharmacological
strategies to target NAFLD represent an attractive alternative in view of the increasingly large number
of patients.
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