
Vol.:(0123456789)

Algorithmica (2021) 83:297–336
https://doi.org/10.1007/s00453-020-00758-8

1 3

On Structural Parameterizations of the Bounded‑Degree
Vertex Deletion Problem

Robert Ganian1 · Fabian Klute2 · Sebastian Ordyniak3

Received: 8 May 2019 / Accepted: 6 August 2020 / Published online: 19 August 2020
© The Author(s) 2020

Abstract
We study the parameterized complexity of the Bounded-Degree Vertex Deletion
problem (BDD), where the aim is to find a maximum induced subgraph whose max-
imum degree is below a given degree bound. Our focus lies on parameters that meas-
ure the structural properties of the input instance. We first show that the problem is
W[1]-hard parameterized by a wide range of fairly restrictive structural parameters
such as the feedback vertex set number, pathwidth, treedepth, and even the size of a
minimum vertex deletion set into graphs of pathwidth and treedepth at most three.
We thereby resolve an open question stated in Betzler, Bredereck, Niedermeier and
Uhlmann (2012) concerning the complexity of BDD parameterized by the feedback
vertex set number. On the positive side, we obtain fixed-parameter algorithms for
the problem with respect to the decompositional parameter treecut width and a novel
problem-specific parameter called the core fracture number.

Keywords Bounded-degree vertex deletion · Feedback vertex set · Parameterized
algorithms · Treecut width

Parts of this paper appeared in a preliminary and shortened form in the Proceedings of STACS 2018,
the 35th Symposium on Theoretical Aspects of Computer Science [25]
This work was conducted while Fabian Klute was a member of the “Algorithms and Complexity
Group” at TU Wien.

 * Sebastian Ordyniak
 sordyniak@gmail.com

1 Algorithms and Complexity Group, TU Wien, Vienna, Austria
2 Utrecht University, Utrecht, The Netherlands
3 Department of Computer Science, University of Sheffield, Sheffield, UK

http://orcid.org/0000-0003-1935-651X
http://crossmark.crossref.org/dialog/?doi=10.1007/s00453-020-00758-8&domain=pdf

298 Algorithmica (2021) 83:297–336

1 3

1 Introduction

This paper studies the Bounded-degree Vertex deletion problem (BDD): given an
undirected graph G, a degree bound d, and a limit � , determine whether it is possible
to delete at most � vertices from G in order to obtain a graph of maximum degree
at most d. Aside from being a natural generalization of the classical Vertex CoVer
problem, BDD has found applications in areas such as computational biology [19]
and is the dual problem of the so-called s-Plex Detection problem in social network
analysis [3, 38, 39, 44]. Finally, related problems on directed as well as undirected
graphs which model problems in voting theory and social network analysis have also
been studied in the literature [5, 7].

It is not surprising that the complexity of BDD and several of its variants has
been studied extensively by the theory community in the past years [4, 6, 9, 10, 13,
34, 42, 44]. Since the problem is NP-complete in general, it is natural to ask under
which conditions does the problem become tractable. In this direction, the parame-
terized complexity paradigm [12, 15, 41] allows a more refined analysis of the prob-
lem’s complexity than classical complexity. In the parameterized setting, we asso-
ciate each instance with a numerical parameter k and are most often interested in
the existence of a fixed-parameter algorithm, i.e., an algorithm solving the problem
in time f (k) ⋅ |V(G)|O(1) for some computable function f. Parameterized problems
admitting such an algorithm belong to the class FPT; on the other hand, parameter-
ized problems that are hard for the complexity class W[1] or W[2] do not admit
fixed-parameter algorithms (under standard complexity assumptions).

In general, there exist two notable approaches for selecting parameters: a param-
eter may either originate from the formulation of the problem itself (often called
natural parameters), or rather from the structure of the input graph (so-called struc-
tural parameters, most prominently represented by the decomposition-based param-
eter treewidth ��). The parameterized complexity of BDD has already been studied
extensively through the lens of natural parameters (especially d and �). In particular,
BDD is known to be FPT when parameterized by d + � [19, 39, 42], W[2]-hard
when parameterized only by � [19], and NP-complete when parameterized only by
d (as witnessed by the case of d = 0 , i.e., Vertex CoVer). The complexity of BDD is
also fairly well understood when considering combinations of natural and structural
parameters: it is FPT when parameterized by �� + d due to Courcelle’s Theorem
[11] and has been shown to be FPT when parameterized by �� + � [6].

Given the above, it is fairly surprising that the problem has remained fairly unex-
plored when viewed through the lens of structural parameters only, i.e., in the case
where we impose no restrictions on the problem formulation itself but only on the
structure of the graph. BDD was shown W[1]-hard when parameterized by tree-
width [6], complementing the previous O(n��+1) algorithm of Dessmark et al. [13].
The only structural parameter which is known to make the problem fixed-parameter
tractable is the feedback edge set number, i.e., the minimum number of edges whose
deletion results in a forest [6].

Contribution The goal of this paper is to provide new insight into the complex-
ity of BDD parameterized by the structure of the input graph. Our first main result

299

1 3

Algorithmica (2021) 83:297–336

shows that BDD is �[1]-hard parameterized by the feedback vertex set number, i.e.,
the minimum number of vertices whose deletion results in a forest. This resolves
an open question in [6]. Interestingly, our result is significantly stronger since we
show that hardness even applies in the case that the remaining parts, after delet-
ing the feedback vertex set, are trees of height three. This rules out fixed-parameter
algorithms w.r.t. most of the remaining “classical” decomposition-based structural
parameters such as pathwidth and treedepth [40] as well as w.r.t. the vertex deletion
distance [23, 40] to bounded pathwidth, treedepth, and treewidth. On the way to our
hardness result we show hardness for several multidimensional variants of the clas-
sical subset sum problem parameterized by the number of dimensions, which we
believe are interesting on their own.

In light of the above, it is natural to ask whether there exist natural decomposi-
tion-based parameters for which BDD is fixed-parameter tractable. Our main algo-
rithmic result answers this question affirmatively: we obtain a fixed-parameter algo-
rithm utilizing the recently introduced structural parameter called treecut width. The
importance of treecut width is that it plays a similar role with respect to the funda-
mental graph operation of immersion as the graph parameter treewidth plays with
respect to the minor operation [32, 37, 45]. Up to now, only a handful of problems
are known to be FPT when parameterized by treecut width but W[1]-hard when
parameterized by treewidth [24]; recent work on treecut width also included new
algorithmic lower bounds [27] and experimental evaluations [26]. We note that
unlike previous algorithms exploiting treecut width, ours does not make use of an
Integer Linear Programming formulation but instead relies purely on combinatorial
arguments.

Our second algorithmic result focuses on structural parameters which are not
based on any particular decomposition of the graph, but instead measure the “ver-
tex-deletion distance” to a certain graph property. Such structural parameters have
been successfully used in the past for a plethora of other difficult problems [16,
17, 23, 28, 29, 35]. In this context and taking into account the strong lower bounds
obtained in Sect. 3, we introduce a structural parameter which is specifically tailored
to BDD and which we call the core fracture number. Roughly speaking, the core
fracture number k is the vertex deletion distance to a graph where each connected
component only contains at most k vertices which exceed the degree bound d. We
show that computing the core fracture number is FPT which in turn gives rise to a
fixed-parameter algorithm for BDD; the latter is achieved by identifying and formal-
izing a type-aggregation condition, allowing for an encoding of the problem into an
Integer Linear Program with a controlled number of integer variables. Since core
fracture number generalizes vertex cover, this also resolves the question from [6] if
BDD is FPT parameterized by vertex cover.

Finally, we exclude the existence of a polynomial kernel [12, 15] for BDD param-
eterized by the treecut width and core fracture number, and compare the two param-
eters in Sect. 5.

300 Algorithmica (2021) 83:297–336

1 3

2 Preliminaries

2.1 Basic Notation

We use standard terminology for graph theory, see for instance [14]. All graphs
except for those used to compute the torso-size in Sect. 2.4 are simple; the multi-
graphs used in Sect. 2.4 have loops, and each loop increases the degree of the vertex
by 2.

Let G be a graph. We denote by V(G) and E(G) its vertex and edge set,
respectively. For a vertex v ∈ V(G) , let NG(v) = {y ∈ V(G) ∶ vy ∈ E(G)} ,
NG[v] = NG(v) ∪ {v} , and degG(v) denote its open neighborhood, closed neighbor-
hood, and degree, respectively. For a subset X ⊆ V(G) , the (open) neighborhood
NG(X) of X is defined as

⋃
x∈X N(x) ⧵ X . The set NG[X] refers to the closed neigh-

borhood of X defined as NG(X) ∪ X . We refer to the set NG(V(G) ⧵ X) as �G(X) ; this
is the set of vertices in X which have a neighbor in V(G) ⧵ X . We omit the lower
index G, if G is clear from the context. For a vertex set A, we use G − A to denote
the graph obtained from G by deleting all vertices in A. We use [i] to denote the set
{0, 1,… , i} ; note that [i] includes 0. For completeness, we provide a formal defini-
tion of our problem of interest below.

Bounded-Degree Vertex Deletion (BDD)

Input: An undirected graph G = (V,E) and integers d ≥ 0 and
� ≥ 0.

Question: Is there a subset V ′ ⊆ V with |V ′| ≤ � whose removal
from G yields a graph in which each vertex has degree
at most d?

2.2 Parameterized Complexity

A parameterized problem P is a subset of �∗ × ℕ for some finite alphabet � . Let
L ⊆ 𝛴∗ be a classical decision problem for a finite alphabet, and let p be a non-
negative integer-valued function defined on �∗ . Then L parameterized by � denotes
the parameterized problem { (x, �(x)) | x ∈ L } where x ∈ �∗ . For a problem
instance (x, k) ∈ �∗ × ℕ we call x the main part and k the parameter. A parameter-
ized problem P is fixed-parameter tractable (FPT in short) if a given instance (x, k)
can be solved in time O(f (k) ⋅ p(|x|)) where f is an arbitrary computable function
of k and p is a polynomial function; we call algorithms running in this time fixed-
parameter algorithms. We refer the reader to [15] for more details on parameterized
complexity.

Parameterized complexity classes are defined with respect to fpt-reducibility.
A parameterized problem P is fpt-reducible to Q if in time f (k) ⋅ |x|O(1) , one can
transform an instance (x, k) of P into an instance (x�, k�) of Q such that (x, k) ∈ P
if and only if (x�, k�) ∈ Q , and k� ≤ g(k) , where f and g are computable functions

301

1 3

Algorithmica (2021) 83:297–336

depending only on k. Owing to the definition, if P fpt-reduces to Q and Q is fixed-
parameter tractable then P is fixed-parameter tractable as well.

Central to parameterized complexity is the following hierarchy of complex-
ity classes, defined by the closure of canonical problems under fpt-reductions:
��� ⊆ �[1] ⊆ �[2] ⊆ ⋯ ⊆ ��. All inclusions are believed to be strict. In particu-
lar, ��� ≠ �[1] under the Exponential Time Hypothesis [30].

The class �[1] is the analog of �� in parameterized complexity. A major goal
in parameterized complexity is to distinguish between parameterized problems
which are in ��� and those which are �[1]-hard, i.e., those to which every prob-
lem in �[1] is fpt-reducible. There are many problems shown to be complete for
�[1] , or equivalently �[1]-complete, including the MultiColored Clique (MCC)
problem [15].

Closely related to the search for fixed-parameter algorithms is the search for
efficient preprocessing techniques. The goal here is to find an equivalent instance
(the so-called kernel) in polynomial time whose size can be bounded by a func-
tion of the parameter. A kernelization algorithm transforms in polynomial time a
problem instance (x, k) of a parameterized problem L into an instance (x�, k�) of L
such that (i) (x, k) ∈ L iff (x�, k�) ∈ L , (ii) k� ≤ f (k) , and (iii) the size of x′ can be
bounded above by g(k), for functions f and g depending only on k. It is easy to
show that a parameterized problem is in FPT if and only if there is kernelization
algorithm. A polynomial kernel is a kernel, whose size can be bounded by a poly-
nomial in the parameter.

A polynomial parameter transformation from a parameterized problem P to
a parameterized problem Q is a parameterized reduction from P to Q that maps
instances (I, k) of P to instances (I�, k�) of Q with the additional property that

1. (I�, k�) can be computed in time that is polynomial in |I| + k , and
2. k′ is bounded by some polynomial p of k.

Proposition 1 [2, Proposition 1] Let P and Q be two parameterized problems such
that there is a polynomial parameter transformation from P to Q . Then, if Q has a
polynomial kernel also P has a polynomial kernel.

In the following we will introduce another tool called cross-compositions,
introduced by [8], for showing lower bounds for the size of kernels. An equiva-
lence relation R on �∗ is called a polynomial equivalence relation if the follow-
ing two conditions hold:

1. There is an algorithm that given two strings x, y ∈ �∗ decides whether x and y
belong to the same equivalence class in (|x| + |y|)O(1) time.

2. For any finite set S ⊆ 𝛴∗ the equivalence relation R partitions the elements of S
into at most (maxs∈S |s|)O(1) classes.

302 Algorithmica (2021) 83:297–336

1 3

Let L ⊆ 𝛴∗ be an (unparameterized) problem and let P ⊆ 𝛴∗ × ℕ be a parameter-
ized problem. We say that L AND-cross-composes into P if there is a polyno-
mial equivalence relation R and an algorithm which, given t instances (x1,… , xt)
of L belonging to the same equivalence class of R , computes an instance
(x, k) ∈ �∗ × ℕ of P in time polynomial in

∑t

i=1
�xi� such that:

1. (x, k) ∈ P if and only if xi ∈ L for every i with 1 ≤ i ≤ t,
2. k is bounded by a polynomial in (maxt

i=1
|xi|) + log t.

Proposition 2 [8, Corollary 3.6] If an NP-hard language L AND-cross-composes
into the parameterized problem P , then P does not admit a polynomial kernel unless
���� ⊆ ��∕poly.

2.3 Integer Linear Programming

Our algorithms use an Integer Linear Programming (ILP) subroutine. ILP is a well-
known framework for formulating problems and a powerful tool for the development
of fixed-parameter algorithms for optimization problems.

Definition 1 (p-Variable Integer Linear Programming Optimization) Let
A ∈ ℤ

q×p, b ∈ ℤ
q×1 and c ∈ ℤ

1×p . The task is to find a vector x ∈ ℤ
p×1 which mini-

mizes the objective function c × x̄ and satisfies all q inequalities given by A and b,
specifically satisfies A ⋅ x̄ ≥ b . The number of variables p is the parameter (Fig. 1).

Lenstra [36] showed that p -ilP, together with its optimization variant p -oPt-
ilP (defined above), are in FPT. His running time was subsequently improved by
Kannan [31] and Frank and Tardos [21] (see also [20]).

Proposition 3 ([20, 21, 31, 36]) p-OPT-ILP can be solved in time O(p2.5p+o(p) ⋅ L) ,
where L is the number of bits in the input.

Fig. 1 A graph G and a width-3 treecut decomposition of G, including the torso-size (left value) and
adhesion (right value) of each node

303

1 3

Algorithmica (2021) 83:297–336

2.4 Treecut Width

The notion of treecut decompositions was first proposed by Wollan [45], see also
[37]. A family of subsets X1,… ,Xk of X is a near-partition of X if they are pairwise
disjoint and

⋃k

i=1
Xi = X , allowing the possibility of Xi = �.

Definition 2 A treecut decomposition of G is a pair (T ,X) which consists of a rooted
tree T and a near-partition X = {Xt ⊆ V(G) ∶ t ∈ V(T)} of V(G). A set in the family
X is called a bag of the treecut decomposition.

For any node t of T other than the root r, let e(t) = ut be the unique edge incident
to t on the path to r. Let Tu and Tt be the two connected components in T − e(t)
which contain u and t, respectively. Note that (

⋃
q∈Tu Xq,

⋃
q∈Tt Xq) is a near-parti-

tion of V(G), and we use ���(t) to denote the set of edges with one endpoint in each
part. We define the adhesion of t (���T (t) or ���(t) in brief) as |���(t)| ; if t is the
root, we set ���T (t) = 0 and ���(t) = �.

The torso of a treecut decomposition (T ,X) at a node t, written as Ht , is the graph
obtained from G as follows. If T consists of a single node t, then the torso of (T ,X)
at t is G. Otherwise let T1,… , T

�
 be the connected components of T − t . For each

i = 1,… ,� , the vertex set Zi ⊆ V(G) is defined as the set
⋃

b∈V(Ti)
Xb . The torso Ht

at t is obtained from G by consolidating each vertex set Zi into a single vertex zi
(this is also called shrinking in the literature). Here, the operation of consolidating
a vertex set Z into z is to substitute Z by z in G, and for each edge e between Z and
v ∈ V(G) ⧵ Z , adding an edge zv in the new graph. We note that this may create par-
allel edges.

The operation of suppressing (also called dissolving in the literature) a vertex v
of degree at most 2 consists of deleting v, and when the degree is two, adding an
edge between the neighbors of v. Given a connected graph G and X ⊆ V(G) , let the
3-center of (G, X) be the unique graph obtained from G by exhaustively suppress-
ing vertices in V(G) ⧵ X of degree at most two. Finally, for a node t of T, we denote
by H̃t the 3-center of (Ht,Xt) , where Ht is the torso of (T ,X) at t. Let the torso-size
���(t) denote |H̃t|.

Definition 3 The width of a treecut decomposition (T ,X) of G is defined as
maxt∈V(T){���(t), ���(t)} . The treecut width of G, or ���(G) in short, is the mini-
mum width of (T ,X) over all treecut decompositions (T ,X) of G.

We conclude this subsection with some notation related to treecut decomposi-
tions. Given a tree node t, let Tt be the subtree of T rooted at t. Let Yt =

⋃
b∈V(Tt)

Xb ,
and let Gt denote the induced subgraph G[Yt] . The depth of a node t in T is the dis-
tance of t from the root r. The vertices of �t = �G(Yt) are called the border at node t.

A node t ≠ r in a rooted treecut decomposition is thin if ���(t) ≤ 2 and bold
otherwise. For a node t, we let Bt = { b is a child of t | |N(Yb)| ≤ 2 ∧ N(Yb) ⊆ Xt }

304 Algorithmica (2021) 83:297–336

1 3

denote the set of thin children of t whose neighborhood is a subset of Xt , and we let
At = { a is a child of t | a ∉ Bt } be the set of all other children of t.

While it is not known how to compute optimal treecut decompositions efficiently,
there exists a fixed-parameter 2-approximation algorithm which fully suffices for our
purposes.

Theorem 1 ([32]) There exists an algorithm that takes as input an n-vertex graph G
and integer k, runs in time 2O(k2)n2 , and either outputs a treecut decomposition of G
of width at most 2k or correctly reports that ���(G) > k.

A treecut decomposition (T ,X) is nice if it satisfies the following condition for
every thin node t ∈ V(T) : N(Yt) ∩

⋃
b is a sibling of t Yb = � . The intuition behind nice

treecut decompositions is that we restrict the neighborhood of thin nodes in a way
which facilitates dynamic programming.

Lemma 1 ([24]) There exists a cubic-time algorithm which transforms any rooted
treecut decomposition (T ,X) of G into a nice treecut decomposition of the same
graph, without increasing its width or number of nodes.

The following property of nice treecut decompositions will be crucial for our
algorithm.

Lemma 2 ([24]) Let t be a node in a nice treecut decomposition of width k. Then
|At| ≤ 2k + 1.

For completeness and self-containedness, we also provide the proofs of the pre-
vious two lemmata in an appendix. We refer to previous work [24, 32, 37, 45] for
a more detailed comparison of treecut width to other parameters. Here, we men-
tion only that treecut width lies “between” treewidth and treewidth plus maximum
degree.

Proposition 4 [24, 37, 45] Let ��(G) denote the treewidth of G and �����(G)
denote the maximum over ��(G) and the maximum degree of a vertex in G. Then
��(G) ≤ 2���(G)2 + 3���(G) , and ���(G) ≤ 4�����(G)2.

3 Hardness Results

In this section we show that BDD is W[1]-hard parameterized by a vertex dele-
tion set to trees of height at most three, i.e., a subset D of the vertices of the graph
such that every component in the graph, after removing D, is a tree of height at
most three. On the way towards this result, we provide hardness results for several
interesting versions of the multidimensional subset sum problem (parameterized by
the number of dimensions) which we believe are interesting in their own right. In

305

1 3

Algorithmica (2021) 83:297–336

particular, we note that the hardness results also hold for the well-known and more
general multidimensional knapsack problem [22].

Our first auxiliary result shows hardness for the following problem.

Multidimensional Subset Sum (MSS)

Input: An integer k, a set S = {s1, . . . , sn} of item-vectors with
si ∈ Nk for every i with 1 ≤ i ≤ n and a target vector
t ∈ Nk.

Parameter: k

Question: Is there a subset S′ ⊆ S such that
∑

s∈S′ s = t?

Lemma 3 MSS is W[1]-hard even if all integers in the input are given in unary.

Proof We prove the lemma by a parameterized reduction from MultiColored
Clique, which is well-known to be W[1]-complete [43]. Given an integer k and a
k-partite graph G with partition V1,… ,Vk , the MultiColored Clique problem asks
whether G contains a k-clique. In the following we denote by Ei,j the set of all edges
in G with one endpoint in Vi and the other endpoint in Vj , for every i and j with
1 ≤ i < j ≤ k . To show the lemma, we will construct an instance I = (k�, S, t) of

MSS in polynomial time with k� = 2

(
k

2

)
+ k and all integers in I are bounded by

a polynomial in |V(G)| such that G has a k-clique if and only if I has a solution.
For our reduction we will employ so called Sidon sequences of natural numbers.

A Sidon sequence is a sequence of natural numbers such that the sum of every two
distinct numbers in the sequence is unique. For our reduction we will need a Sidon
sequence of |V(G)| natural numbers, i.e., containing one number for each vertex of
G. Since the numbers in the Sidon sequence will be used as numbers in I , we need
to ensure that the largest of these numbers is bounded by a polynomial in |V(G)|.
Indeed [18] shows that a Sidon sequence containing n elements and whose larg-
est element is at most 2p2 , where p is the smallest prime number larger or equal to
n, can be constructed in polynomial time. Together with Bertrand’s postulate [1],
which states that for every natural number n there is a prime number between n
and 2n, we obtain that a Sidon sequence containing |V(G)| numbers and whose larg-
est element is at most 8|V(G)|2 can be found in polynomial time. In the following
we will assume that we are given such a Sidon sequence S and we denote by S(i)
the i-th element of S for any i with 1 ≤ i ≤ |V(G)| . Moreover, we denote by max(S)
and max2(S) the largest element of S and the maximum sum of any two numbers
in S , respectively. We will furthermore assume that the vertices of G are identified
by numbers between 1 and |V(G)| and therefore S(v) is properly defined for every
v ∈ V(G).

306 Algorithmica (2021) 83:297–336

1 3

We are now ready to construct the instance I = (k�, S, t) . We set k� = 2

(
k

2

)
+ k

and t is the vector whose first
(
k

2

)
 entries are all equal to max2(S) + 1 and whose

remaining
(
k

2

)
+ k entries are all equal to 1. For every i and j with 1 ≤ i < j ≤ k ,

we will use I(i, j) as a means of enumerating the indices in a sequence of two-ele-
ment tuples; formally, I(i, j) = (

∑l<i

l=1
(k − l)) + (j − 1) . Note that the vector t and its

indices can then be visualized as follows:

We now proceed to the construction of S, which will contain one element for each
edge and for each vertex in G. In particular, the set S of item-vectors contains the
following elements:

– for every i with 1 ≤ i ≤ k and every v ∈ Vi , a vector sv such that all entries with
index in { I(l, r) | 1 ≤ l < r ≤ k ∧ l = i } ∪ { I(l, r) | 1 ≤ l < r ≤ k ∧ r = i } are
equal to S(v) (informally, this corresponds to all indices where at least one ele-

ment of the tuple (l, r) is equal to i), the 2
(
k

2

)
+ i-th entry is equal to 1, and

all other entries are equal to 0. The following illustrates sv for the case that
k = 4 and i = 2 :

– for every i and j with 1 ≤ i < j ≤ k and every e = {u, v} ∈ E(i, j) , a vector se
such that the entry I(i, j) is equal to (max2(S) + 1) − (S(u) + S(v)) , the (
k

2

)
+ I(i, j)-th entry is equal to 1, and all other entries are equal to 0. The

following illustrates the vector se for the case that k = 4 , i = 2 , and j = 3 :

This completes the construction of I . It is clear that I can be constructed in pol-
ynomial time and moreover every integer in I is at most max2(S) + 1 and hence
polynomially bounded in |V(G)|. Intuitively, the construction relies on the fact

t = (max
2

(S) + 1,… , max
2

(S) + 1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
I(1,2),I(1,3),…,I(k−1,k)

, 1,… , 1
⏟⏟⏟

⎛⎜⎜⎝
k

2

⎞⎟⎟⎠
+I(1,2),…,

⎛⎜⎜⎝
k

2

⎞⎟⎟⎠
+I(k−1,k)

, 1,… , 1
⏟⏟⏟

2

⎛⎜⎜⎝
k

2

⎞⎟⎟⎠
+1,…,2

⎛⎜⎜⎝
k

2

⎞⎟⎟⎠
+k)

)

sv = (S(v), 0, 0,S(v),S(v), 0
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

I(1,2),I(1,3),…,I(3,4)

, 0,… , 0
⏟⏟⏟

I(1,2),I(1,3),…,I(3,4)

, 0, 1, 0, 0
⏟⏟⏟

2

⎛⎜⎜⎝
4

2

⎞⎟⎟⎠
+1,…,2

⎛⎜⎜⎝
4

2

⎞⎟⎟⎠
+4)

)

se = (0, 0, 0,max
2

(S) + 1 − (S(u) + S(v)), 0, 0

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
I(1,2),I(1,3),…,I(3,4)

, 0, 0, 0, 1, 0, 0
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
I(1,2),…,I(3,4)

, 0,… , 0
⏟⏟⏟

2

⎛⎜⎜⎝
4

2

⎞⎟⎟⎠
+1,…,2

⎛⎜⎜⎝
4

2

⎞⎟⎟⎠
+4)

)

307

1 3

Algorithmica (2021) 83:297–336

that since the sum of each pair of vertices is unique, we can uniquely associ-
ate each pair with an edge between these vertices whose value will then be the
remainder to the global upper-bound of max2(S).

It remains to show that G has k-clique if and only if I has a solution. Towards
showing the forward direction, let C be a k-clique in G with vertices v1,… , vk such
that vi ∈ Vi for every i with 1 ≤ i ≤ k . We claim that the subset
S� = { sv | v ∈ V(C) } ∪ { se | e ∈ E(C) } of S is a solution for I . Let t′ be the vector ∑

s∈S� s . Because C contains exactly one vertex from every Vi and exactly one edge
from every Ei,j , it holds that t�[l] = t[l] = 1 for every index l with (
k

2

)
< l ≤ 2

(
k

2

)
+ k . Moreover, for every i and j with 1 ≤ i < j ≤ k , the vectors

svi , svj , and sei,j are the only vectors in S′ with a non-zero entry at the I(i, j)-th posi-
tion. Hence t�[I(i, j)] = svi [I(i, j)] + svj [I(i, j)] + sei,j [I(i, j)] , which because
svi [I(i, j)] = S(vi) , svj [I(i, j)] = S(vj) , and sei,j [I(i, j)] = (max2(S) + 1) − (S(vi) + S(vj))
is equal to S(vi) + S(vj) + (max2(S) + 1) − (S(vi) + S(vj)) = max2(S) + 1 = t[I(i, j)] ,
as required.

Towards showing the reverse direction, let S′ be a subset of S such that
∑

s∈S� s = t .
Because the last k entries of t are equal to 1 and for every i with 1 ≤ i ≤ k , it holds
that the only vectors in S that have a non-zero entry at the i-th last position are the
vectors in { sv | v ∈ Vi } , it follows that S′ contains exactly one vector say svi in
{ sv | v ∈ Vi } for every i with 1 ≤ i ≤ k . Using a similar argument for the entries of t

with indices between
(
k

2

)
+ 1 and 2

(
k

2

)
 , we obtain that S′ contains exactly one

vector say ei,j in { se | e ∈ Ei,j } for every i and j with 1 ≤ i < j ≤ k . Consequently,
S� = {sv1 ,… , svk} ∪ { ei,j | 1 ≤ i < j ≤ k } . We claim that {v1,… , vk} forms a
k-clique in G, i.e., for every i and j with 1 ≤ i < j ≤ k , it holds that ei,j = {vi, vj} . To
see this consider the I(i, j)-th entry of t� =

∑
s∈S� s . The only vectors in S′ having a

non-zero contribution towards t�[I(i, j)] are the vectors svi , svj , and sei,j . Because
svi [I(i, j)] = S(vi) , svj [I(i, j)] = S(vj) , and t�[I(i, j)] = t[I(i, j)] = max2(S) + 1 , we
obtain that sei,j [I(i, j)] = (max2(S) + 1) − (S(vi) + S(vj)) . Because S is Sidon
sequence and thus the sum (S(vi) + S(vj)) is unique, we obtain that ei,j = {vi, vj} , as
required. ◻

Observe that because any solution S′ of the constructed instance in the previous

lemma must be of size exactly k� = 2

(
k

2

)
+ k , it follows that the above proof also

shows W[1]-hardness of the following problem.

308 Algorithmica (2021) 83:297–336

1 3

Restricted Multidimensional Subset Sum (RMSS)

Input: An integer k, a set S = {s1, . . . , sn} of item-vectors with
si ∈ Nk for every i with 1 ≤ i ≤ n, a target vector t ∈ Nk,
and an integer k′.

Parameter: k + k′

Question: Is there a subset S′ ⊆ S with |S′| = k′ such that∑
s∈S′ s = t?

Corollary 1 RMSS is W[1]-hard even if all integers in the input are given in unary.

Using an fpt-reduction from the above problem, we will now show that also the
following more relaxed version is W[1]-hard.

Multidimensional Relaxed Subset Sum (MRSS)

Input: An integer k, a set S = {s1, . . . , sn} of item-vectors with
si ∈ Nk for every i with 1 ≤ i ≤ n, a target vector t ∈ Nk,
and an integer k′.

Parameter: k + k′

Question: Is there a subset S′ ⊆ S with |S′| ≤ k′ such that∑
s∈S′ s ≥ t?

Lemma 4 MRSS is W[1]-hard even if all integers in the input are given in unary.

Proof We prove the lemma by a parameterized reduction from rMSS, which is
W[1]-hard even if all integers in the input are given in unary because of Corollary 1.
Namely, given an instance I = (k, S, t, k�) of rMSS we construct an equivalent
instance I = (2k, S, t, k�) of MrSS in polynomial time such that all integers in I are
bounded by a polynomial of the integers in I .

The set S contains one vector s for every vector s ∈ S with s[i] = s[i] and
s[k + i] = t[i] − s[i] for every i with 1 ≤ i ≤ k . Finally, the target vector t is defined
by setting t[i] = t[i] and t[k + i] = (k� − 1) ⋅ t[i] for every i with 1 ≤ i ≤ k . This con-
cludes the construction of I . Clearly, I can be constructed in polynomial time and
the values of all numbers in I are bounded by a polynomial of the maximum num-
ber in I . It remains to show that I has a solution if and only if I has a solution.

Towards showing the forward direction, let S′ ⊆ S be a solution for I , i.e.,
|S�| = k� and

∑
s∈S� s = t . We claim that the set S

�
= { s | s ∈ S� } is a solution for I .

Because s[i] = s[i] and t[i] = t[i] for every s ∈ S and i with 1 ≤ i ≤ k , it follows that

309

1 3

Algorithmica (2021) 83:297–336

∑
s∈S

� s[i] = t[i] for every i as above. Moreover, for every i with 1 ≤ i ≤ k , it holds
that

∑
s∈S

� s[k + i] = k� ⋅ t[i] −
∑

s∈S
� s[i] = k� ⋅ t[i] − t[i] = (k� − 1)t[i] = t[k + i] ,

showing that S is a solution for I .
Towards showing the reverse direction, let S

′
⊆ S be a solution for I′ , i.e.,

|S′| ≤ k′ and
∑

s∈S
� s ≥ t . We claim that the set S� = { s | s ∈ S

�
} is a solution for I .

Because S
′
 is a solution for I′ , we obtain for every i with 1 ≤ i ≤ k that:

(1)
∑

s∈S
� s[i] ≥ t[i] , which because s[i] = s[i] implies that

∑
s∈S� s[i] ≥ t[i],

(2)
∑

s∈S
� s[k + i] ≥ (k − 1)t[i] , which because s[k + i] = t[i] − s[i] implies that

�S��t[i] −∑
s∈S� s[i] ≥ (k� − 1)t[i] . First, since we can assume that t[i] > 0 and

therefore also
∑

s∈S� s[i] > 0 by (1), observe that |S�| > k� − 1 and in particular
|S�| = k� . Then by using this, we obtain that k�t[i] −

∑
s∈S� s[i] ≥ (k� − 1)t[i] which

implies t[i] ≥
∑

s∈S� s[i].

It follows from (1) and (2) that
∑

s∈S� s[i] = t[i] and hence S′ is a solution for I of
size k′ , as required. ◻

We are now ready to show our main hardness result for BDD using a reduction
from MrSS.

Theorem 2 BDD is W[1]-hard parameterized by the size of a vertex deletion set into
trees of height at most 3.

Proof We prove the theorem by a parameterized reduction from MrSS. Namely,
given an instance I = (k, S, t, k�) of MrSS we construct an equivalent instance
I
� = (G, d,�) of Bdd such that G has a FVS D of size k ⋅ (k� + 1) . The core idea of

the reduction relies on transforming the decision of whether to select a vector into a
solution S′ for I into the decision of whether to resolve a tree gadget in G in one of
two possible ways.

See Fig. 2, which provides an illustration of the construction. The set D consists
of (k� + 1) vertices d1

i
,… , dk

�+1
i

 for every i with 1 ≤ i ≤ k . Moreover, for every s ∈ S
we introduce the gadget G(s) defined as follows. G(s) consists of max(s) , where
max(s) is the value of the largest coordinate of s, stars with centers cs

1
,… , cs

max(s)
 .

Fig. 2 Example of the gadget in Theorem 2

310 Algorithmica (2021) 83:297–336

1 3

For now we attach one leaf denoted ls
i
 to every such center cs

i
 ; we will later attach

additional “unnamed” leaves to ensure that every center has exactly d + 1 leaves,
however, d is to be determined later.

Additionally, G(s) has a root vertex, denoted by rs , that has an edge to every
center vertex cs

i
 . Finally, we add edges between the leaves ls

1
,… , ls

max(s)
 and the verti-

ces in D such that for every i and j with 1 ≤ i ≤ k and 1 ≤ j ≤ k� + 1 , it holds that dj
i

has s[i] neighbors among the leaves ls
1
,… , ls

max(s)
 of G(s). Clearly this is always pos-

sible and can be done in an arbitrary manner.
We set d to be the maximum degree of the part of G constructed so far (note

that this maximum is reached by one of the vertices in D). We now add d leaves to
each center cs

i
 ensuring that every such center has exactly d + 1 leaves. Moreover, we

now ensure that for every i and j with 1 ≤ i ≤ k and 1 ≤ j ≤ k� + 1 , the vertex dj
i
 has

degree d + t[i] in G by attaching a appropriate number of leaves to dj
i
 . Finally, we set

� to be (
∑

s∈S max(s)) + k� . This completes the construction of I′ . Clearly, I′ can be
constructed in polynomial time. Moreover, |D| ≤ k ⋅ (k� + 1) and each component of
G − D is a tree with height at most 3. It remains to show the equivalence between I
and I′.

Towards showing the forward direction, let S′ ⊆ S be a solution for I , i.e.,
|S′| ≤ k′ and

∑
s∈S� s ≥ t . We construct a solution V � ⊆ V(G) from S′ as follows. For

every s ∈ S ⧵ S� , V ′ contains the center vertices cs
1
,… , cs

max(s)
 from G(s) and for every

s ∈ S� , V ′ contains the root vertex rs and the leaf vertices ls
1
,… , ls

max(s)
 from G(s).

Clearly, �V �� = ∑
s∈S max(s) + �S�� ≤ ∑

s∈S max(s) + k� = � . Moreover, since for
every s ∈ S , the only vertices in G(s), whose degree exceeds d in G, are the centers
of the stars, we obtain that the degree of the vertices in G(s) w.r.t. G − V � is at most
d. Finally, for every i and j with 1 ≤ i ≤ k and 1 ≤ j ≤ k′ , the degree of the vertex dj

i

in G − V � is equal to d + t[i] −
∑

s∈S� s[i] ≤ d , as required.
Before we continue with the proof for the reverse direction, we will prove a cru-

cial property of the gadget G(s) for any s ∈ S . ◻

Claim 1 If I = (G, d,�) has a solution, then there is a solution V � ⊆ V(G) such that
for every s ∈ S , it holds that either:

 (G1) V � ∩ G(s) = {cs
1
,… , cs

max(s)
} , or

 (G2) V � ∩ G(s) = {rs, ls
1
,… , ls

max(s)
}.

Proof Let V � ⊆ V(G) be a solution for I and let s ∈ S . It is easy to see that if
|V � ∩ G(s)| = max(s) then V � ∩ G(s) must be equal to {cs

1
,… , cs

max(s)
} . So suppose

that |V � ∩ G(s)| > max(s) . We claim that then V �� = (V � ⧵ G(s)) ∪ {rs, ls
1
,… , ls

max(s)
}

is also a solution for I . Clearly, |V ′′| ≤ |V ′| ≤ � and every vertex in G(s) has degree
at most d in G − V �� . Finally, since the leaf vertices ls

1
,… , ls

max(s)
 are the only vertices

in G(s) with neighbors in D, it holds that the degree of any vertex in D − V �� in
G − V �� is at most equal to its degree in G − V � and since V ′ is a solution so is V ′′ .
 ◻

311

1 3

Algorithmica (2021) 83:297–336

Towards showing the reverse direction of the claim, let V � ⊆ V(G) be a solution
for I′ , i.e., |V ′| ≤ � and every vertex in G − V � has degree at most d. Because of
Claim 1, we can assume that V ′ satisfies (G1) or (G2) for every s ∈ S . We claim
that the set S′ ⊆ S containing all s ∈ S such that V ′ satisfies (G2) is a solution for I .
Because �V �� ≤ � =

∑
s∈S max(s) + k� and V ′ contains at least max(s) vertices from

every gadget G(s) for any s ∈ S , we obtain that |S′| ≤ k′ . It hence only remains to
show that

∑
s∈S� s ≥ t . Because �V �� ≤ � =

∑
s∈S max(s) + k� and V ′ contains at least

max(s) vertices from every gadget G(s) for any s ∈ S , it follows that |D ∩ V �| ≤ k� .
Hence for every i with 1 ≤ i ≤ k , there is a j with 1 ≤ j ≤ k� + 1 such that dj

i
∉ V � .

Consequently, V ′ must contain at least t[i] neighbors of dj
i
 . Since the only neighbors

of a vertex dj
i
 (other than leaves, which we can assume are not contained in V ′) are

the leaf vertices of the gadgets G(s), all these neighbors must lie in the gadgets G(s)
for some s ∈ S� . Since the number of neighbors of dj

i
 in V � ∩ G(s) for such an s ∈ S�

is equal to s[i], we obtain that
∑

s∈S� s[i] ≥ t[i] . Because the same argument applies
to every i with 1 ≤ i ≤ k , we obtain that

∑
s∈S� s ≥ t and hence S′ is a solution for I .

 ◻

Clearly trees of height at most three are trivially acyclic. Moreover, it is easy to
verify that such trees have pathwidth [33] and treedepth [40] at most three, which
implies:

Corollary 2 BDD is W[1]-hard parameterized by any of the following parameters:

– the size of a feedback vertex set,
– the pathwidth and treedepth of the input graph,
– the size of a minimum set of vertices whose deletion results in components of

pathwidth/treedepth at most three.

4 Solving BDD using Treecut Width

The goal of this section is to provide a fixed-parameter algorithm for Bdd param-
eterized by treecut width. The core of the algorithm is a dynamic programming
procedure which runs on a nice treecut decomposition (T ,X) of the input graph G.
Recall that for t ∈ V(T) , G[Yt] = Gt denotes the subgraph of G induced on all verti-
ces that appear below t, i.e., in a bag in the subtree rooted at t. Moreover, recall that
�t denotes the border of G[Yt] , i.e., the vertices which have a neighbor outside of
G[Yt].

4.1 Overview

First we define the data table the algorithm is going to dynamically compute for
individual nodes of the treecut decomposition. For each node t ∈ V(T) , the table
is going to contain two components, which we will call the universal cost ut and
the specific cost st . Informally, the universal cost captures the minimum number of

312 Algorithmica (2021) 83:297–336

1 3

vertices which need to be deleted from Yt to satisfy the degree bound in Gt . The
specific cost captures how many more vertices (than the universal cost) we need to
delete in order to satisfy the degree bound in Gt when we also place restrictions on
how Gt will interact with the rest of the graph. We formalize these notions below.

Let us fix an instance (G, d,�) of Bdd and a treecut decomposition (T ,X) of G
of width at most k and rooted at r. A configuration � of a graph H with a desig-
nated vertex-subset Z is a mapping Z ↦ [k] ∪ {del} , i.e., each vertex in Z receives
a value up to the treecut width or “del”. Intuitively, configurations are going to be
used to place additional restrictions on the deletion sets we are interested in. We let
���(H, Z, �) denote the minimum size of a vertex set W ⊆ V(H) such that:

(A) v ∈ W ∩ Z if and only if �(v) = del , and
(B) for each v ∈ Z ⧵W , the degree of v in H −W is at most d − �(v),
(C) for each v ∈ V(H) ⧵ (Z ∪W) , the degree of v in H −W is at most d.

Figure 3 depicts an illustration of ���(H, Z, �) . Informally, bdd captures the size of
a minimum deletion set which intersects the designated subset precisely in the ver-
tices specified by � , and for the remainder of the designated subset it overshoots the
degree bound by a buffer specified by � . If ���(H, Z, �) is not defined (which may
happen, e.g., if d < |Z|), we formally set ���(H, Z, �) = ∞ . For each node t ∈ V(T) ,
we can now define:

– ut = ���(Gt, �, �) , and
– for each � ∶ �t → [k] ∪ {del} such that each v ∈ �t is mapped to del or to an inte-

ger i ≤ |N(v) ⧵ Yt| , we let s�
t
(�) = ���(Gt, �t, �) − ut.

We proceed with a few observations. Naturally, the value of ut can be much larger
than k (as an example, consider a collection of disjoint stars), and this is not
an issue for our algorithm. Furthermore, for every � it holds that 0 ≤ s�

t
(�) , since

ut ≤ ���(Gt, �t, �) ; notice that ut attains the value of the smallest deletion set for Gt ,
while ���(Gt, �t, �) attains the value of a smallest deletion set for Gt which satisfies
certain additional restrictions.

Crucially, the value of s�
t
(�) can be much larger than k, and this represents a sig-

nificant obstacle for our algorithm. The role of the specific cost in the dynamic pro-
gramming procedure is to capture how a node may interact with the solution and

Fig. 3 Illustration of the set
���(H,Z, �) . The dotted edges
are not considered for the degree
of a node v

313

1 3

Algorithmica (2021) 83:297–336

how such interactions affect the size of a deletion set. The algorithm relies heavily
on having only a bounded number of possible interactions in order to achieve its
run-time bounds. Luckily, we will prove that any value of s�

t
(�) exceeding k must

lead to a dead end and can be disregarded. Note that Lemma 5 also showcases how
s′
t
 relates to a solution in G, and the introduced notion of �t

S
 defined in the statement

of the lemma is also useful later on.

Lemma 5 Let S be a minimum-size bounded degree deletion set in G. Let �t
S
 be defined

over �t as follows: �t
S
(v) = del if v ∈ S , and otherwise �t

S
(v) = |(N(v) ⧵ Yt) ⧵ S| . Then

s�
t
(�t

S
) ≤ |N(Yt)| ≤ k.

Proof For brevity, let q = |N(Yt)| . The fact that q ≤ k follows immediately from
the bound on the adhesion of t, hence we only need to prove that s�

t
(�t

S
) ≤ q . So,

assume for a contradiction that s�
t
(𝛿t

S
) > q . Let P be a witness for the value of ut , i.e.,

let P be a minimum-cardinality vertex subset of Gt such that the maximum degree
in Gt − P is at most d. Observe that |P ∪ N(Yt)| = ut + q . Now consider the set
S� = (S ⧵ Yt) ∪ P ∪ N(Yt) . First of all, note that |S′| < |S| , since we obtained S′ from
S by removing more than ut + q vertices (recall that, by our assumption, s�

t
(𝛿t

S
) > q)

and then adding back at most ut + q vertices. Second, we claim that S′ is also a
bounded degree deletion set in G. Indeed, consider for a contradiction that G − S�
contains a vertex v of degree higher than d. Such a v cannot lie in Yt since P was a
solution in Gt and N(Yt) separates Gt from the rest of G. On the other hand, v cannot
lie outside of Yt due to the fact that S itself was a solution in G[V(G) − Yt] . So the
claim holds, and S′ contradicts the optimality of S. ◻

Thanks to Lemma 5, we can safely focus our attention on those configurations �
where s�

t
(�) ≤ |N(Yt)| . In particular, let st(�) be defined as follows.

Observe that, unlike s′
t
 , the number of distinct possibilities of what a specific cost

st may look like is bounded by a function of k. The high-level strategy for the algo-
rithm is now the following:

1. Compute (ut, st) when t is a leaf,
2. Compute (ut, st) when t is not a leaf, but the universal and specific costs are known

for all of its children, and
3. Use the values (ur, sr) at the root node r ∈ T .

As we will see below, points 1. and 3. are straightforward.

Observation 3 (ut, st) can be computed in time at most 2O(k⋅log k) if t is a leaf.

Proof Recall that |Xt| ≤ k . To compute ut it suffices to exhaustively loop through
all vertex subsets L ⊆ Xt and check whether Gt − L has degree at most d. Then ut

st(�) =

{
s�
t
(�) ifs�

t
(�) ≤ |N(Yt)|

∞ otherwise.

314 Algorithmica (2021) 83:297–336

1 3

is equal to the minimum size of such a subset. To compute st , we proceed simi-
larly: for each configuration � such that each v ∈ �t is mapped to del or to an integer
i ≤ |N(v) ⧵ Yt| , we exhaustively loop through all L ⊆ Xt ⧵ 𝜕t in order to determine
the value of ���(Gt, �t, �) , and we then use that value and ut to determine st(�) . ◻

Observation 4 (G, d,�) is a YES-instance of Bdd if and only if ur ≤ �.

Given the above, the last remaining obstacle is handling point 2, i.e., the dynamic
propagation of information from leaves to the root. This is also the by far most chal-
lenging part of the algorithm, and we will deal with it in the next subsection.

4.2 The Dynamic Step

Recalling that ut is an integer and st a mapping from configurations to integers, we
summarize the subproblem that corresponds to handling point 2:

BDD Join
Instance: A BDD instance (G, d, �), a treecut decomposition (T,X) of G
with width at most k, a node t ∈ V (T) and the tuples (up, sp) for each
child p of t.
Parameter: k.
Task : Compute (ut, st).

 Our strategy for dealing with Bdd Join is to apply a 2-step approach. Figure 4
shows an illustration of the upcoming branching sets for a node t. Recall that At and
Bt denote the set of all children of t which are bold and thin, respectively. First, we
exhaustively loop over all options of how a deletion set candidate intersects with
Xt and the borders of nodes in At , resulting in a set of “templates” which provide
us with additional information about a potential solution. Here the bound on |At|
provided in Lemma 2 will be crucial. Second, we use branching and network flows
to find an optimal way of extending such a template to a solution which deals with
Bt . In this step, we overcome the fact that there may be an unbounded number of
children p in Bt by “aggregating” them into types based on their sp component.

Fig. 4 The three branching
sets for a node t ∈ V(T) , first
branch on �

t
 (green), then on the

boundaries of the bold nodes
A
t
 together with the “interior”

of t (orange) and finally on the
equivalence classes of B

t
 (gray)

315

1 3

Algorithmica (2021) 83:297–336

Lemma 5 along with our definition of specific costs then guarantees that the number
of aggregated types will depend only on k. Informally, if two nodes p1 , p2 in Bt have
the same specific cost, then their behavior (“contribution”) to any solution is fully
interchangeable. In particular, even if p1 , p2 have different universal costs, both of
these costs will need to be “paid” by every solution regardless of how the solution
handles the borders of these nodes. We proceed by formalizing the algorithm for
Bdd Join.

Lemma 6 BDD JOIn can be solved in time 2O(k2)
⋅ |Bt|2 , where |Bt| is upper-bounded

by the number of children of t.

Proof For technical reasons, we will show how to compute the value ���(Gt, �t, �)
for each configuration � ; clearly, this is sufficient to determine (ut, st) , as ut is the
minimum of ���(Gt, �t, �) over all choices of � . For our presentation, let us now
consider an arbitrary fixed choice of �.

Dealing with Bold Nodes Let Q = (Yt ∩ (Xt ∪
⋃

p∈At
�p)) ⧵ �t . In other words, Q

contains vertices in Xt as well as the endpoints (in Yt) of any edge which contributes
to the adhesion of p ∈ At , but not vertices in �t . The idea underlying the choice of Q
is that we want it to act as our branching set extending our initial choice of � (which
already provides us with full information on �t). See Fig. 5 for an illustration of
Q. Since |At| ≤ 2k + 1 by Lemma 2 and the adhesion of each node in At is upper-
bounded by k, we see that |Q| ≤ k + (2k + 1) ⋅ k = 2k2 + 2k . In the first phase of the
algorithm, we will exhaustively loop through all possible intersections of a deletion
set with Q. For the following, let us consider one such intersection R ⊆ Q . ◻

At this point, a fixed choice of R and � together with the records for nodes in
At give us sufficient information to determine the size of the intersection between
(1) any minimum deletion set corresponding to our choice of � and R, and (2)
Yp for any p ∈ At . Our next order of business is to formally establish this claim.
For the rest of the proof, we will use the term global solution as shorthand for
“a minimum-cardinality vertex subset of G such that the maximum degree in
the graph after its deletion is at most d”. Furthermore, let Ct = Yt ⧵ (

⋃
b∈Bt

Yb) ,
�del = { v | �(v) = del } and �(R, �) = �Xt ∩ (R ∪ �del)� +∑

p∈At
(up + sp(�

�)) , where

Fig. 5 Illustration of the set Q.
The orange parts are exactly the
sets Q consists of (Color figure
online)

316 Algorithmica (2021) 83:297–336

1 3

�′ is the configuration of p which corresponds to our choices of R and � . For-
mally, �′ is defined for each p and each w ∈ �p as follows:

– if w ∈ R or �(w) = del then we set ��(w) = del , and otherwise
– if w ∈ �t then we set ��(w) = |N(w) ⧵ (Yp ∪ R ∪ �del)| + �(w).
– if w ∉ �t then we set ��(w) = |N(w) ⧵ (Yp ∪ R ∪ �del)| , and otherwise

Intuitively, Ct refers to the part of Yt that we can deal with thanks to having fixed
R and � , and �(R, �) denotes the size of a global solution in Ct as we prove below.

Claim 2 Let S be a global solution such that S ∩ Q = R and S ∩ �t = �del . Then
|S ∩ Ct| = �(R, �).

Proof (Claim) Assume for a contradiction that |S ∩ Ct| < 𝛾(R, 𝛿) . This implies
that there must exist a child p ∈ At such that |S ∩ Yp| < up + sp(𝛿

�) , where �′ is
defined as above. However, note that S ∩ Yp satisfies all the conditions stipulated by
���(Gp, Yp, �

�) , which are:

– v ∈ S ∩ �p if and only if ��(v) = del , and
– for each v ∈ �p ⧵ S , the degree of v in Gp − S is at most d − ��(v),
– for each v ∈ Yp ⧵ (�p ∪ S) , the degree of v in H − S is at most d.

In particular, this implies that ���(Gp, Yp, �
�) ≤ |S ∩ Yp| ; since we assumed that

|S ∩ Yp| < up + sp(𝛿
�) = ���(Gp, Yp, 𝛿

�) , we arrive at a contradiction.
On the other hand, assume that |S ∩ Ct| > 𝛾(R, 𝛿) . Then there must exist a child

p ∈ At such that |S ∩ Yp| > up + sp(𝛿
�) . By the definition of sp , we know that there

exists a vertex set W ⊆ Yp of size up + sp(�
�) which satisfies all the conditions

imposed on W by ���(Gp, Yp, �
�) . Let us now consider the vertex set S′ obtained

by replacing its part in Yp with W; formally, let S� = (S ⧵ Yp) ∪W . By our assump-
tion that |S ∩ Yp| > up + sp(𝛿

�) , it follows that |S′| < |S| . Moreover, we claim that S′
is also a bounded degree deletion set in G. Indeed, each vertex v ∉ (Yp ∪ S) has the
same neighborhood in S as in S′ (Condition (A)). On the other hand, each vertex
v ∈ (Yp ⧵ S

�) has degree at most d by the properties of W; in particular, if v has no
neighbors outside of Yp then it suffices to realize that W is a solution in Gp (Condi-
tion (C)), and if v has neighbors outside of Yp then these are accounted for by the
more restrictive degree bounds placed on vertices in �p (Condition (B)).

Since S′ is a bounded degree deletion set in G that is smaller than S, we have
reached a contradiction with our assumption that S is a global solution. ◻

Since �(R, �) can be readily computed for each choice of R and � using the
information we have for children in At , it remains to determine how to best extend
a particular choice of R and � into a deletion set for Bt ; in particular, we need to
determine �S ∩⋃

b∈Bt
Yb� for a global solution S that corresponds to R and � . Note

that, unlike At , the cardinality of Bt is not bounded by a function of k, but instead
we have strong restrictions on the neighborhood of each Gb.

317

1 3

Algorithmica (2021) 83:297–336

Dealing with Thin Nodes Our first goal will be to show that any global solu-
tion only “expends” a total of at most k from all the specific costs of all nodes in
Bt.

Claim 3 Let S be a global solution. Then �S ∩⋃
b∈Bt

Yb� ≤ k +
∑

b∈Bt
ub.

Proof (of Claim) Assume for a contradiction that �S ∩⋃
b∈Bt

Yb� > k +
∑

b∈Bt
ub . For

each b ∈ Bt , let Pb be a solution realizing ub , i.e., let Pb be a vertex subset of Gb
such that |Pb| = ub and Gb − Pb has maximum degree at most d. Now consider the
set obtained from S by replacing its intersection with Bt with the union of all the
sets Pb and by adding Xt ; formally, let S� = ((S ⧵

⋃
b∈Bt

Yb) ∪ Xt) ∪
⋃

b∈Bt
Pb . Since

S′ is obtained by removing S ∩
⋃

b∈Bt
Yb (of cardinality greater than k +

∑
b∈Bt

ub)
and then adding Xt ∪

⋃
b∈Bt

Pb (of cardinality at most k +
∑

b∈Bt
ub), it follows that

|S′| < |S| . We claim that S′ is a global solution, contradicting the initial choice of S
(specifically, its optimality).

To see that S′ is indeed a global solution, consider an arbitrary vertex
v ∈ V(G) − S� . If v lies in some Yb , then v cannot have degree greater than d by
our choice of Pb . Otherwise, v is separated from every Yb by Xt ⊆ S′ and hence
N(v) ⧵ S� ⊆ N(v) ⧵ S . So S′ is indeed a global solution and the claim holds. ◻

As an immediate consequence of Claim 3, every optimal solution S has the
property that there are at most k nodes b ∈ Bt such that |S ∩ Yb| > ub . However,
since the cardinality of Bt is not bounded by a function of k, exhaustively loop-
ing through all possible k-tuples of nodes in Bt to “guess” where S exceeds ub
would be too expensive. Instead, we will identify a bounded number of equiva-
lence classes of nodes in Bt , and show that nodes in Bt are interchangeable as far
as determining where S exceeds the universal cost.

Let us define the following relation ≡ on Bt . Two nodes p, q ∈ Bt satisfy p ≡ q if
there exists a bijective function � ∶ �p → �q (called the renaming function) such that

1. ∀v ∈ �p ∶ N(v) ∩ Xt = N(�(v)) ∩ Xt , and
2. ∀� ∈

{
�p → {del, 0, 1, 2}

}
∶ sp(�) = sq(�(�)) , where �(�) is the mapping obtained

from � by renaming vertices in �p according to �.

Since � is bijective, ≡ is clearly an equivalence relation. Let ⟨≡⟩ denote the set
of equivalence classes of ≡ . We claim that �⟨≡⟩� ≤ O(k2) : indeed, since the bor-
ders in Bt have size at most 2, there are O(k2) different possibilities of select-
ing neighbors of border vertices in Xt , and thanks to Lemma 5 there are at most
|{del, 0, 1, 2}|2 = 16 many different options for the specific costs. Furthermore, we
can determine whether p ≡ q in constant time: indeed, there are only constantly
many renaming functions to consider, and checking each renaming function only
requires constant time. In turn, this means that we can arrange all elements of Bt
into equivalence classes in time at most O(|Bt|2).

As explained earlier, the goal of ≡ is to partition Bt into boundedly-many
equivalence classes which group nodes that are fully interchangeable as far as

318 Algorithmica (2021) 83:297–336

1 3

their interactions with any global solution are concerned. We will formalize this
in the next claim. It will be useful to recall the definition of �p

S
 from Lemma 5.

Claim 4 Let S be a global solution and let p, q be two nodes of Bt such that p ≡ q
and �(�p

S
) ≠ �

q

S
 . Then there exists a global solution S′ satisfying:

– S� ⧵ (Yp ∪ Yq) = S ⧵ (Yp ∪ Yq) , and
– �(�

p

S
) = �

q

S�
 , and

– �(�
p

S�
) = �

q

S
.

Proof (of Claim) Let Wp be a minimum-cardinality bounded degree deletion set for Gp
satisfying the conditions imposed by ���(Gp, �p, �

p

S�
) , and similarly for Wq on Gq and

�
q

S′
 ; in other words, Wp is a solution on Gp which has the “same properties” as S ∩ Yq

(since �(�p
S�
) = �

q

S
), and similarly Wq is a solution on Gq which has the “same proper-

ties” as S ∩ Yp (since �(�p
S
) = �

q

S�
). Consider the set S� = (S ⧵ (Yq ∪ Yp)) ∪Wp ∪Wq .

The set S′ satisfies the itemized properties by construction, and so it
remains to argue that S′ is a global solution. Since p ≡ q , it follows that
|Wp ∪Wq| = up + uq + sp(�

p

S�
) + sq(�

q

S�
) = up + uq + sp(�

p

S
) + sq(�

q

S
) = |S ∩ (Yp ∪ Yq)| ;

in particular, |S�| = |S|.
Now we only need to argue that S′ is indeed a bounded degree dele-

tion set of G. It will be useful to recall that N(Yq) = N(Yp) . Observe that
S ⧵ (Yp ∪ Yq) = S� ⧵ (Yp ∪ Yq) , and so every vertex v ∈ V(G) ⧵ (Yp ∪ Yq ∪ N(Yq)) sat-
isfies N(v) ⧵ S = N(v) ⧵ S� and so has degree at most d in S′ . Now consider a vertex
v ∈ N(Yq) ; such a vertex will also have the same degree in G − S as in G − S� ; since
the configurations of q and p were swapped, any change of the number of edges
between v and Yq is precisely compensated by the opposite change of the number of
edges between v and Yp . Next, let us consider (w.l.o.g. based on symmetry between p
and q) a vertex v ∈ Yp ⧵ �p : here, v must have degree at most d in G − S� because Wp
was a bounded degree deletion set in Gp.

Finally, we consider (w.l.o.g.) v ∈ �p ⧵ S
� . The existence of such v means that,

due to the construction of our configuration �q
S′

 , the vertex �(v) ∈ �q is not in S.
Since S is a solution, �(v) has degree at most d in G − S , and in particular has degree
at most d − �

q

S
(�(v)) in Gq − S and has �q

S
(�(v)) neighbors in Xt . Moreover, since

N(v) ∩ Xt = N(�(v)) ∩ Xt it holds that v also has �q
S
(�(v)) neighbors in Xt ⧵ S

′ . And
since �q

S
(�(v)) = �

p

S�
(v) , v must have at most d − �

q

S
(�(v)) neighbors in Yp ⧵ S′ . All in

all, the degree of v in G − S� is at most d.
We have shown that S′ has the same cardinality as S and is also a bounded degree

deletion set, meaning that S′ is a global solution satisfying the desired properties.
 ◻

As a consequence of Claim 3 and 4 , when looking for a global solution consist-
ent with our choice of � and R, we may exhaustively branch over:

1. how many nodes in Bt have a specific cost greater than 0 (k + 1 many options),

319

1 3

Algorithmica (2021) 83:297–336

2. which equivalence classes of ≡ are these nodes located in (at most kO(k) many
options after considering point 4.2),

3. which configuration do these nodes have in a global solution (also at most kO(k)
many options after considering point 4.2).

Let us consider the procedure for one specific branch as above, denoted � ; formally,
� is a tuple of the form (i, ([≡]1,… , [≡]i), (�1,… , �i)) . Let B�

t
 be obtained from Bt

after removing i arbitrary choices of nodes from the equivalence classes specified in
� . Having fixed � , R and � , we can already determine the value of ���(Gt, �t, �) for
any bounded degree deletion set consistent with � and R. In particular, if such a
deletion set exists then it must have size
val(�,R, �) = �(R, �) +

∑
b∈Bt

ub +
∑

j∈[i] s[≡]j (�j) , where s[≡]j is the specific cost of
an arbitrary node in [≡]j.

All that remains now is to determine whether there in fact exists a bounded
degree deletion set in Gt (a t-solution) consistent with � , R and � . To be precise, a
t-solution S is a bounded degree deletion set in Gt such that:

1. S ∩ Q = R,
2. v ∈ S ∩ �t if and only if �(v) = del,
3. for each v ∈ �t ⧵ S , |(N(v) ∩ Yt) ⧵ S| ≤ d − �(v) , and
4. for each b ∈ Bt such that |S ∩ Yb| > ub , there exists a unique j ∈ � such that equiv-

alence class of b is [≡]j , |S ∩ Yb| = ub + sb(�j) , and S ∩ Yb satisfies the conditions
of �j.

Clearly, if val(�,R, �) = ∞ , then the answer is no. On the other hand, if
val(�,R, �) ≠ ∞ , then we only need to make sure that the degree bounds are met for
nodes in X = Xt ⧵ (R ∪ �del) . Furthermore, for each vertex x ∈ X , we can straightfor-
wardly determine the maximum number of neighbors it can accommodate from
nodes in B�

t
 : this is done by subtracting from d the “buffer” required by � , the num-

ber of its neighbors in X, the number of its neighbors in
⋃

a∈At
Ya ⧵ R , and the num-

ber of its neighbors in
⋃

b∈Bt⧵B
�
t
Yb based on the configurations in � . Let us denote

the maximum number of neighbors x can still accommodate from B�
t
 by c(x), i.e.,

c(x) = d − �(x) − �N(x) ∩ (X ∪ (
⋃

a∈At
Ya ⧵ R) ∪ (

⋃
b∈Bt⧵B

�
t
Yb))�.

Before solving this final problem and moving onward to arguing the correct-
ness of our algorithm, we will need a few final considerations. First of all, it may
happen that our choice of R and � means that the sought-after t-solution will leave
some nodes in Xt undeleted, and these nodes may prevent the use of a configura-
tion achieving ub for some node b ∈ B�

t
 . To give a concrete example, consider an

undeleted vertex x ∈ Xt and a node b ∈ B�
t
 with �b = {b1} and x ∈ N(b1) ; it could

happen that sb(b1 ↦ 0) is the only specific cost that is equal to 0, but the presence of
x means that sb(b1 ↦ 1) would need to be used instead. Naturally, it can be checked
in time |Bt| whether each node in B�

t
 can still achieve a specific cost of 0; if not, then

we discard our choice of � and proceed to the next branch.
Next, for any node b ∈ B�

t
 such that �b = {b1} , a t-solution could in principle

either contain b1 or not. If sb(b1 ↦ del) ≠ 0 then the sought after t-solution must

320 Algorithmica (2021) 83:297–336

1 3

(based on our choice of �) not intersect b1 ; this means that any such node b will
reduce the value c(N(b1) ∩ Xt) by 1. On the other hand, if sb(b1 ↦ del) = 0 , then
we may assume w.l.o.g. that the t-solution contains b1 (as this comes at no addi-
tional “cost”); such nodes b will not reduce the value of c(x) for any x.

Let us now consider a node b ∈ B�
t
 such that �b = {b1, b2} . By the same consid-

erations as above (and always while respecting the condition that the specific cost
must remain 0):

– if we can add both b1 and b2 into the t-solution, we can safely do so, and we do
not change the values of c(x);

– otherwise, if it is only possible to have a t-solution that intersects b1 but not b2 ,
then we will reduce the value of c(N(b2)) by 1;

– otherwise, if it is only possible to have a t-solution that intersects b2 but not b1 ,
then we will reduce the value of c(N(b1)) by 1;

– otherwise, if it is only possible to have a t-solution that intersects neither b1
nor b2 , then we need to reduce the values of c(x) accordingly (resulting in a
total decrease of 2).

The last remaining case is that we can choose between a t-solution that intersects
b2 but not b1 and a t-solution that intersects b1 but not b2 ; in one case, we will
reduce the value of c(N1) by 1, and in the other case we will reduce the value of
c(N2) by 1. Let � be the subset of nodes in Bt which have this property. Our final
task is to determine whether it is possible to delete one of the two border vertices
in the nodes of � while maintaining non-negative values of c(x). We will encode
this task into a network flow instance � , which we construct below.

We begin by adding a universal source and a universal sink. Next, we add one
vertex for each w ∈ � , and one vertex for each x ∈ X . We add an arc from each
x ∈ X to the sink with the remaining capacity c(x) (after all the updates of c(x)
carried out above). We add an arc from the universal source to each w ∈ � of
capacity 1. Finally, we add arcs from each w to its two neighbors in X, each arc of
capacity 1.

Claim 5 � admits a network flow of size |�| if and only if there exists a t-solution
consistent with � , R and �.

Proof (of Claim) Consider a t-solution S consistent with � , R and � . Let us consider
the intersection between S and a node b ∈ B�

t
 . For all nodes b which do not force

us to make a choice between deleting one of its border vertices or the other, either
S behaves “optimally” as per our considerations above, or we can locally replace
S ∩ Yb by a different t-solution for Gb which intersects more vertices from the bor-
der than S. After performing all such local replacements, we are left with a new
t-solution S′.

Let us now consider a node b ∈ � , and recall that |�b| = 2 . Since S is consistent
with � , it can only intersect at most one vertex from �b ; let us set z ∈ �b ⧵ S . Now,
let us route the flow in � from b to N(z) ∩ X , and observe that this cannot exceed the

321

1 3

Algorithmica (2021) 83:297–336

capacity bound on the edges from X to the sink because the number of neighbors of
each x ∈ X to

⋃
b∈� Yb ⧵ S is upper-bounded by c(x).

On the other hand, consider a flow in � of size |�| . From the definition of t-solu-
tions consistent with � , R and � , it follows that we merely need to determine how
S interacts with B�

t
 , i.e., its intersection with each �b for b ∈ B�

t
 . For all nodes in

B�
t
⧵ � , we determine the intersection based on our considerations above. For � , we

use the flow in � of size |�| : for each b ∈ � the flow must go to some x ∈ X , and so
we select an arbitrary z ∈ N(x) ∩ Yb and set S ∩ �b = �b ⧵ {z} . This guarantees that
the degree bound is never exceeded by any x ∈ X , while the existence of a bounded
degree deletion set in Gb of size ub that intersects �b in �b ⧵ {z} is guaranteed by the
fact that b ∈ � . ◻

Let us now summarize the whole algorithm. We begin by branching over all
configurations � of Gt with the goal of computing ���(Gt, �t, �) for each choice of
� . Next, we construct the branching set Q and apply a second round of branching
by exhaustively selecting R ⊆ Q . We then construct the equivalence classes [≡] ,
and apply our third (and final) round of branching by selecting � . In the resulting
branch, we have full information about how we want our solution to intersect all
borders except for those in B�

t
 . For the remaining nodes in B�

t
 , we either determine

this intersection greedily, or apply network flows. If we did not reach a conflict up
to this point (e.g., by constructing an instance � with a negative capacity of some
edge, or by having val(�,R, �) = ∞), then we are guaranteed the existence of a
solution consistent with � , R and � and can set ���(Gt, �t, �) = val(�,R, �) ; other-
wise, we set val(�,R, �) = ∞.

We conclude the proof by arguing the running time of the above algorithm.
The number of choices of � is upper-bounded by O(kk) . Since |Q| ≤ O(k2) , the
number of choices of R is upper-bounded by 2O(k2) . For our third branching, the
number of choices of � can be upper-bounded by k ⋅ k2k = kO(k) . The network flow
instance can be constructed in time O(|Bt|) and can be solved by the Ford-Fulker-
son algorithm in time O(|Bt|2) . Hence we can upper-bound the total running time
of the algorithm by 2O(k2)

⋅ |Bt|2 . ◻

Theorem 5 BDD can be solved in time n3 + 2O(k2)
⋅ n2 , where k and n are the treecut

width and number of vertices of the input graph, respectively.

Proof We begin by applying Theorem 1 followed by Lemma 1 to obtain a nice
treecut decomposition (T ,X) of width at most 2k. We then use a dynamic program-
ming algorithm to compute the values ut and st at every node t ∈ V(T) . For leaves,
this is carried out by Observation 3, while for non-leaves we invoke Lemma 6.
Finally, once we compute ur for the root r, we can determine the answer to a Bdd
instance using Observation 4. ◻

Theorem 6 BDD parameterized by treecut width has no polynomial kernel unless
���� ⊆ ��∕poly.

322 Algorithmica (2021) 83:297–336

1 3

Proof We will show that the well-known NP -complete Vertex CoVer problem, i.e.,
given a graph G and an integer k, decide whether G has a vertex cover of size at
most k, AND-cross-composes into Bdd parameterized by treecut width. This then
shows the theorem due to Proposition 2.

Note that, by employing the polynomial equivalence relation that maps two
instances (G, k) and (G�, k�) of Vertex CoVer to the same equivalence class if
|V(G)| = |V(G�)| and k = k� , we can assume that the t instances come with the same
number of vertices and the same value for k.

Hence, assume that we are given t instances (G1, k),… , (Gt, k) of Vertex CoVer,
where n = |V(Gi)| . Note that simply taking a disjoint union of the t instances and
then asking for a vertex cover of size kt is not sufficient, since some of the instances
might have a vertex cover using less than k vertices and could therefore compensate
for instances whose vertex cover is larger than k.

Hence, before taking the disjoint union, we need to adapt the instances in such a
way that the original instance has a vertex cover of size at most k if and only if the
modified instance has a deletion set of size exactly k.

Given the instance (Gi, k) of Vertex CoVer, we construct an instance (G�
i
, n − k, k)

of Bdd as follows:

– we add k + 1 apex vertices a1,… , ak+1 to Gi and make them adjacent to every
vertex in Gi,

– we add n − 2k − 1 leaves to every vertex in Gi.

The following claim now shows that the constructed instance has the desired
properties. ◻

Claim 6 (Gi, k) has a vertex cover of size at most k if and only if (G�
i
, n − k, k) has no

deletion set of size at most k − 1 and (G�
i
, n − k, k) has a deletion set D of size exactly

k such that G′
i
⧵ D has maximum degree n − k.

Proof (of Claim) Towards showing the forward direction let C be a vertex cover of
size at most k for Gi and let A be an arbitrary set of exactly k − |C| vertices in Gi ⧵ C .
We claim that D = C ∪ A is the required deletion set for G′

i
 , for which it suffices to

show that every vertex in G′
i
⧵ D has degree at most n − k . This clearly holds for

the apex vertices a1,… , ak+1 , since each of these vertices has degree exactly n in G′
i

of which exactly k are in D. Moreover, since C is a vertex cover for Gi , every other
vertex in G′

i
 is only adjacent to the n − 2k − 1 leaves and the k + 1 apex vertices and

hence has degree at most n − k , as required.
Towards showing the reverse direction, let D be a deletion set of size exactly k for

G′
i
 . Because |D| ≤ k , there is at least one apex vertex, say ai , that is not in D. Moreo-

ver, since the degree of ai in G′
i
 is exactly k more than the required degree (of n − k)

and ai is only adjacent to the (original) vertices in Gi , it follows that D ⊆ V(Gi) . We
now claim that D is a vertex cover for Gi . This is because every vertex in Gi has at
least n − k neighbors in G′

i
⧵ D , i.e., the k + 1 apex vertices plus the n − 2k − 1 leaf

vertices. ◻

323

1 3

Algorithmica (2021) 83:297–336

We now obtain the required instance (G, d, l) of Bdd by taking the disjoint
union of the graphs Gi and setting d = n − k and l = tk . Clearly, (G, d, l) can be
constructed in time polynomial in

∑t

i=1
�xi� and moreover it satisfies Property 1 of

an AND-cross-composition, because of Claim 6. Finally, the instance also satisfies
Property 2, because the treecut width of G is equal to the maximum treecut width of
any of the t instances, which in turn is at most n = maxt

i=1
|V(Gi)| . ◻

5 Core Fracture Number

In this section we introduce the new structural parameter core fracture number and
provide a fixed-parameter algorithm for BDD parameterized by this parameter. An
important prerequisite for the introduction of this parameter is the following sim-
ple preprocessing procedure that can be applied to any BDD instance. Given an
instance I = (G, d,�) of BDD, the core of I , denoted by �(I) = (�(G), d,�) , is the
BDD instance obtained from I after removing all edges whose both endpoints have
degree at most d from G.

Observation 7 Let I = (G, d,�) be a BDD instance. Then I and �(I) are equivalent
instances of BDD in the sense that any solution for I is also a solution for �(I) and
vice versa. Moreover, �(I) can be computed in linear time w.r.t. the number of edges
of G.

In the following we will assume that we have already applied the above preproc-
essing procedure to any BDD instance and hence the graph of the instance does
not contain any edges between vertices whose degree is already below the given
degree bound. The core fracture number of a BDD instance I = (G, d,�) , denoted
by ���(I) , is the minimum integer k such that there is a deletion set D ⊆ V(G) with
|D| ≤ k and the number of vertices in any component C of G ⧵ D of degree larger
than d in G is at most k. In other words, each connected component of G − D may
contain only at most k vertices of degree greater than d. We start by showing that
this parameter is orthogonal to treecut width.

Theorem 8 For every d ∈ ℕ , there are classes Cd
1
 and Cd

2
 of BDD instances

I = (G, d,�) with �(I) = I such that:

– all instances in Cd
1
 have core fracture number at most 1 and for every n > 1 there

is a graph in Cd
1
 with treecut width n,

– all graphs in Cd
2
 have treecut width at most 1 and and for every n > 1 there is an

instance in Cd
2
 with core fracture number n,

Proof For the class Cd
1
 we make use of the class H2 that was used in previous work

on treecut width [24, Proposition 3]. In particular, H2 is the class of graphs Sn
obtained from a star with n leaves l1,… , ln by replacing each edge with n subdivided

324 Algorithmica (2021) 83:297–336

1 3

edges; Fig. 6 illustrates the graph S3 . Following the arguments used in previous work
[24, Proposition 3], we can verify that ���(Sn) ≥ n : suppose for a contradiction that
���(Sn) ≤ n − 1 . Then any two leaves zi and zj , i ≠ j , must be contained in the same
bag in any tree-cut decomposition of width at most n − 1 as they are connected by
n edge-disjoint paths. This means there exists a bag t containing all zi ’s in any such
tree-cut decomposition, which however implies that ���(t) ≥ n.

Towards defining the class Cd
1
 of BDD instances, we need to ensure that graphs do

not change after the core operation is applied. We do so by introducing the graphs
Sd
n
 , which are obtained from Sn after attaching d − 1 novel leaf vertices to every

li . Then Cd
1
 contains all BDD instances (Sd

n
, d,�) for any n,� ∈ ℕ . Because Sn is a

subgraph of Sd
n
 , we still have that ���(Sd

n
) ≥ n . Moreover, for every d > 1 it holds

that after deleting the center vertex of Sd
n
 every component has only one vertex with

degree larger than d and hence ���(Sd
n
) ≤ 1.

Towards the definition of the class Cd
2
 , let Pd

n
 be the path on n vertices after attach-

ing d novel leaf vertices to every vertex in the path. Then Cd
2
 is the class of all BDD

instance (Pd
n
, d,�) for any n,� ∈ ℕ . Note that �(I) = I for every I ∈ C

d
2
 . Because

the treecut width of any tree is at most one (simple take the tree itself as the treecut
decomposition), we have that ���(I) ≤ 1 for every I ∈ C

d
2
 . Towards showing that

the core fracture number of the instances in Cd
2
 is unbounded, assume for a contra-

diction that this is not the case, i.e., there is k ∈ ℕ such that ���(I) ≤ k for every
I ∈ C

d
2
 . Consider the BDD instance I = (Pd

(k+1)2
, d,�) ∈ C

d
2
 . Then any vertex set

D ⊆ V(G) witnessing ���(I) must contain at least one vertex from every subpath of
P(k+1)2 of length k + 1 . Since P(k+1)2 contains k + 1 such subpaths, which are pairwise
disjoint, this is not possible if |D| ≤ k . Hence ���(I) > k , a contradiction to our ini-
tial assumption. ◻

For completeness, we note that the treedepth (and hence also treewidth) of the
core is always upper-bounded by a function of the core fracture number. Indeed,
observe that deleting k vertices from a graph with core fracture number k leads to
a graph where every connected component has at most k vertices; from this and
the definition of treedepth [40], it is easy to show that the graph has treedepth at
most 2k + 1 . On the other hand, the core fracture number is upper bounded by
the vertex cover number (i.e., the size of a minimum vertex cover). Hence our

Fig. 6 The graph S3

325

1 3

Algorithmica (2021) 83:297–336

tractability results for core fracture number also imply analogous results for the
vertex cover number.

We are now ready to present our fixed-parameter algorithm for BDD param-
eterized by the core fracture number. The algorithm consists of two steps: (1) it
computes a deletion set D of size at most k, witnessing that ���(I) ≤ k and (2) it
solves I with the help of the deletion set D. Namely, our algorithm will consists
of fixed-parameter algorithms for the following two parameterized problems.

Core Fracture Number Detection (CFND)

Input: An instance I = (G, d, �) of BDD and an integer k.
Parameter: k

Question: Decide whether cfn(I) ≤ k and if so output a deletion
set D ⊆ V (G) witnessing this.

Core Fracture Number Evaluation (CFNE)

Input: An instance I = (G, d, �) of BDD and a deletion set D

witnessing cfn(G) ≤ |D|.
Parameter: |D|
Question: Decide whether I has a solution and if so output a

solution for I.

Theorem 9 CFND can be solved in time O((2k + 1)k|E(G)|) and is hence fixed-
parameter tractable.

Proof Let I = (G, d,�, k) be any instance of CFND and let M be the set of all ver-
tices in G that have degree larger than d. We will show the lemma by providing a
depth-bounded search tree algorithm, which is based on the following observations.

O1 If G is not connected then a solution for I can be obtained as the disjoint union
of solutions for every component of G.

O2 If G is connected and C is any subset of V(G) such that G[C] is connected and
|C ∩M| > k , then any solution for I has to contain at least one vertex from C.

These observations lead directly to the following recursive algorithm that given
the instance I either determines that the instance is a no-instance or outputs a
solution D ⊆ V(G) of minimum size for I . The algorithm first checks whether
G is connected. If G is not connected the algorithm calls itself recursively on
the instance (C, d,�, k) for each component C of G. If one of the recursive calls
returns no or if the size of the union of the solutions returned for each component

326 Algorithmica (2021) 83:297–336

1 3

exceeds k, the algorithm returns that I is a no-instance. Otherwise the algorithm
returns the union of the solutions returned for each component of G.

If G is connected and |V(G) ∩M| ≤ k , the algorithm returns the empty set as
a solution. Otherwise, i.e., if G is connected but |V(G) ∩M| > k the algorithm
first computes a set C of at most 2(k + 1) − 1 vertices of G such that G[C] is con-
nected and |C ∩M| > k . This can for instance be achieved by a depth-first search
that starts at any vertex in M and stops as soon as k + 1 vertices of M have been
visited. Then |C| ≤ 2(k + 1) − 1 because at most every second vertex that is visited
by the depth-first search can be a vertex in V(G) ⧵M ; this is because G −M is an
independent set (recall that we assume �(G) = G and hence G contains no edges
between vertices of degree at most d). The algorithm then branches on the verti-
ces in C, i.e., for every v ∈ C the algorithm recursively computes a solution for the
instance (G − {v}, d,�, k − 1) . It then returns the solution of minimum size returned
by any of those recursive calls, or no-if none of those calls returns a solution. This
completes the description of the algorithm. The correctness of the algorithm follows
immediately from the above observations. Moreover the running time of the algo-
rithm is easily seen to be dominated by the maximum time required for the case that
at each step of the algorithm G is connected.

In this case the running time can be obtained as the product of the number of
branching steps times the time spent on each of those. Because at each recursive call
the parameter k is decreased by at least one and the number of branching choices
is at most 2(k + 1) − 1 , we obtain that there are at most (2(k + 1) − 1)k = (2k + 1)k
branching steps. Furthermore, the time at each branching step is dominated by the
time required to check whether G is connected, which is linear in the number of
edges of G. Putting everything together, we obtain O((2k + 1)k|E(G)|) as the total
time required by the algorithm, which completes the proof of the lemma. ◻

We note that the depth-first search algorithm in the above proof can be eas-
ily transformed into a polynomial time approximation algorithm for CFND that
exhibits an approximation ratio of 2k + 1 . In particular, instead of branching on
the vertices of a connected subgraph C of G with at most 2k + 1 vertices, this
algorithm would simply add all the vertices of C into the current solution. This
way we obtain:

Theorem 10 CFND can be approximated in polynomial time within a factor of
2k + 1.

Let I = (G, d,�,D) be an instance of CFNE and assume w.l.o.g. that �(G) = G
and k = |D| . We start by showing that we do not need to consider solutions
V � ⊆ V(G) for I that contain more than 2k − 1 vertices from any component C of
G − D.

Lemma 7 If I has a solution, then it has a solution V ′ such that |V � ∩ V(C)| < 2k for
every component C of G − D.

327

1 3

Algorithmica (2021) 83:297–336

Proof Let V ′ be a solution for I and C be a component of G − D with
|V � ∩ V(C)| ≥ 2k ; if no such component exists, then we are done. Let M be the set of
all vertices in C, whose degree is larger than d in G. Then (V � ⧵ V(C)) ∪M ∪ D is also
a solution for I and moreover |(V � ⧵ V(C)) ∪M ∪ D| ≤ |V �| − 2k + k + k ≤ |V �| .
By iterating the same process for every component C with |V � ∩ V(C)| ≥ 2k , one
obtains the desired solution for I . ◻

Let C be a component of G − D and let M ⊆ V(C) be the set of all vertices with
degree larger than d in G. Then the signature of C, denoted by S(C) , contains all
pairs (D�,�) such that:

– D′ ⊆ D,
– � is the set of all pairs (o, �) such that:

– o is an integer with 0 ≤ o < 2k , and
– � ∶ D ⧵ D�

→ {0,… , 2k − 1} is a mapping such that there is a set V � ⊆ V(C)
with |V �| = o satisfying the following conditions:

 (S1) every vertex in M ⧵ V ′ has degree at most d in G − (V � ∪ D�) and
 (S2) for every vertex v in D ⧵ D′ , V ′ contains exactly �(v) neighbors of v.

Informally, for every subset D′ of vertices that we decide to delete from D, the
signature tells us how many vertices in C we need to delete and how their dele-
tion affects the degrees of the remaining vertices in D − D� . Because we only
need to consider solutions containing less than 2k vertices from C (Lemma 7), the
number of ways in which different solutions effect the degrees of vertices in D is
bounded (in terms of k), which allows us to compute the signatures.

Lemma 8 The signature S(C) can be computed in time O(|V(C)| + |E(C)| + 2k(2k)2
2k

)
for any component C of G − D.

Proof Let I = (G, d,�,D) be the given instance of CFNE, let C be any component
of G − D , and let M be the set of all vertices in C that have degree more than d in
G. Note that |M| ≤ k and because G = �(G) also C −M is an independent set. The
main idea behind the algorithm to compute S(C) is that even though there can be
many vertices in V(C) ⧵M the vertices can only behave in a limited number of ways
towards the vertices of high degree, i.e., the vertices in D ∪M . Namely, let D′ be an
arbitrary subset of D. Then we say that two vertices v, v� ∈ V(C) ⧵M have the same
type if both have the same neighborhood in M ∪ (D ⧵ D�) . Let NT be the set of types
of vertices in V(C) ⧵M and for a type t ∈ NT we denote by #(t) the number of verti-
ces in C having type t. Because |D ∪M| ≤ 2k , it holds that |NT| ≤ 22k . For a vertex
v ∈ D ⧵ D� let NT(v) be the set of all types having v as a neighbor. Observe that if
two vertices u and v have the same type then the effect of removing u is the same as
the effect of removing v, i.e., the resulting graphs will be isomorphic. Hence for the
computation of S(C) it is not necessary to distinguish between vertices of the same

328 Algorithmica (2021) 83:297–336

1 3

type. Namely, there is a pair (o, �) satisfying (S1) and (S2) if and only if there is a
subset M′ ⊆ M together with a mapping � ∶ NT → {0,… , 2k − 1} such that:

 (S0’) �(t) ≤ #(t) for every t ∈ NT and �M�� +∑
t∈NT �(t) = o,

 (S1’) every vertex in M ⧵M′ has degree at most d in the graph obtained from
G[(D ⧵ D�) ∪ V(C)] −M� after deleting �(t) vertices of type t for every t ∈ NT ,
and

 (S2’) for every vertex v in D ⧵ D′ , �(v) = �N(v,M�)� +∑
t∈NT(v) �(t).

Hence for a given D′ we can compute � by enumerating all pairs (M�, �) and for
each pair testing whether it satisfies (S0’)–(S2’). If it does then we add the pair
(o, �) , where o = �M�� +∑

t∈NT �(t) and �(v) = �N(v,M�)� +∑
t∈NT(v) �(t) for every

v ∈ D ⧵ D� to � , otherwise we do not.
The total running time of the algorithm is obtained as follows. To compute NT

and #(t) for every t ∈ NT it is sufficient to make one pass through the vertices in
V(C) ⧵M ; since one also needs to store the values the total running time of this
step is at most O(|V(C)| + |E(C)| + 22k) . Moreover, the time needed to enumerate
all pairs (M�, �) and verify that the pair satisfies Conditions (S0’)–(S2’), is domi-
nated by the number of these pairs, i.e., O(2k(2k)22k) . The same holds for calculating
the pair (o, �) from (M�, �) in the case that all conditions were met. Hence the total
running time of the algorithm is O(|V(C)| + |E(C)| + 2k(2k)2

2k

) . ◻

Let D′ ⊆ D and let C and C′ be two distinct components of G − D . We say that
C and C′ are equivalent w.r.t. D′ if (D�,�) ∈ S(C) ∩ S(C�) for some � . Let P(D�) be
the partition of all components of G − D into equivalence classes and for an equiva-
lence class C ∈ P(D�) let � (C) denote the set � such that (D�,�) ∈ S(C) for every
C ∈ C . Note that |P(D�)| ≤ 22k(2k)

k.

Lemma 9 An instance I = (G, d,�,D) has a solution if and only if there is a subset
D′ of D and a mapping � that assigns to every C ∈ P(D�) and every (o, �) ∈ � (C) a
natural number satisfying the following conditions:

 (C1) (
∑

C∈P(D�)∧(o,�)∈� (C) o ⋅ �(C, (o, �))) + �D�� ≤ 𝓁 , i.e., the budget � is not exceeded,
 (C2)

∑
(o,�)∈� (C) �(C, (o, �)) = �C� for every C ∈ P(D�) , i.e., all components are con-

sidered,
 (C3)

∑
C∈P(D�)∧(o,�)∈� (C) �(v) ⋅ �(C, (o, �) ≥ �NG−D� (v)� − d for every v ∈ D ⧵ D� , i.e.,

the degree conditions for the vertices in D ⧵ D′ are satisfied.

Informally, for C ∈ P(D�) and every (o, �) ∈ � (C) , � gives the number of compo-
nents in C that use the configuration (o, �).
Proof Towards showing the forward direction let V ′ be a solution for I . We start
by setting D� = D ∩ V � . Consider a component C of G − D and let � be the set such
that (D�,�) ∈ S(C) . Because of Lemma 7, we can assume that |V � ∩ V(C)| < 2k .

329

1 3

Algorithmica (2021) 83:297–336

Hence � contains a pair (|V � ∩ V(C)|, �) , which we denote by A(C), such that for
every v ∈ D ⧵ D� , it holds that v has exactly �(v) neighbors in V � ∩ V(C) . For every
C ∈ P(D�) and (o, �) ∈ � (C) , we now set �(C, (o, �)) to be the number of compo-
nents C in C with A(C) = (o, �) and claim that � satisfies the conditions (C1)–
(C3). Because (

∑
C∈P(D�)∧(o,�)∈� (C) o ⋅ �(C, (o, �))) + �D�� = �V �� and |V ′| ≤ � , we

obtain that � satisfies (C1). Condition (C2) follows immediately from the defini-
tion of � . Finally, Condition (C3) follows because for every v ∈ D ⧵ D� it holds that ∑

C∈P(D�)∧(o,�)∈� (C) �(v) ⋅ �(C, (o, �)) is equal to the number of neighbors of v in V ′ ⧵ D
and the fact that v can have at most d neighbors in G − V �.

Towards showing the reverse direction let D′ ⊆ D and � be a mapping satisfy-
ing (C1)–(C3). For a component C ∈ C and (o, �) ∈ � , where C ∈ P(D�) and
(D�,�) ∈ S(C) , we denote by V(C, (o, �)) a subset of V(C) of size o satisfying the
conditions (S1) and (S2) in the definition of a signature. Then a solution V ′ for I is
obtained as follows. For any C ∈ P(D�) we take the union of V(C, (o, �)) for exactly
�(C, (o, �)) components C ∈ C . Condition (C2) ensures that there are enough compo-
nents in C and moreover that this way we use every component exactly once. Finally,
we add D′ to V ′ . Because of Condition (C1), we have that |V ′| ≤ � . Moreover,
because of Condition (C3), we obtain that every vertex in D ⧵ D′ has degree at most
d in G − V � . The same holds for every vertex in any component C of G − D , because
of Property (S1). Hence V ′ is a solution for I of size at most � . ◻

With the help of the above lemma, we can express the existence of a solution
in terms of the solution of an integer linear program with a bounded number of
variables, which in turn can be solved in fpt-time w.r.t. the number of variables
(Proposition 3).

Theorem 11 CFNE is fixed-parameter tractable.

Proof Let I = (G, d,�,D) be the given instance of CFNE. The algorithm first com-
putes the signature S(C) for every component C of G − D according to Lemma 8.
It then uses the characterization given in Lemma 9 to decide whether I has a solu-
tion. Namely, for every D′ ⊆ D the algorithm constructs an ILP instance I′ whose
optimum is at most � − |D�| if and only if the BDD instance I has a solution V ′
with V � ∩ D = D� . In accordance with Lemma 9 the ILP instance I′ has one variable,
denote by xC,(o,�) , for every C ∈ P(D�) and (o, �) ∈ � (C) and consists of the following
constraints:

Observe that there is a one-to-one correspondence between assignments � for the
variables in I′ and the assignment � defined in Lemma 9. Moreover, the constraints
of I′ ensure Condition (C2) and (C3) and Condition (C1) can be satisfied if and only

minimize
∑

C∈P(D�),(o,�)∈Γ(C)

o ⋅ xC,(o,�)

subject to
∑

(o,�)∈Γ(C)

xC,(o,�) = �C� ∀C ∈ P(D�)

∑
C∈P(D�)∧(o,�)∈Γ(C)

�(v) ⋅ xC,(o,�) ≥ �NG−D� (v)� − d ∀v ∈ D⧵D�

330 Algorithmica (2021) 83:297–336

1 3

if the optimum value of I′ is at most � − |D�| . This completes the description of the
algorithm and the running time of the algorithm is obtained as follows.

Apart from constructing the ILP instance, the main task of the algorithm are to
compute the signature for every component C of G − D and to compute P(D�) for
every D′ ⊆ D . The first task can be achieved in time O(|E(G)| + |V(G)|2k(2k)22k)
due to Lemma 8. The second task can be achieved by going over all of the at most
|V(G)|2 pairs of components of G − D and checking for each such pair whether
the signatures are the same. Hence the total time required for the second step is
at most O(2k|V(G)|2k(2k)k) . Finally, constructing and solving the ILP instance
I
′ for every D′ ⊆ D is dominated by the time required to solve I′ , which because

of Proposition 3 takes time at most O(p2.5p+o(p) ⋅ L) , where p is the number of
variables and L is the size of I′ in bits. Now the number of variables p of I′ is
at most |P(D�)|max� , where max� = maxC∈P(D�) |� (C)| . Moreover, the size of I′ in
bits is dominated by the size of the last row of constraints in I′ , which is at most
O((log(k)|P(D�)|max�) + log(|V(G)|)k) . Since |P(D�)| ≤ 2k(2k)

k and max� ≤ k(2k)k ,
we obtain that p ∈ O(2k(2k)

k

k(2k)k) and L ∈ O((log(k)2k(2k)
k

k(2k)k) + log(|V(G)|)k) ,
which shows that constructing and solving I′ is fixed-parameter tractable parameter-
ized by k. Taking everything together, we obtain O(2k(|V(G)|2k(2k)k + p2.5p+o(p)L) ,
where p ∈ O(2k(2k)

k

k(2k)k) and L ∈ O((log(k)2k(2k)
k

k(2k)k) + log(|V(G)|)k) , as the
total running time of the algorithm. ◻

As our final result, we show a kernel lower bound for CFNE.

Theorem 12 CFNE has no polynomial kernel unless ���� ⊆ ��∕poly.

Proof We give a polynomial parameter transformation from the well-known Set
CoVer parameterized by the size of the universe. The result then follows from
Proposition 1.

Set Cover

Input: A universe U , a family F of subsets of U , k ∈ N.
Parameter: |U |.
Task: Find a subfamily F ′ ⊆ F such that |F ′| = k and F ′

covers U , i.e.,
⋃

F∈F ′ F = U .

It is known that Set Cover does not admit a polynomial kernel under standard complexity
assumptions, notably, unless ���� ⊆ ��∕poly [12]. Given an instance I = (U,F, k) of
Set Cover, we construct an instance I� = (G, d,�,D) of CFNE as follows. G has one vertex
vu for every u ∈ U as well as one vertex wF for every F ∈ F . Moreover, G has an edge
between a vertex vu and a vertex wF if and only if u ∈ F . We set D = { vu | u ∈ U } . Let
� be the maximum degree of any vertex in G. Then we attach to every vertex in D new
leaf vertices such that the degree of every vertex in D becomes � + 1 . This completes the
construction of G. Finally, we set d = � and � = k . Because G − D is an independent

331

1 3

Algorithmica (2021) 83:297–336

set, it shows that ���(G) ≤ |U| = |D| . It remains to show that I has a solution if and
only if so does I′.

Towards showing the forward direction let F′ ⊆ F be a solution for I . Then it is
straightforward to verify that {wF | F ∈ F

� } is a solution for I′.
Towards establishing the reverse direction let V � ⊆ V(G) be a solution for I′ . We

first show that w.l.o.g. we can assume that V � ⊆ {wF | F ∈ F } . Suppose not then
V ′ either contains a vertex in D or a leaf attached to a vertex in D. If V ′ contains a
leaf, then we can replace the leaf with the vertex in D that it is attached to. Hence it
only remains to deal with the case that V ′ contains a vertex in D. In this case we can
replace the vertex say vu in D with any vertex wF such that u ∈ F and F ∈ F . Note
that such a vertex wF exists since otherwise I is a no-instance. This works because
all vertices in {wF | F ∈ F } already have degree at most d in G and moreover v has
degree at most d + 1 in G. Thus let V ′ be a solution for I′ with V � ⊆ {wF | F ∈ F } .
Then it is straightforward to verify that {F | wF ∈ V � } is a solution for I . ◻

6 Concluding Notes

Our results close a wide gap in the understanding of the complexity landscape of
BDD parameterized by structural parameters. In particular, they not only resolve an
open question from previous work in the area [6], but push the lower bounds signifi-
cantly further, specifically to deletion distance to trees of bounded depth. Moreover,
we identified structural parameterizations which are better suited for the problem
at hand and used these to obtain two novel fixed-parameter algorithms for BDD.
In particular, it is interesting that treecut width is the only known decompositional
parameter that allows for an fixed-parameter algorithm. Moreover, the core fracture
number is a natural and quite significant generalization of the vertex cover number.

For future work it would be interesting to empirically evaluate how large the
considered parameters are on practical instances, and whether the ideas used in our
exact algorithms can be used to improve heuristic approaches commonly used to
solve the problem.

Acknowledgements This work was supported by the Austrian Science Fund (FWF), project P31336.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License,
which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Com-
mons licence, and indicate if changes were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is
not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission
directly from the copyright holder. To view a copy of this licence, visit http://creat iveco mmons .org/licen
ses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

332 Algorithmica (2021) 83:297–336

1 3

Appendix

Proof of Lemma 1

The proof of Lemma 1 is based on the following considerations. Let (T ,X) be a
rooted tree-cut decomposition of G whose width is at most w. We say that a node t,
t ≠ r , is bad if ���(t) ≤ 2 and there is a sibling b of t such that N(Yt) ∩ Yb ≠ � . For
a bad node t, we say that b is a bad neighbor of t if N(Yt) ∩ Xb ≠ � and b is either a
sibling of t or a descendant of a sibling of t.

rerouting(t): let t be a bad node and let b be a bad neighbor of t of maxi-
mum depth (resolve ties arbitrarily). Then remove the tree edge e(t) from T
and add a new tree edge {b, t}.

toP-down rerouting: as long as (T ,X) is not a nice tree-cut decomposition,
pick any bad node t of minimum depth. Perform rerouting(t).

For the following proof, we will use ���T (z) to denote the torso-size of a node z in
the tree T; ���T and ���T are defined analogously, but for ��� and ��� . This will
be useful when comparing adhesion and torso-size between two different tree-cut
decompositions.

Lemma 10 ReROuTIng(t) does not increase the width of the tree-cut decomposition.

Proof Let b be the bad neighbor of t chosen by rerouting(t), and let (T �,X) be
the tree-cut decomposition obtained from the tree-cut decomposition (T ,X) by
rerouting(t). We will show that for each z ∈ V(T) , it holds that

(1) ���T (z) ≥ ���T � (z) , and
(2) ���T (z) = ���T � (z),

from which the lemma follows.
Let us first consider Claim (1). Let P be the set of edges on the path in T between

b and the parent a(t) of t. Then for any edge p ∉ P it holds that ���T (p) = ���T � (p) ,
and hence Claim (1) holds for all vertices z which are not incident to P and also
for z = a(t) . As for the remaining choices of z, it holds that the edge between Xb
and t lies in ���T (e(z)) ⧵ ���T � (e(z)) . Furthermore, by thinness of t there may
exist at most one edge e′ such that e� ∈ ���T � (e(z)) ⧵ ���T (e(z)) , and hence either
���T (z) = ���T � (z) or ���T (z) = ���T � (z) + 1 . Thus Claim (1) holds.

Now we consider Claim (2). Since the contents of the bags did not change and the
adhesion did not increase (Claim (1)) it follows that Claim (2) may only be violated
if NT (z) ⊂ NT � (z) , which is only the case for z = b . However, it is easy to verify that
���T (b) = ���T � (b) since {t} = NT � (b) ⧵ NT (b) and t is thin. ◻

Lemma 11 TOP-DOwn ReROuTIng terminates after performing ReROuTIng at most |T|2
times, where (T ,X) is the initial tree-cut decomposition.

333

1 3

Algorithmica (2021) 83:297–336

Proof Let (T ,X) be a rooted tree-cut decomposition with a bad node t at depth d such
that all nodes at depth at most d − 1 are not bad, and let (T �,X) be the rooted tree-cut
decomposition obtained from (T ,X) by rerouting(t). Let depT (i) denote the num-
ber of nodes at depth i in T. It is easy to see that depT (d) = depT � (d) + 1 . Further-
more, for any tree-cut decomposition (T ��,X��) , if depT �� (i) = 1 then the single node
at depth i cannot be bad. From these two observations it follows that rerouting(t)
can only be called at most |T| times at each depth d, and since d is bounded by |T|,
the proof is finished. ◻

Proof (of Lemma 1) By definition, the output of toP-down rerouting is a nice tree-
cut decomposition. The lemma then follows from Lemma 11 and Lemma 10. ◻

Proof of Lemma 2

We partition the nodes in At into two sets: A′
t
 contains all thin nodes in At and A′′

t

contains all the bold nodes in At . We claim that |A′
t
| ≤ k and |A��

t
| ≤ k + 1 , which

will establish the statement. The inequality |A′
t
| ≤ k is easy to see. Indeed, recall

that N(Yb) ⊆ Xt ∪ (V(G) ⧵ Yt) for every b ∈ A�
t
 since (T ,X) is nice. Furthermore,

each b ∈ A�
t
 satisfies N(Yb) ∩ (V(G) ⧵ Yt) ≠ � since otherwise, b would have been

included in Bt . Therefore, each b ∈ A�
t
 contributes at least one to the value ���(t) .

From ���(t) ≤ k , the inequality follows.
To prove |A��

t
| ≤ k + 1 , suppose |A��

t
| = � ≥ k + 2 for the sake of contradic-

tion. Consider the torso Ht at t. For each b ∈ At ∪ Bt , let zb be the vertex of Ht
obtained by consolidating the vertex set Yb in G and let ztop be the vertex of Ht
obtained by consolidating the vertex set V(G) ⧵ Yt . Fix a sequence of suppress-
ing vertices of degree at most two which yields a sequence of intermediate graphs
Ht = H

(0)
t ,H

(1)
t ,⋯ ,H

(m)
t = H̃t with the following property: whenever it is possible to

suppress ztop as well as some other vertex, we always prioritize suppressing a vertex
different from ztop.

Let us choose b�, b�� ∈ A��
t
 so that zb′ and zb′′ are the first and the second (distinct)

vertex among zb for all b ∈ A��
t
 whose degree strictly decreases in this sequence.

Such b′ and b′′ must exist since at least two vertices zb , where b ∈ A��
t
 , do not appear

in H̃t , and any zb may only be removed by suppression. Let a�, a�� ∈ At ∪ Bt ∪ {top}
and 0 ≤ i < j ≤ m be such that the first decrease in the degrees of zb′ and zb′′ is due
to suppressing of za� ∈ V(H

(i)
t) and of za�� ∈ V(H

(j)
t) . We observe that the respective

degree of za′ and za′′ are exactly one in V(H(i)
t) and in V(H(j)

t) since otherwise, the
degree of zb′ and zb′′ would not decrease.

We first argue that a�, a�� ∈ A��
t
∪ {top} . Notice that zb′ and za′ are adjacent in H(i)

t
and also, zb′′ and za′′ are adjacent in H(j)

t . This means that zb′za′ and zb′′za′′ are edges in
Ht as well. For the sake of contradiction, suppose a� ∈ A�

t
∪ Bt . This means that a′ is

a thin node. The property of a nice tree-cut decomposition implies N(Ya�) ∩ Yb� = �
and thus zb′ and za′ are non-adjacent in Ht . In particular, this implies that za′ must
have been adjacent to ztop in Ht and ztop must have been suppressed as a degree-2
vertex at some step f < i to create an edge between za′ and zb′ . However, observe
that in this case it would also have been possible to suppress ztop immediately after

334 Algorithmica (2021) 83:297–336

1 3

suppressing za′ , contradicting our assumption about the sequence of suppressions.
The same argument applies to a′′ . It follows that a�, a�� ∈ A��

t
∪ {top} . Furthermore,

as a suppressing of a vertex removes it from the considered graph, either a′ or a′′
belongs to A′′

t
 . Since we pick b′ as the first b ∈ A��

t
 such that the degree zb strictly

decreases, it cannot be a� ∈ A��
t
 . Hence, we have a� = top and a�� ∈ A��

t
 . By a similar

argument, we know that a�� = b�.
Notice that the suppressing of za′ , namely ztop , decreases the degree of zb′ by one.

That is, the degree of zb′ in H(i+1)
t remains at least two. Now that the suppressing of

zb′ in H(j)
t strictly decreases the degree of zb′′ , the degree of zb′ in H(j) equals to one.

This implies that there is a suppressing of a vertex, say za∗ , which further decreases
the degree of zb′ between the sequence of H(i+1)

t and H(j)
t . However, then a∗ ∈ A��

t
 ,

which contradicts our choice of b′′ and H(j)
t . This proves |A��

t
| = � ≤ k + 1.

References

 1. Aigner, M., Ziegler, G.M.: Proofs from the Book, 3rd edn. Springer, Berlin (2004)
 2. Bäckström, C., Jonsson, P., Ordyniak, S., Szeider, S.: A complete parameterized complexity analy-

sis of bounded planning. J. Comput. Syst. Sci. 81(7), 1311–1332 (2015)
 3. Balasundaram, B., Butenko, S., Hicks, I.V.: Clique relaxations in social network analysis: the maxi-

mum k-plex problem. Oper. Res. 59(1), 133–142 (2011)
 4. Balasundaram, B., Chandramouli, S.S., Trukhanov, S.: Approximation algorithms for finding and

partitioning unit-disk graphs into co-k-plexes. Optim. Lett. 4(3), 311–320 (2010)
 5. Betzler, N., Bodlaender, H.L., Bredereck, R., Niedermeier, R., Uhlmann, J.: On making a distin-

guished vertex of minimum degree by vertex deletion. Algorithmica 68(3), 715–738 (2014)
 6. Betzler, N., Bredereck, R., Niedermeier, R., Uhlmann, J.: On bounded-degree vertex deletion

parameterized by treewidth. Discrete Appl. Math. 160(1–2), 53–60 (2012)
 7. Betzler, N., Uhlmann, J.: Parameterized complexity of candidate control in elections and related

digraph problems. Theor. Comput. Sci. 410(52), 5425–5442 (2009)
 8. Bodlaender, H.L., Jansen, B.M.P., Kratsch, S.: Kernelization lower bounds by cross-composition.

SIAM J Discrete Math. 28(1), 277–305 (2014)
 9. Bodlaender, H.L., van Antwerpen-de Fluiter, B.: Reduction algorithms for graphs of small tree-

width. Inf. Comput. 167(2), 86–119 (2001)
 10. Chen, Z.Z., Fellows, M.R., Fu, B., Jiang, H., Liu, Y., Wang, L., Zhu, B.: A linear kernel for co-path/

cycle packing. In Proceedings of the AAIM 2010, volume 6124 of LNCS, pp. 90–102. Springer,
Berlin (2010)

 11. Courcelle, B.: The monadic secondorder logic of graphs. i. recognizable sets of finite graphs. Inf.
Comput. 85(1), 12–75 (1990)

 12. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M., Pilipczuk, M., Sau-
rabh, S.: Parameterized Algorithms. Springer, Berlin (2015)

 13. Dessmark, A., Jansen, K., Lingas, A.: The maximum k-dependent and f -dependent set problem. In:
Proceedings of the ISAAC 1993, volume 762 of LNCS, pp. 88–98. Springer, Berlin (1993)

 14. Diestel, R.: Graph Theory, volume 173 of Graduate Texts in Mathematics. 2nd edition, Springer,
New York (2000)

 15. Downey, R. G., Fellows, M. R.: Fundamentals of Parameterized Complexity. Texts in Computer
Science. Springer, Berlin (2013)

 16. Eduard E., Robert G., Stefan S.: Meta-kernelization using well-structured modulators. In Thore H.,
Iyad A. Kanj, (eds.), Proceedings of the IPEC 2015, volume 43 of LIPIcs, pp. 114–126. Leibniz-
Zentrum für Informatik, (2015)

 17. Eiben, E., Ganian, R., Szeider, S.: Solving problems on graphs of high rank-width. In Proceedings
of the WADS 2015, volume 9214 of LNCS, pp. 314–326. Springer, Berlin (2015)

 18. Erdős, P., Turán, P.: On a problem of Sidon in additive number theory, and on some related prob-
lems. J. Lond. Math. Soc. 1(4), 212–215 (1941)

335

1 3

Algorithmica (2021) 83:297–336

 19. Fellows, M.R., Guo, J., Moser, H., Niedermeier, R.: A generalization of Nemhauser and Trotter’s
local optimization theorem. J. Comput. Syst. Sci. 77(6), 1141–1158 (2011)

 20. Fellows, M.R., Lokshtanov, D., Misra, N., Rosamond, F. A., Saurabh, S.: Graph layout problems
parameterized by vertex cover. In ISAAC, Lecture Notes in Computer Science, pp. 294–305.
Springer, Berlin (2008)

 21. Frank, A., Tardos, É.: An application of simultaneous diophantine approximation in combinatorial
optimization. Combinatorica 7(1), 49–65 (1987)

 22. Fréville, A.: The multidimensional 0–1 knapsack problem: an overview. Eur. J. Oper. Res. 155(1),
1–21 (2004)

 23. Gajarský, J., Hlinený, P., Obdrzálek, J., Ordyniak, S., Reidl, F., Rossmanith, P., Villaamil, F.S., Sik-
dar, S.: Kernelization using structural parameters on sparse graph classes. J. Comput. Syst. Sci. 84,
219–242 (2017)

 24. Ganian, Robert, Kim, Eun Jung, Szeider, Stefan: Algorithmic applications of tree-cut width. In
Giuseppe F. Italiano, G. P., Donald S. (eds.). Proceedings of the MFCS 2015, volume 9235 of
LNCS, pp. 348–360. Springer, Berlin (2015)

 25. Ganian, R., Klute, F., Ordyniak, S.: On structural parameterizations of the bounded-degree vertex
deletion problem. In 35th Symposium on Theoretical Aspects of Computer Science, STACS 2018,
February 28 to March 3, 2018, Caen, France, volume 96 of LIPIcs, pages 33:1–33:14. Schloss Dag-
stuhl - Leibniz-Zentrum fuer Informatik, (2018)

 26. Ganian, R., Lodha, N., Ordyniak, S., Szeider, S.: Sat-encodings for treecut width and treedepth. In
Proceedings of the Twenty-First Workshop on Algorithm Engineering and Experiments, ALENEX
2019, San Diego, CA, USA, January 7-8, 2019, pp. 117–129, (2019)

 27. Ganian, R., Ordyniak, S.: The power of cut-based parameters for computing edge disjoint paths. In
Graph-Theoretic Concepts in Computer Science - 45th International Workshop, WG 2019, Vall de
Núria, Spain, June 19–21, 2019, Revised Papers, pp. 190–204, (2019)

 28. Ganian, R., Slivovsky, F., Szeider, S.: Meta-kernelization with structural parameters. J. Comput.
Syst. Sci. 82(2), 333–346 (2016)

 29. Gaspers, S., Misra, N., Ordyniak, S., Szeider, S., Zivny, S.: Backdoors into heterogeneous classes of
SAT and CSP. J. Comput. Syst. Sci. 85, 38–56 (2017)

 30. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J.
Comput. Syst. Sci. 63(4), 512–530 (2001)

 31. Kannan, R.: Minkowski’s convex body theorem and integer programming. Math. Oper. Res. 12(3),
415–440 (1987)

 32. Kim, E.J., Oum, S., Paul, C., Sau, I., Thilikos, D.M.: An FPT 2-approximation for tree-cut decom-
position. Algorithmica 80(1), 116–135 (2018)

 33. Kloks, T.: Treewidth: Computations and Approximations. LNCS, vol. 842. Springer, Berlin (1994)
 34. Komusiewicz, C., Hüffner, F., Moser, H., Niedermeier, R.: Isolation concepts for efficiently enumer-

ating dense subgraphs. Theoret. Comput. Sci. 410(38–40), 3640–3654 (2009)
 35. Kronegger, M., Ordyniak, S., Pfandler, A.: Variable-deletion backdoors to planning. In Proceedings

of the AAAI 2015, pp. 2300–2307. AAAI Press, (2014)
 36. Lenstra, H.W.: Integer programming with a fixed number of variables. Math. Oper. Res. 8(4), 538–

548 (1983)
 37. Marx, D., Wollan, P.: Immersions in highly edge connected graphs. SIAM J. Discrete Math. 28(1),

503–520 (2014)
 38. McClosky, B., Hicks, I.V.: Combinatorial algorithms for the maximum k-plex problem. J. Comb.

Optim. 23(1), 29–49 (2012)
 39. Moser, H., Niedermeier, R., Sorge, M.: Exact combinatorial algorithms and experiments for finding

maximum k-plexes. J. Comb. Optim. 24(3), 347–373 (2012)
 40. Nešetřil, J., de Mendez, P. O.: Sparsity-graphs, Structures, and Algorithms, volume 28 of Algo-

rithms and combinatorics. Springer, Berlin (2012)
 41. Niedermeier, R.: Invitation to Fixed-Parameter. Algorithms Oxford Lecture Series in Mathematics

and its Applications, vol. 31. Oxford University Press, Oxford (2006)
 42. Nishimura, N., Ragde, P., Thilikos, D.M.: Fast fixed-parameter tractable algorithms for nontrivial

generalizations of vertex cover. Discrete Appl. Math. 152(1–3), 229–245 (2005)
 43. Pietrzak, K.: On the parameterized complexity of the fixed alphabet shortest common superse-

quence and longest common subsequence problems. J. Comput. Syst. Sci. 67(4), 757–771 (2003)
 44. Seidman, S.B., Foster, B.L.: A graph-theoretic generalization of the clique concept. J. Math. Sociol.

6(1), 139–154 (1978)

336 Algorithmica (2021) 83:297–336

1 3

 45. Wollan, P.: The structure of graphs not admitting a fixed immersion. J. Comb. Theory Ser. B 110,
47–66 (2015)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published
maps and institutional affiliations.

	On Structural Parameterizations of the Bounded-Degree Vertex Deletion Problem
	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Basic Notation
	2.2 Parameterized Complexity
	2.3 Integer Linear Programming
	2.4 Treecut Width

	3 Hardness Results
	4 Solving BDD using Treecut Width
	4.1 Overview
	4.2 The Dynamic Step

	5 Core Fracture Number
	6 Concluding Notes
	Acknowledgements
	References

