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a b s t r a c t

Semi-supervised learning (SSL) methods attempt to achieve better classification of unseen data through
the use of unlabeled data than can be achieved by learning from the available labeled data alone. Most
SSL methods require the user to familiarize themselves with novel, complex concepts and to ensure the
underlying assumptions made by these methods match the problem structure, or they risk a decrease
in predictive performance. In this paper, we present the reliable semi-supervised ensemble learning
(RESSEL) method, which exploits unlabeled data by using it to generate diverse classifiers through
self-training and combines these classifiers into an ensemble for prediction. Our method functions
as a wrapper around a supervised base classifier and refrains from introducing additional problem
dependent assumptions. We conduct experiments on a number of commonly used data sets to prove
its merit. The results show RESSEL improves significantly upon the supervised alternatives, provided
that the base classifier which is used is able to produce adequate probability-based rankings. It is
shown that RESSEL is reliable in that it delivers results comparable to supervised learning methods
if this requirement is not met, while the method also broadens the range of good parameter values.
Furthermore, RESSEL is demonstrated to outperform existing self-labeled wrapper approaches.

© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Classification models learn a relationship between a number of
nput features and a corresponding output label. Most commonly,
he methods used to solve classification problems are supervised
ethods, requiring for each example that its label is known. In
any settings, however, the amount of labeled data available is

imited, hindering the predictive performance of these classifiers.
ftentimes, the labels have to be generated by experts, e.g., by
edical doctors when the objective is to predict infections, a
rocess which can be both time-consuming and expensive. One
olution to this problem is the use of semi-supervised learning
SSL) methods.

In contrast to their supervised counterparts, SSL methods use
oth labeled and unlabeled data to learn from. In order to be use-
ul, these methods should improve upon the predictive accuracy
ttained by supervised methods, and have been shown to do so
nder certain conditions. This potential has been recognized and
lot of research has been done in this area.
Widespread use of SSL methods is not yet commonplace in

arge parts of the data science community, however. This can be
ttributed to a number of reasons:
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1. Many SSL methods rely on concepts that are unfamiliar
to a practitioner of supervised methods. A thorough study
is required to develop an intuition for these SSL methods
and it can be difficult to pick from a plethora of available
algorithms for someone who is not knowledgeable in the
field.

2. In order to learn from unlabeled data, most semi-supervised
methods rely on a number of assumptions, relating the
method to the problem structure. When these are not
met, the corresponding methods may produce poor results.
Furthermore, these assumptions can be difficult to check
explicitly.

3. SSL methods may not produce robust results. For exam-
ple, given a certain initial set of labeled data, the self-
training method might succeed in increasing predictive
performance, whereas with a different initial set it might
degrade and propagate its own errors, which makes the
method unreliable.

4. There is an absence of easy-to-use implementations of SSL
methods in common machine learning packages. This is
evidenced by the lack of such methods in the popular
Scikit-learn package [1], which has only two SSL models
available at the time of writing.

To overcome these difficulties, an interested practitioner is

required to conduct a careful study of the SSL field. Consequently,
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any data scientists instead prefer to stick to supervised meth-
ds, even in situations where unlabeled data is readily available
nd there is a lot of potential for improvement.
The main contribution of this paper is to provide data sci-

nce practitioners who are acquainted primarily with supervised
lassification, with a reliable method for improving the predic-
ive accuracy achieved by their supervised models without them
aving to familiarize themselves with the extensive domain of
emi-supervised learning and without them having to discard
heir existing predictors and restart the modeling process from
cratch to incorporate the unlabeled data.
To this end, we developed the reliable semi-supervised ensem-

le learning (RESSEL) method, a wrapper method which combines
nsemble learning with self-training and an early-stopping mech-
nism based on the out-of-bag error. As a wrapper method,
ESSEL ensures practitioners can use the base classifiers they
re familiar with to learn from unlabeled data. Self-training is
sed to enrich these classifiers, after which they are combined
nto an ensemble, reducing the variance and causing the sus-
eptibility of the self-training process to the initial configuration
o be averaged out as each classifier will be presented a differ-
nt training set. Due to the unsure nature of self-training, the
ase classifiers will be more diverse after being enriched, to the
enefit of the ensemble. To prevent adverse learning, an early-
topping mechanism is in place to prevent individual classifiers
rom deteriorating, by continuously evaluating them on the out-
f-bag error. This ensures the self-training process can at most
eteriorate a base classifier to the extent that the out-of-bag set
s not representative of the data. The bagging method at the basis
f ensemble generation, as well as the concept of the out-of-bag
rror measurements are already commonly used in supervised
earning. Self-training is the most straightforward manner of en-
iching a classifier with unlabeled data and it does not rely on
he same difficult to check assumptions that more complicated
ethods do. RESSEL therefore provides an accessible manner of

ncorporating unlabeled data into a supervised workflow.
In our experiments, we show RESSEL has the ability to im-

rove upon common supervised classification methods when its
ase classifier is able to produce good probability-based rank-
ngs. Next, we show RESSEL consistently outperforms competing
orks in the category of self-labeled wrapper methods. Addition-
lly, we show that the prediction method is reliable: it produces
esults of the same quality as a supervised model even when
he proper conditions for its use are not met and the enriched
odels are less susceptible to bad hyperparameter choices. The
ifferent parts that RESSEL consists of are studied in separation
nd are shown to all contribute meaningfully to the method in its
ntirety. Additional attention is directed towards a study of the
uality of the rankings produced by the base classifiers used in
ur experiments, which we then relate to their suitability for use
ith self-training. Furthermore, we confirm RESSEL performs well
ven when the amount of labeled data available is very limited.
In the remainder of the paper the following topics are dis-

ussed in order: In Section 2 an overview is given of the semi-
upervised learning and ensemble learning fields, as well as their
ombination. In Section 3 the RESSEL method is explained in
etail. In Section 4 we review the experimental setup used to
valuate RESSEL. In Section 5 the performance of the method as
whole is validated, as well as that of the parts that it consists
f. A detailed study is conducted into the importance of the
anking ability of the base learner and the robustness of RESSEL to
hanges in the hyperparameters of its base classifier. In Section 6
onclusions are drawn and directions for future research are
iscussed.
2

2. Background

Historically, semi-supervised learning and ensemble learning
have been thoroughly researched. Their combination, however,
remains rather unexplored [2,3]. In the following, a succinct
overview of the two separate fields as well as their combina-
tion is given. Additional emphasis is placed on the bagging and
self-training techniques, as they are especially relevant to our
proposed method: reliable semi-supervised ensemble learning
(RESSEL).

2.1. Semi-supervised learning

In contrast to the supervised learning setting, semi-supervised
learning [4,5] methods attempt to learn using labeled as well as
unlabeled data. A distinction can be made between three main
types of SSL: regression [6], classification [4], and clustering [7].
In this paper we focus our attention to the classification problem.

Two main categories of semi-supervised classification prob-
lems can be distinguished [4]: transductive, in which the ex-
amples which are to be classified are given beforehand, and
inductive, in which a classifier is trained, later to be used on
unseen data. In this paper we propose a method for the latter.

In order for inductive SSL techniques to be able to learn from
unlabeled data, these techniques usually make assumptions about
the problem structure. Some typical assumptions underlying SSL
methods are [4]:

1. Smoothness assumption: If two examples in a high-density
region are close, so should be their labels. E.g., maximum
margin methods such as Transductive SVM [8] and Semi-
Supervised SVM [9].

2. Cluster assumption: Examples in the same cluster should
have the same label, or equivalently, the decision boundary
between two classes should be in a low-density region. This
can be seen as a special case of the smoothness assumption,
as one definition of a cluster is to require groups of points
in such a cluster to be connectable by high-density regions.
E.g., generative models such as expectation maximization
with Gaussian mixture models [10] and clustering using
genetic algorithms [11].

3. Manifold assumption: The data can be projected onto a
lower-dimensional manifold. E.g., graph-based methods
such as manifold regularization [12] and Spectral Graph
Transducer [13].

These assumptions can be difficult to test in practice. As Zhu
states in his literature survey of SSL [14]: ‘‘Detecting bad match
[of problem structure with model assumption] in advance how-
ever is hard and remains an open question’’. Furthermore, if
these underlying assumptions are mismatched with the problem
structure, the unlabeled data cannot be helpful and if they are
met it is difficult to anticipate to what extent SSL will help [15].

There exists another type of semi-supervised techniques which
relies on different assumptions, called self-labeling [16]. Self-
labeling techniques iteratively extent the labeled data set with
unlabeled examples to which they assign a label, assuming that
their own predictions tend to be correct. From this final category
of self-labeling, the self-training [17] method is used by RESSEL
to learn from unlabeled data.

2.1.1. Self-training
Self-training was first applied in the context of word sense dis-

ambiguation [17] and is arguably the simplest method of learning
from unlabeled data. It is a wrapper method which takes a pre-
trained classifier which we shall refer to as the base classifier and
tries to enrich it using unlabeled data. Initially, this base classifier
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s trained on a training set consisting of a limited number of
abeled examples. Thereafter, the classifier iteratively expands its
raining set, typically by using its own most confident predictions
n the unlabeled data set. The unlabeled examples are ranked
ccording to the probability estimates of the base classifier, after
hich the highest ranked examples are added to the training set
ith their most probable label.
Self-training does not make additional assumptions on the

nput data other then those of its base learner, assuming only
ts own predictions are likely to be true. More specifically, for
elf-training to function properly, the base classifier it is used
ith should produce good probability-based rankings [18]. This

s in contrast with most of the SSL methods, which rely on as-
umptions highly dependent on the problem structure. The main
equirement for self-training applies to the base classifier used,
hich is a supervised learner and often much better understood.
Nevertheless, even when a suitable base classifier is used, self-

raining is not guaranteed to improve upon the base classifier and
ight even cause a decrease in its predictive performance [19].
everal methods exist which try to improve upon its base perfor-
ance, such as Self-Training with Editing (SETRED) [20], which

ries to identify and remove mislabeled examples, and more
ecently Self-Training based on Density Peaks (STDP) [21], which
ses the popular density peaks clustering method [22] to in-
egrate the structure of the data space into the self-training
rocess.
Being a wrapper method, self-training is difficult to theoret-

cally analyze independent of its base classifier [14]. Existing
heoretical analyses are scarce and apply to specific models such
s Gaussian Mixture Models [23] and Neural Networks [24]. Fur-
hermore, no general solution has been found to remedy the
ain factor which might cause self-training to deteriorate pre-
ictive performance: the risk of propagating erroneously assigned
abels [16]. In this paper, we attempt to mitigate this risk in-
ependent of the base classifier by using the complementary
roperties offered by the ensemble learning paradigm.

.2. Ensemble learning

A machine learning ensemble, or multiple classifier system, is
collection of learners. These learners are trained using input
ata and when new examples are classified, their predictions
re combined to arrive at a joint prediction. A good ensemble
roduces predictions with an accuracy higher than that of any
f the classifiers it consists of.
Why is classifier combination so profitable? Three reasons are

enerally accepted [25,26]:

1. Statistical: In absence of enough data, many learners with
an equally good training set accuracy might be found. If
a single learner is selected from these, it might not be
the optimal one. By using multiple classifiers, an average
prediction is produced, reducing this risk of picking a single
classifier that does not generalize well. This corresponds to
a reduction in variance.

2. Computational: In absence of enough time, learners based
on some stochastic search mechanism might get stuck
in local optima. By combining multiple learners which
have converged to different local optima, the true opti-
mum might be better approximated. This corresponds to
a reduction in computational variance.

3. Representational: In absence of enough data, or when the
base classifier is insufficiently flexible, the range of possible
representations of the decision boundary is limited and
might not be suited for a problem if the true decision
boundary is very complex. By combining multiple decision
boundaries, a wider range of boundaries becomes available.
This corresponds to reduction in bias.
3

In order for an ensemble to operate well, its base classifiers
should be both accurate and diverse [27,28]. It is easy to see there
should be some diversity, as when all classifiers in the ensemble
are identical, all their predictions will be as well. The resulting
aggregated prediction will thus be the same as that of any of the
composite classifiers.

Ensemble systems have been thoroughly studied and shown
to perform very well in practice [29]. While implicit manners
of introducing diversity are often very successful, attempts to
explicitly measure and introduce diversity have generally not
been [28,29].

Some of the most well known ensemble methods are Ran-
dom Subspace [30], Random Forest [31], (Ada) Boosting [32,33],
(Stochastic) Gradient Boosting [34,35] and Bagging [36]. In our
method, we employ the bagging technique for ensemble creation.

2.2.1. Bagging
The bootstrap aggregation, or bagging, procedure takes a num-

ber of bootstrap samples [37] from the data and trains a base
learner on each sample. These samples approximate the under-
lying distribution of the entire data set, while being diverse due
to the differences in proportions of the individual data points in
each bootstrap sample.

While the diversity among the learners of a bagging ensem-
ble is low relative to that of other ensemble techniques [38],
empirical results have proven the technique to be effective in
practice, especially in combination with a high variance base
learner such as a random tree, illustrated by the success of the
Random Forest [31]. Additionally, bagging has the benefit of
producing an out-of-bag set for each bootstrap sample [39–41].
This set contains in expectation 37% of the original instances and
can be used for error estimation, at no additional cost in terms of
setting data apart for this purpose.

2.3. Combination

In this work we combine the paradigms of semi-supervised
learning and ensemble learning. One of the first mentions of the
combination of these fields was by Roli in 2005 [42]. He states
there were few works in the literature at the time and presents
possible research directions. Four years later, Zhou [2] presented
a theoretical analysis showing the benefits of the combination of
the fields in the context of disagreement-based learning. His pa-
per shows that unlabeled data can be used to effectively enhance
the diversity of the ensemble members. The combination of these
fields was still quite rare and mainly limited to techniques that
increased the size of the labeled data set such as Co-Training [43],
Tri-Training [44] and semi-supervised boosting methods [45].

In recent years, more methods have adopted the SSL ensemble
philosophy. Co-Bagging [46] extends the Co-Training method to
the single-view setting by using bagging. In UDEED [47], an
ensemble is trained as a whole, using an augmented loss function
which encourages the ensemble predictions to be diverse on the
unlabeled data. The Semi-Supervised Rotation Forest [48] method
extends the supervised Rotation Forest to use semi-supervised lo-
cal discriminant analysis for feature rotation. With PSEMISEL [49],
an ensemble is learned using the random subspace and evolution-
ary techniques to utilize unlabeled data.

In their survey on ensemble learning, Dong et al. state: ‘‘Apart
from that, since the incorrectly-labeled samples have negative
effects on the performance of models in the label propagation
process, it is imperative to develop more effective schemes to
reduce negative effects of these samples, which needs us to
make more efforts" [50], stressing the need to mitigate possible
negative effects in a SSL ensemble context.

Our method, reliable semi-supervised ensemble learning (RES-
SEL) was constructed to address the two main points raised in this
subsection so far:
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1. By using self-training, the base learners are enriched with
unlabeled data resulting in more diverse learners, to the
benefit of the ensemble.

2. By using bagging, the ensemble reduces the variance of the
uncertain base learners. Moreover, by monitoring the out-
of-bag error during the self-training process, it is ensured
the gain in diversity due to self-training is not offset by a
loss in accuracy.

Additionally, RESSEL is a wrapper method and can be used
in combination with familiar supervised learning algorithms, in-
creasing its easy-of-use. These base learners should, however,
have good ranking ability of their probability estimates, a prop-
erty which we elaborate on in Section 5.3.

Before we dive into RESSEL, we discuss a number of additional
related works from the literature. The Robust Semi-Supervised
Ensemble Learning (ROSSEL) [51] approach, while it is very sim-
ilar in name, functions differently in practice. ROSSEL provides
robustness in the sense of handling noisy input labels, whereas
RESSEL is reliable in the sense that it will not decrease in perfor-
mance compared to a supervised ensemble, even if non-suitable
base learners are chosen or if the hyperparameters used are sub-
optimal. Further, at the core of ROSSEL is its label weighting
method, which uses a cost function over the pseudo-labels.

In [52], the author combines the self-training, Co-Training
and Tri-Training methods into an ensemble. A prediction for a
new example is made by application of a maximum-probability
voting scheme: if the class membership probability of the most
confident of the three methods exceeds a predefined confidence
threshold, the example is added with the corresponding label. If
none of the individual methods meet this threshold, the majority
vote is used to decide the label of the example.

A number of methods have been proposed that attempt to
guide the self-training process using the structure of the data. Li
et al. [53] employ the concept of local cores, i.e. points of highest
density within a cluster. The method finds those clusters in which
there are no labeled data points present and labels the local
core of the cluster by soliciting an expert or using a co-labeling
method. Self-training is then applied to the enhanced labeled data
set, with the goal of handling scenarios with very scarce or non-
spherical data. Another cluster based method described in [54]
combines semi-supervised Fuzzy C-Means clustering with self-
training, using a Support Vector Machine as the base classifier,
in an iterative process in which only the data points with a
high membership degree of belonging to a certain class accord-
ing to the clustering are eligible for the self-training step. A
method which incorporates the structure of the data through
a graph-based approach, is Self-training Nearest Neighbor Rule
using Cut Edges (SNNRCE) [55]. A relative neighborhood graph is
constructed and any samples without any cut edges are labeled.
Thereafter, a portion of remaining samples are labeled by self-
training with the nearest neighbor method. A statistical test is
performed on the newly labeled samples based on the cut edge
weight, causing some samples to have their labels adjusted if they
exceed a critical value, after which the remainder of the unlabeled
examples is classified using the nearest neighbors method.

Tanha et al. construct a self-training based semi-supervised
ensemble of Decision Trees (DTs). In their work, the authors
improve the ranking ability of the DTs, applying different mod-
ifications to the learner to make its probability estimates more
reliable.

Finally, two other works used a semi-supervised ensemble
specifically with DTs, using the out-of-bag estimate to evaluate
performance [56,57]. In contrast to our method, however, their
‘Airbag’ mechanism is evaluated on an ensemble basis, instead
of on the individual trees. In these papers the entire ensemble
4

Algorithm 1: RESSEL
Input : Labeled data set: L;

Unlabeled data set: U;
Base classifier: C .
Parameters: unlabeled sample fraction uf .

Output: Ensemble classifier.

{C1, C2, .., Ck} ← Duplicate(C)
for i = 1 to k do

Li ← SampleWithReplacement(L)
Ui ← SampleWithoutReplacement(U , uf )
Calculate complement: OOBi ← L \ Li
Calculate class distribution:
Dclassi ← Distribution(Li)
Ci ← Train Ci on Li
Ci ← RobustSelfTraining(Ci, Li,Ui,OOBi,Dclassi )

nd
nsemble classifier← C1, C2, ..., Ck

is enriched in iterations and the training of all base classifiers
is halted simultaneously. We evaluate the base learners individ-
ually, allowing some classifiers to be further enriched by the
unlabeled data while others have already halted the process.
Moreover, our method is a wrapper method and suitable for use
with more than one base classifier.

3. Reliable semi-supervised ensemble learning

Reliable semi-supervised ensemble learning combines the two
paradigms of semi-supervised learning and ensemble learning
such that they complement each other. Our method provides
the diversity which is much needed by the ensemble through
semi-supervised learning, while the ensemble provides the semi-
supervised part with robustness, as well as facilitating the early-
stopping mechanism. An overview of the RESSEL method can be
seen in Fig. 1.

As input RESSEL takes the set L = {(X1, y1), (X2, y2), . . . ,
Xl, yl)} containing l labeled examples and the set U = {(Xl+1),
(Xl+2), . . . , (Xl+u)} containing u unlabeled examples, as well as a
base classifier C capable of providing probability estimates for its
predictions, with chosen values for its hyperparameters.

A step-by-step explanation of the method is given in Algo-
rithm 1. First, the base classifier is duplicated k times (with k
the ensemble size) to create a set of classifiers {C1, C2, . . . , Ck}

which constitutes the homogeneous ensemble. Then, for each
of these classifiers Ci, a sample Li of L and a subset Ui of U
are created. Li is created through sampling with replacement, to
obtain a bootstrap sample as is customary in bagging. Each Li
then contains in expectation 63% of the original samples [36]. By
taking the complement of Li in L, the corresponding out-of-bag
set OOBi is obtained, containing on average 37% of the original
data. Ui is sampled without replacement, as U is expected to be
large compared to L. The fraction of unlabeled data sampled uf
is a tunable parameter. The class distribution Dclassi is calculated
from the labeled data set Li and the classifier Ci is trained on Li as
well. Thereafter, this trained base classifier Ci is enriched by the
RobustSelfTraining procedure, shown in Algorithm 2.

The RobustSelfTraining method takes a classifier Ci, a set of
labeled data Li, a set of unlabeled data Ui, an out-of-bag set
OOBi and a class distribution Dclassi . Furthermore, the number of
iterations m for the self-training method, as well as the batch size
n are required parameters.

Throughout the self-training process, we maintain the best
(lowest) error measured on OOBi so far, Errorbesti , in addition to
a copy of the classifier for which Errorbest was found, Cbest .
i i
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Fig. 1. A schematic overview of the reliable semi-supervised ensemble learning (RESSEL) method.
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Algorithm 2: RobustSelfTraining
Input : Trained classifier: Ci; Labeled set: Li;

Unlabeled set: Ui; OOB set: OOBi;
Class distribution: Dclassi .
Parameters: iterations m; batch size n.

Output: Enriched classifier.

Errorbesti ← Error(Ci,OOBi)
Cbest
i ← Ci

for j = 1 to m do
Probi ←Predict(Ci,Ui)
U conf
i ← ProportionalSelection(Probi,Dclassi , n)

Li ← Li ∪ U conf
i

Ci ← Train Ci on Li
Errorcurrenti ← Error(Ci,OOBi)
if Errorcurrenti < Errorbesti then

Errorbesti ← Errorcurrenti
Cbest
i ← Ci

end
nd
nriched classifier← Cbest

i

Then, for the number of iterations m specified, the following
rocedure is repeated: Ci predicts for each of the examples in Ui

its prediction probabilities, Probi. Then, for each class a ranking
is produced based on the probability estimates and the n highest
ranked predictions, with corresponding labels, are added to U conf

i .
his rank based selection happens in proportion to the original
lass distribution Dclassi . By adding examples based on their rank
n proportion to the class distribution, instead of simply looking
t the overall ranking in a class independent manner, we ensure
ot only labels from ‘easy’ classes are added at the beginning
f the learning process. Especially when not all of the unlabeled
ata in U is used, adding the examples according to overall rank
i

5

ight cause ‘difficult’ classes to be excluded from the learning
rocess. As the ranking is the sole deciding factor on the order in
hich labels are being added to the base classifier, it is of great

mportance that the base classifier outputs probability estimates
or its predictions from which a good ranking can be produced.

After U conf
i has been generated, Ci is retrained on the union

f Li and U conf
i . Using RESSEL with a base learner which can

e incrementally learned would result in a significant speedup,
reventing the retraining on Li at each iteration.
The out-of-bag error Errorcurrenti is measured on the OOBi

et and subsequently used for the early-stopping mechanism. A
heck is performed to see if the Errorcurrenti is lower than the best
ut-of-bag error found so far, Errorbesti , and if it is, Errorbesti is
pdated and the current classifier is copied to replace Cbest

i .
After the mth iteration, when the self-training procedure is

inished, the copy of the classifier at the moment of its best
erformance, Cbest

i , is returned. This early-stopping mechanism
nsures that the classifier does not suffer from erroneous labels
eing propagated during the volatile self-training procedure.
The ensemble produces its final prediction through plurality

oting: Each of its constituent classifiers predicts a label for the
xample to be classified and the label which obtained the most
otes is ultimately assigned as the ensemble prediction. Ties are
esolved randomly.

As RESSEL is a wrapper method, its computational complexity
aries based on the base learner it is used with. Therefore, we
rovide the formulas for the computational complexity of the
ESSEL method, given a base learner of known computational
omplexity with respect to the number of data points it is trained
n. We assume both the number of self-training iterations m and
he corresponding batch size n to be ⌊

√
|U | · uf ⌋. These values

reflect the standard settings for the RESSEL method and will be
further explained in Section 4.1.

A distinction can be made between base learners which can
be trained incrementally and those which cannot:

1. If a base leaner can be trained incrementally, the total
training time required for the RESSEL method depends
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on the initial training time of the base classifier on x
data points, denoted Init(x), as well as the incremental
update step when adding x data points, denoted Incr(x).
The total training time of the system will then be k·[Init(l)+
m·Incr(n)] or equivalently k· [Init(|L|) + ⌊

√
|U | · uf ⌋·

Incr(⌊
√
|U | · uf ⌋)].

2. A base learner which cannot be trained incrementally will
have to be retrained on all of the data added in the previous
steps of the self-training process for every following self-
training iteration, taking Init(x) time each iteration. This
adds a significant amount of additional time to the process
and the total training time of the ensemble classifier will be

k·[Σm
i=0 Init (l+i·n)] or equivalently k·[Σ

⌊
√
|U |·uf ⌋

i=0 Init(|L|+
i · ⌊

√
|U | · uf ⌋)]

. Experiments

We conducted a number of different experiments to gain
nsight into the performance of RESSEL. The main experiment
erves to evaluate the effectiveness of the method when it comes
o learning from unlabeled data. We compare our method to
number of supervised alternatives, to confirm it is able to

ncrease predictive accuracy using these data. Then we repeat the
xperiment using high-dimensional data sets, to investigate if the
erformance of the method extends to this more complex setting.
Next, we compare RESSEL to a number of existing self-labeled

rapper approaches. In their work on self-labeled techniques for
SL from 2013 [16], Triguero et al. conduct a thorough empiri-
al comparison of a large number of representative self-labeled
ethods. Their results showed the Tri-Training [44] and Co-
agging [46] methods had the best average performance of all of
he wrapper methods in the inductive phase. In our comparison,
e thus compare to these two methods, as well as to the newer
elf-Training based on Density Peaks (STDP) [21] method, as it is
representative method of the field in recent years.
Thereafter, we study the three components integrated into

ESSEL: (1) self-training; (2) early-stopping; and (3) bagging, in
eparation. We investigate the difference between the RESSEL
ethod using probability estimates for producing ranks and it
sing only the actual, predicted labels, to measure the effective-
ess of self-training. We conduct further experiments to gain
nsight into the assumption that RESSEL needs a base learner
hich produces good rankings. Then, we examine the overall
enefit of the early-stopping mechanism and further illustrate its
ffect by focusing on individual data sets for the SVM classifier
ith 10% of the data available having labels. Furthermore, we
nalyze the effect ensemble learning has on RESSEL by varying
he ensemble size, as well as comparing the effect bagging has
hen self-training is used to when it is not.
Subsequently, we investigate if RESSEL can be used when the

mount of labeled examples available is very limited. We measure
ts performance relative to the same supervised methods that
ere used before, as the number of labeled examples is increased

rom ten to one hundred.
In our final experiment, we investigate the robustness of RES-

EL to different hyperparameter choices.

.1. Parameters

Both the RESSEL method and the base classifiers that were
sed in the experiments require a number of parameters to be
et. We discuss the default values that we used in this section
nd mention deviations from the defaults on an experiment to
xperiment basis.
In our experiments, we used five classifiers implemented by

he Scikit-learn package [1]. These classifiers along with the de-
ault values we used for their parameters are shown in Table 1.
n the following we explain our choices:
6

Table 1
Default classifier parameter values.
Classifier (parameter) Value

GNB
All default

SVM
Kernel rbf
C 1.0
γ scale

KNN
Neighbors 10

RDT
Depth 4
Features

√
nfeatures

LR
Implementation SGD
Loss log

1. Gaussian Naive Bayes (GNB) does not have many con-
sequential parameters, so we opted to use the default
settings.

2. The Support Vector Machine (SVM) has a number of pa-
rameters to consider. The most important are the type of
kernel, the regularization parameter C and the kernel coef-
ficient γ . In our experiments we used the default values. In
Section 5.7 we study how these parameters affect a bagging
ensemble and RESSEL with SVM as their base classifier.

3. For the K-Nearest Neighbor (KNN) algorithm, the number
of neighbors is the most important parameter. By default,
it is set to 5. We set it to 10, as this increases the gener-
alization capability of the algorithm and more importantly,
its probability estimates become more meaningful with an
increased number of neighbors: the probability estimate of
an instance belonging to a certain class is the fraction of
nearest neighbors of that instance that belong to that class.
By doubling the number of neighbors from 5 to 10, the
number of possible different probability estimate values
increases from 6 to 11.

4. For the Decision Tree (DT) algorithm, we adjusted the tree
depth and the number of features considered at each split.
We set the depth to 4, instead of using the default value of
not restricting the depth at all. This should prevent the in-
dividual trees from overfitting the training data, as well as
increasing the reliability of their probability estimates: the
final probability estimate is determined by the proportion
of the class labels in the leaves of the tree, thus when there
are more instances captured in a leave by restricting the
amount of leaves implicitly by restricting the tree depth,
these estimates are based on a larger number of samples.
We set the number of features considered for each split
to be

√
nfeatures, to make the tree into a Random Decision

Tree (RDT), as these have been shown to perform well in
an ensemble context, known as a Random Forest [31].

5. Scikit-learn offers a couple of different implementations for
Logistic Regression (LR). We used the Stochastic Gradient
Descent (SGD) method, with its loss parameter set to log
loss. This way, the classifier is actually a LR model, trained
with SGD. We preferred this implementation over the de-
fault LR classifier from Scikit-learn, as the latter suffered
from widely varying convergence rates for the different
data sets we used.

In addition to the parameters of the base classifiers, the RESSEL
method has a number of tunable parameters, as explained in
Section 3. The default settings used in the experiments, can be
seen in Table 2. These default parameter choices are explained in
the following.
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able 2
efault experiment parameter values.
Setting Value

Labeled fraction [0.05, 0.1, 0.2]
Unlabeled fraction 0.35
Ensemble size 25
Bootstrap true
Stratify false

To simulate different settings of semi-supervised learning, we
ooked at the data sets with 5%, 10%, and 20% of the data as la-
eled data and the remainder as unlabeled data. Our expectation
s that as more data becomes available, the potential benefits of
emi-supervised learning and in extension RESSEL will become
maller.
We set the fraction of the unlabeled data presented to each

ifferent base classifier to be 0.35. The rationale behind this is
o strike a balance between having a large amount of unlabeled
ata to learn from, while introducing additional diversity by not
resenting the same portion of unlabeled data to each classifier
n the ensemble. Learning from different subsets of the unlabeled
ata instead of the whole set can be effective, even for a single
lassifier, as the subsets are thought to be more representative of
he underlying distribution of the data [43]. When 5% of the data
s labeled, the fraction of the labeled data used to the unlabeled
ata used will be on average:

0.05 · 0.63
0.95 · 0.35

≃
1

10.6
, (1)

while in case of 20% labeled data used, this will still be:
0.2 · 0.63
0.8 · 0.35

≃
1
2.2

. (2)

In our experiments, we fixed both the number of self-training
iterations m and the corresponding batch size n to be ⌊

√
|U | · uf ⌋.

his ensures nearly all of the unlabeled data made available to a
lassifier is used in the self-training procedure. Experiments with
ifferent values of the batch size and number of iterations showed
he method was not very sensitive to these parameters, as long
s a large part of the unlabeled data was used and the batch size
as not overly large, thereby limiting the number of iterations.
We set the ensemble size to be 25, as the test set accuracy had

or the most part converged at that number of classifiers. Results
onfirming this are presented in Section 5.5. We set bootstrap to
rue, meaning the labeled sets Li were sampled with replacement,
s is standard in the bagging procedure. RESSEL allows for the
ption to generate the bootstrap samples in a stratified manner,
ut we set this option to false, as our experiments did not show
his to improve over using standard bootstrapping.

.2. Data sets and preprocessing

In our experiments we used a number of data sets from the
niversity of California Irvine (UCI) [60] and Knowledge Extrac-
ion based on Evolutionary Learning (KEEL) [61] repositories.

The data sets which were used can be observed in Table 3 and
ere picked based on a number of criteria:

1. Minimum size. At the 5% labeled fraction setting with 75%
of the data as train data, the fraction of data in the labeled
and out-of-bag sets is 0.75 · 0.05 · 0.63 ≃ 0.024 and
0.75 · 0.05 · 0.37 ≃ 0.014 respectively. For the smallest
data set we used, Australian Credit with 690 entries, this
resulted in approximately 16 unique instances per labeled
set and 10 unique instances in the out-of-bag set for each
base classifier, which is already quite limited.
7

2. Maximum size. Ensemble learning and self-training with
classifiers that cannot be trained incrementally are both
computationally expensive methods, extending the train-
ing time required by the base classifier as shown in Sec-
tion 3. Repeated experiments with RESSEL can therefore
become quite time-consuming with large data sets.

3. Problem diversity. We included a mix of binary and multi-
class problems, searched for different class balances and a
different number of (transformed) variables.

To enable each of the algorithms to learn adequately from
hese data sets, we preprocessed them in a consistent matter:

In case of the UCI data sets, we took recommendations from
59] on how to interpret and/or improve the quality of some of
hese data sets. The KEEL data sets had been more consistently
ormatted, and thus required fewer such semantic improvements.

In preparing these data sets for use by multiple kinds of
lgorithms we made a distinction between the following variable
ypes, processing each differently:

1. Binary: Binarized
2. Ordinal categorical: OrdinalEncoded, Standardized
3. Nominal categorical: OneHotEncoded
4. Numerical: Standardized

The outcome variables were kept as unique categories.

.3. Validation

In our experiments, we generated a different train-test split
00 times, using 25% of the data for testing and 75% for training.
xperiments were conducted with 5, 10 and 20% of the train
ata as labeled data and the remainder as the unlabeled data, to
imulate different semi-supervised settings.
When comparing two methods with each other over multiple

ata sets, we use the non-parametric Wilcoxon signed rank test
o measure statistical significance [62].

To account for the multiple testing problem in comparing
ultiple methods to each other, over multiple data sets, we use a
ifferent method. We opted for a non-parametric test instead of
parametric test like repeated-measures ANOVA, as assumptions
f normality ans sphericity cannot be guaranteed [62]. We heed
he advice from García et al. [63] to use not the Friedman Test,
ut instead the Friedman Aligned-Ranks Test, as the number of
lgorithms compared in our two main experiments in Sections 5.1
nd 5.2 is small (five and four respectively). When a statistical
ifference is found, we apply the Finner method for post-hoc
nalysis of the results in a pairwise fashion, compared to RESSEL
s the control method. For all statistical comparisons we assume
significance level of α = 0.05.

5. Results

In what follows, we present the results from the experiments
we conducted to evaluate the performance of RESSEL in a variety
of settings.

5.1. Comparison with supervised methods

We investigate if RESSEL succeeds in learning from unlabeled
data by comparing the method to four alternatives:

1. Single classifier (SinClf): a single base classifier, trained on
all of the labeled data;

2. Simple ensemble (SimEns): an ensemble of classifiers which
are all trained on all of the labeled data;



S. de Vries and D. Thierens Knowledge-Based Systems 215 (2021) 106738

t
a
T
i

d
s
b
T

s
s

s
o
e
i
S
e

w
f
o
e
a
t
s

t
i
a
t
p
b
s
R

o
f
e

t
e

Table 3
Data set characteristics.
Data set Size Variables Transformed Classes Class balance (%)

Abalonea 4177 8 10 3 35/34/32
Australian Credit 690 14 39 2 56/44
Car Evaluation 1728 6 6 4 70/22/4/4
Contraceptive Method Choice 1473 9 9 3 43/35/23
German 1000 20 52 2 70/30
Nursery 12960 8 10 5 33/33/31/3/0
Pima Indian Diabetes 768 8 8 2 65/35
Red wine [58]b 1599 11 11 2 53/47
Solar Flare 1066 11 37 6 31/22/20/14/9/4
Spambase 4597 57 57 2 61/39
Titanic 2201 3 6 2 68/32
Vehicle Silhouettes 846 18 18 4 26/26/25/24
Vowel 990 13 13 11 9/9/9/9/9/9/9/9/9/9/9
White wine [58]b 4898 11 11 2 67/33
Yeast 1484 8 8 10 31/29/16/11/3/3/2/2/1/0

aTransformed into a classification problem with 3 ring (age) outcome classes: <9, 9−10, >10, as suggested by [59].
bTransformed into the binary problem of grading wines with outcome either <6 or ≥6.
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3. Bagging: an ensemble for which the individual classifiers
are trained on bootstrap samples;

4. RESSEL−: the same as RESSEL itself, but without the early-
stopping mechanism.

RESSEL− thus returns the classifier after the last iteration of
he self-training process, instead of the classifier after the iter-
tion of self-training where it had the lowest out-of-bag error.
his method is actually semi-supervised, but is included here as
t functions as a baseline for RESSEL to improve upon.

The results of this comparison over all of the aforementioned
ata sets in terms of mean classifier accuracy, for three different
etting of the amount of labeled data available and five different
ase classifiers for a total of fifteen settings, are presented in
able 4.
We observe RESSEL significantly outperforms the single clas-

ifier trained on all available labeled data in each of the fifteen
ettings.
The results show that for the GNB, SVM and KNN base clas-

ifiers, the performance of the simple ensemble is exactly that
f the single classifier. These methods are deterministic and an
nsemble learned on all training data will consequently consist of
dentical single classifiers, providing no additional benefit. RES-
EL is therefore found to significantly outperform these simple
nsembles, as was the case for the single classifier.
Random decision trees, as well as logistic regression trained

ith stochastic gradient descent, are stochastic by nature. There-
ore training the same base classifier on identical data a number
f times yields different classifiers, that prove effective in an
nsemble. This explains why we observe a large increase in mean
ccuracy from the single classifier for simple ensembles with
hese base classifiers and not all setting are found to perform
ignificantly worse than RESSEL.
Ensemble generation through bootstrapping proves to provide

he necessary diversity to the deterministic classifiers to cause
mprovement over the single classifier and the simple ensemble,
s can be observed for each of these settings. For RDT and LR
he effect of bootstrapping is more difficult to isolate in the
resence of non-determinism. Overall, the results suggest the
agging ensemble performs better on average, however, than the
imple ensemble, with only a slight accuracy loss observed for the
DT5 setting.
We conclude that the bagging ensemble is the most effective

f the supervised methods in our experiments, and therefore
ocus our attention to the comparison of RESSEL to the bagging
nsemble.
It can be seen that on average RESSEL achieves better results

han bagging for each of the different settings. These differ-
nces are found to be statistically significant when SVM and KNN
 T

8

able 4
upervised baseline comparison. The mean accuracy of the methods over all data
ets under different settings, consisting of a base classifier and a labeled data
ercentage, is displayed. Results which are found to be statistically significantly
ifferent from RESSEL are printed in bold. The percentage of labeled data is
enoted by the subscript.
Setting SinClf SimEns Bagging RESSEL− RESSEL

GNB5 60.15 60.15 61.55 57.80 62.31
GNB10 61.00 61.00 61.97 59.41 62.73
GNB20 61.47 61.47 62.37 60.53 62.82
SVM5 67.75 67.75 68.08 68.13 68.88
SVM10 71.63 71.63 71.80 71.95 72.29
SVM20 74.66 74.66 74.78 74.81 74.97
KNN5 63.59 63.59 63.73 64.76 65.19
KNN10 67.38 67.38 67.56 67.83 68.23
KNN20 70.22 70.22 70.42 70.67 70.82
RDT5 61.07 67.54 67.53 65.42 67.58
RDT10 63.06 69.89 70.16 68.82 70.48
RDT20 64.77 71.34 71.73 70.99 71.96
LR5 64.65 67.74 68.09 67.81 68.39
LR10 66.39 70.13 70.51 70.17 70.78
LR20 68.20 72.05 72.25 72.08 72.65

are the base classifiers, for all settings except for SVM20. These
ase classifiers meet the assumption of providing good rankings,
eeded for RESSEL to do well, which we show in Section 5.3. The
ehavior of RESSEL with these base classifiers as the proportion of
abeled data increases from 5% to 20% is as expected: the largest
mprovement is found when little labeled data is available and
s more labeled data is made available, a smaller improvement
s observed. As the proportion of labeled data approaches 100%,
he potential increase in predictive accuracy of SSL methods
ompared to supervised methods converges to zero. This explains
hy for the SVM20 setting, the difference is no longer found to be
ignificant.
When GNB is used as the base classifier, RESSEL improves in

verage accuracy, yet the differences are not found to be statisti-
ally significant. It can be seen from the supervised methods that
he GNB classifier does not benefit nearly as much from adding
ore labeled data than the other methods do, improving by only
.32 on average when data is increased fourfold from 5% to 20%
or the single classifier. In contrast, SVM and KNN improve by 6.91
nd 6.63 respectively. Given that GNB improves comparatively
ittle from having more labeled data to learn from, it is expected
hat the improvements due to learning from unlabeled data will
e smaller as well.
The results show that there is some improvement of RESSEL

ver the bagging ensembles with RDT and LR as base learners.
his difference is only found to be significant for the LR setting,
20
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Table 5
High-dimensional data set characteristics.
Data set Size Variables Classes Class balance (%)

Internet Adsa 3279 1558 2 86/14
Madelon 2600 500 2 50/50
Malware 6248 244 2 90/10
Mice Protein Expressiona 1080 77 8 14/14/13/13/13/13/13/10
Musk 6598 166 2 85/15
QSAR Androgen Receptor 1687 1024 2 88/12
SECOMa 1567 474 2 93/7

aThese data sets contained missing values. All missing values were imputed using the median value of the non-missing data for the
corresponding variables.
however. If anything we would expect the method to perform
the best in the setting where relatively few labeled examples
are used to train the base learners. Why these methods do not
seem to benefit nearly as much from RESSEL as the other base
classifiers can be explained by the further study of the self-
training and early-stopping components of RESSEL, which follow
in Sections 5.3 and 5.4.

The performance of RESSEL compared to RESSEL− is discussed
in detail in Section 5.4.

5.1.1. High-dimensional data sets
To validate that the previous results extend to high-dimen-

sional data sets, we repeated the experiment using seven new
data sets. These data sets each contain more variables than the
data sets from Table 3, ranging from 77 to 1558 variables per set.
A description of these data sets is given in Table 5.

The results of the repeated experiment on these high-dimen-
sional data sets are shown in Table 6. We observe the results
follow a similar pattern to the results found in the previous
experiment shown in Table 4: Averaged over the seven data sets,
RESSEL outperforms the single classifier, the simple ensemble
and the bagging ensemble for every setting, with the exception
of the simple ensemble for RDT5 and RDT10. The difference in
performance is found to be statistically significant for the single
classifier for all settings except for GNB5 and KNN5, although
the average accuracy of RESSEL is shown to be much higher for
these settings as well. For the GNB, KNN and SVM base classifiers,
results for the simple ensemble are identical to those of the
single classifier, as is to be expected, while the simple ensembles
consisting of RDT and LR manage to improve upon their single
classifier variants, as before. The statistically significant differ-
ences between RESSEL and bagging are found for the SVM and
KNN settings, as before, with KNN5 an exception. The comparison
of RESSEL to RESSEL− is reserved for Section 5.4.

From these observations we conclude the performance of RES-
SEL extends to data sets of higher dimensionality.

5.2. Comparison with semi-supervised wrapper methods

In this section, we compare RESSEL to some of the best-
performing semi-supervised wrapper methods from the litera-
ture: Co-Bagging, Tri-Training and Self-Training based on Density
Peaks (STDP). The results of this experiment are shown in Table 7.

We observe that averaged over all 15 data sets, RESSEL man-
ages to outperform each of the other methods, for every setting.
The difference is found to be statistically significant for every
setting when compared to Co-Bagging and STDP, as well as for
Tri-Training for the RDT, LR, SVM5 and KNN5 settings.

We further investigate the performance of the different al-
gorithms by calculating the average difference in accuracy com-
pared to the base classifier used, trained on only the available
labeled data (SinClf in Table 4), as well as the standard deviation
of this difference over all data sets. The results are shown in
9

Table 6
Supervised baseline comparison on high-dimensional data sets. The mean
accuracy of the methods over all data sets under different settings, consisting of
a base classifier and a labeled data percentage, is displayed. Results which are
found to be statistically significantly different from RESSEL are printed in bold.
The percentage of labeled data is denoted by the subscript.
Setting SinClf SimEns Bagging RESSEL− RESSEL

GNB5 76.05 76.05 76.45 72.64 77.80
GNB10 75.07 75.07 78.49 72.29 79.09
GNB20 72.59 72.59 76.25 70.96 76.59
SVM5 80.17 80.17 80.35 82.58 82.70
SVM10 84.33 84.33 84.37 85.95 85.97
SVM20 87.67 87.67 87.57 88.45 88.38
KNN5 77.78 77.78 77.84 79.22 79.14
KNN10 80.41 80.42 80.44 81.69 81.55
KNN20 83.45 83.45 83.53 84.42 84.36
RDT5 76.23 81.05 80.21 78.45 80.39
RDT10 78.06 83.15 82.51 81.01 83.11
RDT20 79.87 84.97 84.51 83.73 85.83
LR5 78.41 79.75 79.24 82.95 83.19
LR10 83.66 84.78 84.43 85.72 86.00
LR20 86.69 87.31 87.55 87.52 87.74

Table 7
Semi-supervised method comparison. The mean accuracy of the methods over
all data sets under different settings, consisting of a base classifier and a
labeled data percentage, is displayed. Results which are found to be statistically
significantly different from RESSEL are printed in bold. The percentage of labeled
data is denoted by the subscript.

Co-Bagging Tri-Training STDP RESSEL

GNB5 55.46 60.08 54.81 62.31
GNB10 56.69 60.76 55.83 62.73
GNB20 57.86 61.40 57.36 62.82
SVM5 66.28 67.39 66.27 68.88
SVM10 70.12 71.58 70.49 72.29
SVM20 73.66 74.90 74.05 74.97
KNN5 62.61 63.28 60.11 65.19
KNN10 65.30 67.35 64.52 68.23
KNN20 68.57 70.22 68.40 70.82
RDT5 64.44 63.80 58.74 67.58
RDT10 66.96 66.20 60.61 70.48
RDT20 69.26 68.01 63.10 71.96
LR5 66.29 66.14 64.92 68.39
LR10 68.88 68.55 67.45 70.78
LR20 70.91 70.17 69.24 72.65

Table 8. We observe that all methods except for RESSEL fail to
consistently improve upon the supervised baseline.

From the reported standard deviation, we observe an ordering
in the variability of the increased predictive accuracy over the
base classifier of the methods for the GNB, SVM and KNN settings:
Co-Bagging > STDP > RESSEL > Tri-Training. Tri-training thus
produces the least variable results when compared to its base
classifier, followed by RESSEL. For the RDT and LR base classifier,
Tri-training remains the least variable method, while the results
become a lot more variable for RESSEL especially. This added
variability is in part due to the stochastic nature of these base
classifiers. Additionally, we observe that this added variability is
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Table 8
Difference to base classifier. The difference in mean accuracy of the methods to the base classifier, as well as the standard deviation (shown
in parentheses) over the data sets and the number of data sets for which the average difference was positive (imp) is displayed. Each setting
consists of a base classifier and a labeled data percentage, with this percentage of labeled data denoted by the subscript.

Co-Bagging Tri-Training STDP RESSEL

mean (std) imp mean (std) imp mean (std) imp mean (std) imp

GNB5 −4.69 (5.38) 3 −0.07 (0.98) 6 −5.34 (4.56) 1 2.16 (3.07) 10
GNB10 −4.31 (5.48) 2 −0.23 (0.53) 4 −5.16 (4.91) 2 1.73 (2.35) 11
GNB20 −3.62 (5.05) 3 −0.07 (1.17) 9 −4.11 (4.15) 2 1.35 (2.06) 11
SVM5 −1.47 (2.85) 4 −0.36 (0.52) 4 −1.48 (1.31) 0 1.13 (1.25) 12
SVM10 −1.51 (1.68) 3 −0.04 (0.28) 7 −1.13 (1.12) 1 0.66 (0.83) 14
SVM20 −1.00 (1.44) 4 0.24 (0.22) 12 −0.61 (0.70) 2 0.30 (0.47) 10
KNN5 −0.99 (2.68) 4 −0.31 (0.61) 6 −3.48 (2.77) 0 1.60 (1.50) 13
KNN10 −2.09 (1.97) 3 −0.03 (0.34) 6 −2.87 (2.29) 0 0.85 (0.64) 14
KNN20 −1.65 (1.76) 2 −0.00 (0.42) 8 −1.82 (1.51) 2 0.60 (0.55) 14
RDT5 3.38 (2.75) 14 2.73 (1.22) 15 −2.33 (3.22) 4 6.51 (3.05) 15
RDT10 3.90 (3.41) 12 3.14 (1.44) 15 −2.45 (2.92) 2 7.43 (3.70) 15
RDT20 4.48 (3.67) 14 3.24 (1.58) 15 −1.68 (2.15) 3 7.18 (4.10) 15
LR5 1.64 (2.34) 11 1.49 (1.02) 15 0.27 (1.25) 9 3.74 (1.70) 15
LR10 2.49 (2.54) 12 2.16 (1.21) 15 1.06 (1.74) 12 4.40 (1.90) 15
LR20 2.72 (2.09) 14 1.98 (0.78) 15 1.04 (1.20) 14 4.46 (2.23) 15
.

paired with much greater improvement over the base classifier
for these settings.

The number of data sets for which an improvement was found
n average, so a positive difference between the method and
inClf, is shown in the columns named ‘imp’ for improvement.
e observe RESSEL improves the base classifier for more data sets

han Co-Bagging and STDP for all settings. RESSEL improves the
ase classifier for as many or more data sets as Tri-Training for
ach of the settings, with the notable exception of SVM20, where

Tri-Training improves on 12/15 data sets and RESSEL on only 10.
These findings confirm RESSEL to be a reliable wrapper method,
whose ability to consistently improve upon a supervised alterna-
tive is not as dependent on the data set as it is for Co-Bagging,
Tri-Training and STDP.

5.3. Effectiveness of self-training

In order to understand what makes RESSEL able to learn from
unlabeled data, we focus our attention to the component which
introduces SSL into the method: self-training.

For self-training to be effective, a base classifier needs to
be able to provide itself with a measure of confidence in its
predictions, which is used to rank instances in terms of class
membership probability. To measure the extent to which the
base classifiers meet this assumption in conjunction with RESSEL,
we adjusted the method in which labeled examples are added.
Instead of adding the examples with the highest ranks for each
class to the labeled set, instances are selected randomly from all
examples which are predicted to have a certain label, irregardless
of their rank. In each iteration of the process, the class proportions
are still preserved as before. We denote this variant of RESSEL the
‘No rank’ version, while the original is called ‘Rank Based’.

The results of this experiment are shown in Table 9. For the
GNB, SVM and KNN base classifiers, we observe that there is
a noticeable improvement when using the probability estimate
based ranking for selection of data points to add to the labeled
set. This difference is found to be statistically significant for SVM
and KNN for the 5% and 10% labeled data settings. The difference
decreases as the amount of labeled data increases, as is expected.
These results are consistent with the results from Table 4 and
prove that RESSEL learns from and improves by using unlabeled
data when these base learners rank examples based on their
probability estimates.

Furthermore, we observe that the differences are much smaller
for RDT and LR and that they do not follow the expected pattern
of the size of the differences decreasing with increasing labeled
data size. We conclude that these methods do not benefit from
10
Table 9
Effectiveness of self-training. The mean accuracy (difference) over all data sets
is shown. Differences which are found to be statistically significantly different
are printed in bold. The percentage of labeled data is denoted by the subscript
Setting No rank Rank based Difference

GNB5 61.43 62.31 0.88
GNB10 62.25 62.73 0.48
GNB20 62.50 62.82 0.32
SVM5 67.75 68.88 1.13
SVM10 71.62 72.29 0.67
SVM20 74.88 74.97 0.09
KNN5 63.71 65.19 1.48
KNN10 67.52 68.23 0.71
KNN20 70.58 70.82 0.24
RDT5 67.46 67.58 0.12
RDT10 70.16 70.48 0.32
RDT20 71.86 71.96 0.10
LR5 68.19 68.39 0.20
LR10 70.84 70.78 −0.06
LR20 72.60 72.65 0.05

using their own probability estimates to impose a ranking on
the unlabeled data and thus they are not suitable for use with
self-training and in extension RESSEL.

In case of RDT, these results are in line with our expec-
tations. Decision trees are known to provide poor probability
estimates [64,65] and earlier studies have been conducted to
improve these estimates and make them suitable for use with
self-training [18,57]. The difference observed in the RDT10 setting
is found to be statistically significant, still its value is rather small
and the fact that the differences for the 5% and 20% settings are
not found to be significant, lead us to believe this to be due to
chance.

For the LR classifier, the results are not as we initially sus-
pected, as it is generally considered to have well calibrated proba-
bility estimates. In the following, we investigate further and show
how well calibrated probability estimates do not guarantee good
ranking quality and how this causes RESSEL to work well with
one base learner, but not with another.

5.3.1. Assumption: Ranking quality
As stated in Section 2.1.1, for self-training to be effective it is

important that the base classifier to which it is applied has good
ranking ability. Ordinarily, a classifier ranks unlabeled instances
based on its probability estimates.

The term ‘good probability estimates’ is often used to describe
well calibrated probability estimates, i.e., when a classifier out-
puts a class probability estimate of 0.8, it is expected to correctly
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redict 80% of such cases. Logistic Regression is known to be a
ell calibrated classifier. Although it seems logical a classifier
ith good probability estimates would be a good ranker, this is
ot necessarily true.
We searched the literature for research into the ranking per-

ormance of the base classifiers we used in our experiments. GNB
s generally found to be a good ranker [66–68]. In a comparison
f GNB, SVM and DTs, SVM is found to perform similarly to
NB in ranking and GNB and SVM both perform much better
han DTs [66]. A lot of research has been conducted into DTs
nd it is generally accepted that they provide poor probability
stimates and have poor ranking capability [64,69]. In order to
ork well with self-training, a number of adjustments have been
roposed to turn them into better rankers [18]. The KNN method
s found to have decent ranking capabilities, even though its
robability estimates are questionable [70]. As mentioned before,
R is generally considered a good probability estimator, yet not
uch work is devoted to its ability as a ranker.
In these works, the quality of ranking is commonly evaluated

y the Area Under the Receiver Operating Characteristics Curve
AUC). The reason for using the AUC is that it has been shown
n the binary classification context to be the probability of a pos-
tively labeled instance to be ranked above a negatively labeled
nstance and to be equivalent to the Wilcoxon statistic [71]. It is
hus a natural measure of ranking capability.

To understand the behavior of LR compared to the other base
lassifiers used with RESSEL, we conducted two experiments. For
hese experiments we generated synthetic data, with two classes
istributed according to multivariate normal distributions with
variance of 2. The centers of these Gaussians where set to be

1 and +1 in their first variable, while set to 0 for the remaining
imensions.
In the first experiment, we measured the AUC and the ac-

uracy for each of the classifiers, as the problem dimensionality
as increased from 2 to 50 dimensions. Each classifier might be
ifferently suited to the problem, as measured by the accuracy
f the classifier. To account for problem suitability and in order
o focus purely on the ranking ability, we divided the AUC by
he accuracy of the classifier. A synthetic data set was generated
000 times, with 250 labeled points of each class for training,
s well as 500 points of each class for testing. For the KNN
nd RDT learners, we experimented with different values for the
umber of neighbors and the maximum tree depth respectively,
o validate the parameter choices we explained in Section 4.1
hich we believed would have a large impact on their confidence
easures. The results of this experiment are shown in Fig. 2.
From this graph we make a number of observations. RDT

erformed the worst of all learners, for both values of the max-
mum tree depth (4 and 8). As we hypothesized in Section 4.1
smaller tree depth might lead to better probability estimates,
nd from this experiment we conclude it leads to better ranking
bility as well. Ranking performance deteriorates as the problem
imension increases for both depth settings. For the KNN method,
e observe that increasing the number of neighbors from 5, to
0 and finally to 20 causes the method to be a better ranker.
his is to be expected as well, as the number of possible values
he probability estimates can occupy is limited to be one more
han the number of neighbors. By including more neighbors, a
ore distinctive ranking can be made. GNB is found to perform

he best of all learners, for all problem dimensions except for
our dimensions and fewer. In the really low dimensions, LR
as the best ranking performance. As the problem complexity
ncreases, however, LR declines in ranking ability and from 15
imensions onward it performs worse than GNB, SVM and KNN20.

Interestingly, the ranking ability of SVM actually increases with

problem dimensionality and it is found to perform comparably

11
Fig. 2. Classifier ranking ability as the problem dimension increases. The
parameter values for the maximum tree depth of the RDT and the number of
neighbors of the KNN methods are shown in subscript.

to GNB and KNN20 for the maximum problem dimensions we
explored. This experiment suggests that LR might not be as good
of a ranker as it is an estimator: its ranking ability decreases as
the relatively simple problem becomes more complex.

Additionally, we conducted an experiment where the problem
dimension was fixed to 15 and we projected the probability
estimates of the learners on the test set. The same number of
examples were generated, once, for the train and test sets. The
resulting scatter plots are shown in Fig. 3.

From this experiment it is immediately clear why LR and
RDT are not suited for use with self-training. The plots show
neither method has an obvious color gradient in their probability
estimates towards the decision boundary. Furthermore, they are
very confident about some predictions which are clearly on the
wrong side of the boundary. When these points are added early
on in the self-training process due to their high confidence, they
can cause the learner to degrade in predictive performance in
the following iterations. We observe instead a gradual change in
probability estimates for the other methods, most clearly visible
for SVM and GNB. A ranking based on these probability estimates
will cause the self-training procedure to include points further
from the decision boundary first and only later include points
near the decision boundary about which it is less certain.

In conclusion, LR violates the assumption of being a good
ranker, needed for the self-training process to not degrade. Due
to the early-stopping mechanism, however, this does not lead to
a degradation in ensemble performance compared to the super-
vised ensemble.

5.4. Effectiveness of early-stopping

To study the effect of the early-stopping mechanism, we refer
again to Table 4. We observe that for each classifier and propor-
tion of labeled data used, RESSEL with early-stopping is found
to outperform RESSEL−, in which the self-training procedure is
completed and the final classifier is used in the ensemble. For 10
out of the 15 settings, this improvement is found to be significant.

Especially when self-training by itself is not effective, that is
for RDT and LR, the early-stopping mechanism makes a large
difference. For these classifiers, the self-training process is more
prone to error and might cause the individual learners to com-
pound errors made during the process, leading to poor final
predictors. It is expected that the early-stopping mechanism will

mitigate these errors.
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Fig. 3. Scatterplots of the probability estimates of the different base classifiers for two Gaussian distributions in 15 dimensions.
This does not, however, explain why we observe increased
erformance for RESSEL with RDT and LR over bagging due to the
arly-stopping mechanism, since they do not benefit from self-
raining, as we showed in Section 5.3. We suspect the increase is
ue to both of these methods being stochastic methods. During
he self-training process, these classifiers go through many more
raining iterations than their counterparts in the bagging ensem-
le do, which are trained only once. Some of these iterations
re likely to result in a better predictor by chance, which are
hen retained by the early-stopping mechanism. The increase in
redictive accuracy is therefore not achieved by semi-supervised
earning.

The large difference between RESSEL− and RESSEL for GNB
cannot be explained by early-stopping counteracting its inability
to learn through self-training because of its bad ranking ability, as
for RDT and LR, since we observed GNB improved by using ranked
based self-training in Section 5.3 and had good ranking ability on
the synthetic data in Section 5.3.1. We measured the standard
deviation of the difference between RESSEL− and RESSEL over
all data sets for the 10% setting and found the following values
for the different base classifiers: GNB: 2.83, SVM: 0.58, KNN:
0.58, RDT: 1.54 and LR 0.75. The results for GNB are thus very
variable per data set. Perhaps the extent to which the conditional
independence assumption of Naive Bayes is met highly influences
its ranking ability on a per data set basis.

Taking a closer look at SVM10 in Table 10, it can be seen
that while the mean performance over all data sets for RESSEL is
indeed better and statistically significant, this is not guaranteed
for every individual data set. In three out of the fifteen data
sets studied, RESSEL− performed better. An explanation might be
that while an individual learner decreases slightly in accuracy by
advancing the learning process further, the diversity gain makes
up for this decrease in an ensemble context.

The results of the high-dimensional data set experiment,
shown in Table 6, follow the same pattern. The advantage of
RESSEL over RESSEL− is large for GNB and also clearly visible
for RDT and LR, although the differences are not found to be
statistically significant in case of RDT and LR, with the exception
of the RDT10 setting.

The differences between RESSEL and RESSEL− for the SVM
and KNN base classifiers are smaller than before, however, with
RESSEL− having the higher average accuracy in four out of six of
these settings. The differences are not found to be statistically sig-
nificant for any of these settings. For these data sets specifically,
the self-training mechanism used with an appropriate base classi-
fier performs quite well already and the additional advantage of
error-checking using the out-of-bag set provides no advantage.
Nevertheless, it is advised to use RESSEL rather than RESSEL− on
high-dimensional data sets, as the observed difference in results
is small and might be due to the specific nature of these data
sets, while using RESSEL− carries an additional risk of decreased
performance due to the absence of out-of-bag error-checking.
12
Table 10
Effectiveness of early-stopping for the SVM classifier with 10% labeled data. The
mean accuracy (difference) is shown.
Data Set RESSEL− RESSEL Difference

Abalone 61.35 63.02 1.67
Australian 83.25 82.39 −0.86
Car 88.49 88.69 0.20
Contraceptive 49.75 51.02 1.27
German 71.07 71.81 0.74
Nursery 95.11 95.33 0.22
Pima 72.58 73.06 0.48
Red 72.24 72.47 0.23
Solar 72.42 73.01 0.59
Spambase 90.87 90.82 −0.05
Titanic 77.89 78.13 0.24
Vehicle 61.78 62.39 0.61
Vowel 51.23 51.25 0.02
White 75.45 75.46 0.01
Yeast 55.71 55.53 −0.18

Mean 71.95 72.29 0.34
Wilcoxon 5.85e−03 1.00e+00 –

5.5. Effectiveness of ensemble learning

Next, we study the added value the ensemble learning com-
ponent brings to RESSEL. In considering the effectiveness of the
ensemble, it has to be stressed that the early-stopping mecha-
nism is made possible by the bagging procedure. Therefore, it is
impossible to study the effect of ensemble learning in ablation, as
we cannot compare to a single classifier trained on all data with
self-training and early-stopping. Additionally, as early-stopping
was shown to be effective in Section 5.4, the effectiveness of the
ensemble is already partly validated.

In the following, we will study the effectiveness of the en-
semble as it grows in size from a single classifier to 75 learners.
Thereafter, we make a comparison between the advantage gained
through ensemble learning by a single classifier, learned on all
available labeled data, with and without self-training being used.
This comparison is made without the early-stopping mechanism.
Hereby we seek to answer the question if ensemble learning is
helpful to self-training. All experiments are conducted with 10%
of the training data as labeled data.

Table 11 shows the gain in average accuracy of RESSEL on
the test set, as the ensemble grows from a single classifier to 75
classifiers. Overall, it can be seen that there is a large initial gain
in accuracy, which has for the most part converged at ensemble
size 25. Especially RDT and LR still show some increase when
further increasing the size to 75, of 0.29 and 0.26 respectively,
but compared to the total increase of 5.66 and 3.18 gained by
increasing the size from 1 to 25, these improvements are minor.

This improvement in accuracy could be attributed to bagging
alone, yet we are interested to see if there is an additional effect
due to the combination with self-training and early-stopping.

To answer this question, we have calculated the average dif-
ferences between RESSEL and bagging for different ensemble
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able 11
ffectiveness of RESSEL for varying ensemble sizes. The column with size 1
hows the single classifier accuracy, with the other columns showing the
ifference in accuracy to this single classifier. 10% of the training data is labeled

1 5 10 25 50 75

GNB 61.01 1.29 1.76 1.72 1.84 1.82
SVM 70.06 1.50 1.88 2.23 2.23 2.07
KNN 65.55 1.85 2.28 2.68 2.82 2.86
RDT 64.82 3.76 4.71 5.66 5.74 5.95
LR 67.60 2.26 2.85 3.18 3.30 3.44

Table 12
Effectiveness of ensemble learning. The average accuracy difference between
RESSEL and bagging is shown. 10% of the training data is labeled.

1 5 10 25 50 75

GNB 0.55 0.52 0.76 0.76 0.64 0.78
SVM 0.39 0.36 0.43 0.49 0.44 0.41
KNN 0.82 0.82 0.68 0.67 0.73 0.65
RDT 3.35 1.84 1.09 0.32 −0.07 −0.20
LR 2.01 0.95 0.57 0.27 0.20 0.24

sizes. The results are shown in Table 12. We observe that when
self-training is effective, for SVM, KNN and to a lesser extend
GNB, the advantage RESSEL has over bagging due to self-training
with early-stopping, fluctuates a little for the different sizes, but
remains mostly constant. This shows that self-training and early-
stopping do not just offset accuracy loss due to limited ensemble
sizes.

The RDT and LR methods, for which self-training is not ef-
ective, do see bagging gaining in accuracy over RESSEL as the
nsemble size increases. We suspect this is due to the effect of
arly-stopping helping to find a good configuration, as discussed
n Section 5.4, is diminished as more configurations are combined
ue to the larger ensemble size.
To further test our hypothesis that ensemble learning is en-

anced by the diversity introduced through self-training, we
ompare the gain in classification accuracy between:

1. A single classifier enriched by self-training without early-
stopping (SinClf+ST), which forms an ensemble through
bagging (RESSEL−).

2. The same classifier which does not undergo self-training
(SinClf) and forms an ensemble through bagging.

This first ensemble thus corresponds to the RESSEL− method,
and the second ensemble is a regular bagging ensemble. The
results of these experiments are shown in Tables 13 and 14
respectively.

We observe that the appropriate single classifiers (SVM, GNB
and KNN) enriched through self-training (Table 13) benefit much
more on average from ensemble learning than a single classifier
which is not enriched (Table 14), confirming our hypothesis.
For the SVM and KNN, the overall accuracy ends up higher for
RESSEL− than for the bagging ensemble as well, as we previously
observed in Table 4.

Unsurprisingly, RDT and LR are found to benefit more from
bagging than from RESSEL−, having better overall accuracy as
well with the bagging method.

5.6. Sensitivity to labeled data set size

The predictions obtained through self-training are sensitive to
the composition of the initial labeled data set and the perfor-
mance of the method when limited training data is available is
therefore not self-evident. Similarly, bagging and especially the
early-stopping mechanism used in RESSEL, are affected: measur-
ing the out-of-bag error can be useful when the out-of-bag set
13
Table 13
Effectiveness of ensemble learning with self-training. The mean accuracy
(difference) is shown. 10% of the training data is labeled.
Base classifier SinClf+ST RESSEL− Difference

GNB 57.91 59.41 1.50
SVM 70.67 71.95 1.28
KNN 66.22 67.83 1.61
RDT 62.41 68.82 6.41
LR 67.91 70.17 2.26

Table 14
Effectiveness of ensemble learning without self-training. The mean accuracy
(difference) is shown. 10% of the training data is labeled.
Base classifier SinClf Bagging Difference

GNB 60.77 61.97 1.20
SVM 71.59 71.80 0.21
KNN 67.37 67.56 0.19
RDT 63.32 70.16 6.84
LR 66.61 70.51 3.90

Fig. 4. The average accuracy difference of RESSEL− , Bagging, RESSEL and SinClf
to SinClf over the fifteen data sets as the training set size increases. A SVM was
used as the base classifier.

is representative of an unseen test set, as this error then suffi-
ciently approximates the generalization error. As mentioned in
Section 2.2.1 in expectation 37% of the labeled data ends up in the
out-of-bag set. When RESSEL is presented a training set consisting
of ten examples, the out-of-bag set would most likely contain
only three or four of these examples. The error measurement on
such a small set cannot be expected to be a good approximation
to the generalization error.

As we have stated in Section 2.1.1, the self-training method
is difficult to analyze independent of its base classifier. Providing
a performance guarantee on the RESSEL method, in which self-
training is combined with bagging and out-of-bag error measure-
ment, is an even more complex task and is not within the scope
of this paper. Instead we empirically evaluate the performance of
our method as the labeled data set size increases.

As before, we compare RESSEL to RESSEL without the early-
stopping mechanism (RESSEL−), to Bagging and to the single
classifier (SinClf) over the fifteen data sets shown in Table 3,
using SVM as the base classifier. The performance of the methods
was measured 200 times for each labeled data set size, using a
randomly sampled subset of the original data as the labeled data
set. The data set size was increased from ten to one hundred, in
intervals of ten.
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Fig. 5. The average rank of RESSEL− , Bagging, RESSEL and SinClf over the fifteen
data sets as the training set size increases. The best performing method on a
particular data set was assigned rank 4, the worst performing method rank 1.
A SVM was used as the base classifier.

The average accuracy of the four methods over all data sets is
shown in Fig. 4. We observe that both RESSEL and RESSEL− out-
erform the supervised methods over the entire domain. In the
ower data set sizes, RESSEL and RESSEL− perform very similarly,
hile the performance gap increases as more data becomes avail-
ble and RESSEL− approaches Bagging. These trends can be seen
o continue in Table 4, from which we observe for the SVM base
lassifier that RESSEL− is almost equal in performance to Bagging
s more labeled data becomes available, while still outperforming
inClf. RESSEL retains the best overall performance.
Moreover, we ranked the performance of each of the methods

or each data set: the method with the highest average accuracy
or a certain sample size obtained rank 4, the second highest rank
, the second lowest rank 2 and the lowest method rank 1. The
verage ranks of the four methods over all data sets are shown in
ig. 5. We observe similar trends to those of the average accuracy,
lthough RESSEL− is not performing as well in terms of rank in
he lower data size domain compared to Bagging as before.

From these observations we conclude that in the limited sam-
le size regime the benefit of early-stopping is limited: the per-
ormance of RESSEL− is almost equal to that of RESSEL. How-
ver, as more labeled samples become available to the methods,
nd thus the size and representativeness of the out-of-bag set
ncrease, RESSEL outperforms RESSEL− in classification accuracy.

Furthermore, the experiment shows that even in the limited
ample regime the combination of Bagging with self-training can
e beneficial. Bagging by itself performs better than the single
lassifier does and when combined with self-training and option-
lly early-stopping the predictive accuracy further increases.
We conclude both RESSEL and RESSEL− are comparatively safe

o use in the limited sample domain, as they outperform the
upervised alternatives. The effectiveness of the early-stopping
echanism is shown to increase along with the sample size,
owever, and it is worthwhile to explicitly check whether RESSEL
r RESSEL− is the better choice if the amount of labeled data
vailable is exceedingly small.

.7. Robustness to choice of parameters

In addition to our research into the influence of the core
omponents which constitute RESSEL, we studied the sensitivity
f the method to the choice of the parameter settings of the base
lassifier. In our experiments, we used the SVM classifier, as it has
14
been shown to work well with our method, as well as having a
number of important parameters. This makes it a prime candidate
for the study.

For these experiments, we used the Contraceptive, Red Wine
and Titanic data sets, which represent a combination of different
problems in terms of number of variables and outcome variable
type. We varied the regularization parameter C and the kernel
coefficient γ , looking at 21 different values for each, equidistant
on a logarithmic scale. C was plotted from 0.01 to 1000 and γ
in the range 0.0001 to 10, to capture the interesting part of the
parameter landscape. In our experiments, each measurement of
the test set accuracy for the specified parameter combination was
repeated 50 times.

In Figs. 6, 7 and 8 we observe the effects that varying C
nd γ have. On the left side of these figures, we observe the
alidation accuracy of the ensemble constructed using bagging.
n the middle, the validation accuracy of the RESSEL method is
hown. The rightmost figures depict the difference in accuracy,
ubtracting the bagging accuracy from that of the RESSEL method.
An interesting effect presents itself from these images. There

ppears to be a band of parameter values near the boundary be-
ween the good parameter values and those where the classifier
erforms suboptimally, in which RESSEL performs much better
han bagging does. This effect is clearly visible for each of the data
ets.
For the Red Wine data set shown in Fig. 6, we observe that

he area enclosed by this extended band is light red everywhere,
uggesting that for all decent parameter values RESSEL increases
redictive accuracy. Fig. 7 shows results for the Contraceptive
ata set. The enclosed area is predominantly red, with a few light
lue colored dots, likely due to chance. In Fig. 8 we see once
ore that near the boundary of good parameter values RESSEL

mproves over bagging by a lot, although inside this band there
s an area where the unlabeled data does not seem help and the
ifference is slightly negative.
These results underline the reliability of the RESSEL method:

he hyperparameter settings of the base learners can be more
oosely chosen, while results remain good, effectively extending
he range of good parameter values.

. Conclusion

In this paper, we recognize the scarcity of easy-to-use methods
or incorporating unlabeled data into classification models. Many
ethods for semi-supervised learning are available, but they

equire the user who is accustomed with supervised method to
cquaint themselves with an entirely new field of research.
We propose the reliable semi-supervised ensemble learning

RESSEL) method. RESSEL is based on the principle that ensem-
le learning and semi-supervised learning can complement each
ther. Our method combines bagging with self-training and in-
roduces an early-stopping mechanism based on the out-of-bag
rror.
From the results of applying RESSEL to a number of commonly

sed data sets, we conclude that RESSEL is able to improve a
iven base classifier through the use of unlabeled data, provided
hat the base classifier can produce an effective ranking of the
nlabeled instances from its probability estimates. When com-
ared to previous works in the field we find RESSEL to perform
ignificantly better, increasing the performance of a base classifier
ore effectively and consistently.
Further experiments show that the main components of RES-

EL all contribute meaningfully to the effectiveness of the method
s a whole. Additionally, we validate the importance of the good
anking assumption for the base classifiers. Finally, we show that
ESSEL is robust to the choice of base classifier hyperparameters,
ffectively increasing the range of good parameter values.
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Fig. 6. Red Wine grid. The validation error is shown for different combinations of parameter values for the C and γ parameters, for a Bagging ensemble, the RESSEL
ethod and their difference: RESSEL–Bagging.
Fig. 7. Contraceptive grid. The validation error is shown for different combinations of parameter values for the C and γ parameters, for a Bagging ensemble, the
ESSEL method and their difference: RESSEL–Bagging.
Fig. 8. Titanic grid. The validation error is shown for different combinations of parameter values for the C and γ parameters, for a Bagging ensemble, the RESSEL
ethod and their difference: RESSEL–Bagging.
When the effective ranking assumption is not met, RESSEL still
roduces predictions equal in accuracy to those of supervised
lternatives, and when the ranking assumption is met it provides
ignificant improvements. The method relies on familiar concepts
rom supervised learning, as well as the basic semi-supervised
earning method of self-training. We conclude that RESSEL thus
nswers the need for a reliable, easy-to-use method which can be
sed to incorporate unlabeled data to improve upon supervised
redictors.
Future research could include conducting a thorough investi-

ation into what causes RESSEL to increase the range of suitable
yperparameter values of its base classifiers. Additionally, more
ase learners could be examined for suitability for use with RES-
EL by investigating their ranking ability, and additional research
nto the variability we observed in our experiments with Gaussian
aive Bayes when used in conjunction with self-training could be
15
valuable. Furthermore, intelligent aggregation techniques could
be implemented to replace the plurality vote mechanism.
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