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Subdivision Directional Fields

BRAM CUSTERS, Utrecht University/TU Eindhoven
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Fig. 1. Rotationally seamless parameterization with a subdivision directional field. An initial field (left) is optimized for low curl at the coarsest level l = 0.

We subdivide the field to fine level l = 3 (center) and then solve for a seamless parameterization in both levels (right). Our subdivision preserves curl and

thus results in a low integration error in both levels. The coarse-level optimization takes 7.5 seconds, the subdivision 7.6 seconds, and the parameterization

7.0 seconds, for a total of 22.1 seconds. This is a speedup of about two orders of magnitude compared to running the curl optimization directly on the fine

level, taking 1,438.7 seconds.

We present a novel linear subdivision scheme for face-based tangent direc-

tional fields on triangle meshes. Our subdivision scheme is based on a novel

coordinate-free representation of directional fields as halfedge-based scalar

quantities, bridging the mixed finite-element representation with discrete

exterior calculus. By commuting with differential operators, our subdi-

vision is structure preserving: it reproduces curl-free fields precisely and

reproduces divergence-free fields in the weak sense. Moreover, our subdi-

vision scheme directly extends to directional fields with several vectors per

face by working on the branched covering space. Finally, we demonstrate

how our scheme can be applied to directional-field design, advection,

and robust earth mover’s distance computation, for efficient and robust

computation.
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1 INTRODUCTION

Directional fields are central objects in geometry processing. They

represent flows, alignments, and symmetry on discrete meshes.

They are used for diverse applications such as meshing, fluid sim-

ulation, texture synthesis, and architectural design. There is then

great value in devising robust and reliable algorithms that design

and analyze such fields. In this article, we work with piecewise-

constant tangent directional fields, defined on the faces of a trian-

gle mesh. A directional field is the assignment of several vectors

per face, where the most commonly used fields comprise single

vectors. The piecewise-constant face-based representation of di-

rectional fields is a mainstream representation within the (mixed)

finite-element method (FEM), where the vectors are often gradients

of piecewise-linear functions spanned by values on the vertices.

Working with a fine-resolution smooth (and good-quality) mesh

is often essential to get good results with methods that produce

piecewise-constant directional fields (PCDFs). However, work-

ing on a fine mesh is also computationally expensive and often

wasteful—the desired directional fields are smooth and mostly de-

fined by a sparse set of features such as sinks, sources, and vortices.

A classical way to bridge this gap is to work with a multires-

olution representation, based on a nested hierarchy of meshes. A
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popular way to generate this representation is to use subdivision

surfaces. Subdivision surfaces are generated by operators that com-

prise a set of stencils, often linear and stationary (with a fixed

stencil), that are used to recursively refine functions defined on

meshes (and consequently the vertex positions). These operators

can be used to prolong and restrict functions between coarse and

fine levels, allowing for multigrid field computation. We consider

the limit surface as the target domain on which we compute the

fields and represent the degrees of freedom of the computation by

the coarse control mesh through subdivision.

To be able to work with hierarchical directional fields on sub-

division surfaces, one needs to define specialized subdivision op-

erators. A necessary requirement for obtaining consistent results

is that the subdivision operators are structure preserving. In other

words, the differential and topological properties of the directional

fields are preserved under subdivision. This can be achieved by de-

signing subdivision operators that commute with differential oper-

ators. Unfortunately, differential operators on piecewise-constant

face-based fields are defined with the metric and the embedding

of the mesh (e.g., face areas and normals) built in. As a result,

these quantities have complicated and nonlinear expressions in the

linearly subdivided vertex coordinates. Creating linear stationary

subdivision operators directly on face-based directional fields is

then a challenging task. Recently, de Goes et al. [2016b] devised

a method for subdivision vector-field processing for differential

forms in the discrete exterior calculus (DEC) setting. The differen-

tial quantities in DEC are inherently separated into combinatorial

and metric operators; due to this, it is possible to define a station-

ary subdivision scheme for differential forms that commutes with

the combinatorial part alone, as introduced in Wang et al. [2006].

Inspired by this insight, we introduce a coordinate-free repre-

sentation for face-based fields, allowing us to decompose the face-

based differential operators into independent combinatorial and

metric components. With this decomposition, we define linear sta-

tionary subdivision operators for such fields. Our scheme naturally

extends to branched covering spaces, where we then apply it to di-

rectional fields with an arbitrary number of vectors per face.

2 RELATED WORK

2.1 Directional Fields

Tangent directional fields on discrete meshes have been researched

extensively in recent years. The important aspects of their design

and analysis are summarized in two relevant surveys: de Goes

et al. [2016a] focus on differential properties of mostly single vec-

tor fields, with an emphasis on different discretizations on meshes,

whereas Vaxman et al. [2016] focus on discretization and represen-

tation of directional fields (with N vectors at every given tangent

plane) and their applications.

The fundamental challenge of working with directional fields

is how to discretize and represent them. The most common

discretization considers one directional object per face, or al-

ternatively piecewise-constant elements (e.g., Bommes et al.

[2009]; Crane et al. [2010]; Tong et al. [2003]; Wardetzky [2006]).

This representation conforms with the classic piecewise-linear

paradigm of the FEM and admits a dimensionality-correct coho-

mological structure, when mixing conforming and nonconforming

elements [Wardetzky 2006]. Moreover, the natural tangent planes,

as a supporting plane to the triangles in the mesh, allow for simple

representations of N -directional fields [Crane et al. 2010; Diamanti

et al. 2014; Ray et al. 2008]. However, the representation is onlyC0

smooth, and makes it difficult to define discrete operators of higher

order including derivatives of directional fields, such as the Lie

bracket [Azencot et al. 2013; Mullen et al. 2011; Sageman-Furnas

et al. 2019], or Killing fields [Ben-Chen et al. 2010].

An alternative approach to single-vector field processing is DEC

[Crane et al. 2013; Hirani 2003], which represents vector fields as

1-forms, discretized as scalars on oriented edges. DEC enjoys the

benefit of representing fields in a coordinate-free manner, which

allows for a decomposition of the differential operators into com-

binatorial and metric components. This is beneficial for the subdi-

vision scheme we work with in this article. However, DEC is not as

of yet defined to work with general N -directional fields, and, when

using linear Whitney forms, it still suffers from discontinuities at

edges and vertices. We note that alternative approaches exist that

use vertex-based definitions [Knöppel et al. 2013; Liu et al. 2016;

Sharp et al. 2019; Zhang et al. 2006], representing directional fields

on tangent spaces defined at vertices. While enjoying better conti-

nuity, a full suite of differential operators has not yet been studied

for them—in particular, differential operators that define discrete

sequences, necessary for a correct Helmholtz-Hodge decomposi-

tion [Poelke and Polthier 2016; Wardetzky 2006].

2.2 Multiresolution Vector Calculus

Directional fields are important for applications such as meshing

[Bommes et al. 2009; Kälberer et al. 2007; Zadravec et al. 2010],

simulations on surfaces [Azencot et al. 2015], parameterization

[Campen et al. 2015; Diamanti et al. 2015; Myles and Zorin 2012],

and nonphotorealistic rendering [Hertzmann and Zorin 2000]. An

underlying objective in all of these applications is to obtain fields

that are as smooth as possible. Nevertheless, as demonstrated in

Vaxman et al. [2016], directional fields are subject to aliasing and

noise artifacts quite easily for coarse meshes. Using fine meshes

alleviates this problem to some extent but incurs a price of in-

creased computational overhead, especially for nonlinear meth-

ods. For this, a smooth and low-dimensional representation for

smooth directional fields on fine meshes, such as the one we in-

troduce, is much needed.

The most prevalent approach to low-dimensional smooth pro-

cessing on fine meshes is to use some refinable multiresolution

hierarchy. This paradigm is extensively employed in the FEM liter-

ature when using either refined elements (h-refinement) or higher-

order basis functions (p-refinement) [Babuška and Suri 1994]. This

has also been applied to vector fields in planes and in volumes

[Schober and Kasper 2007]. A major difference in which our sub-

division method departs from both of these approaches is that the

geometry of the target limit surface is different from that of the

control coarse mesh. As such, using p- or h-refinement directly on

the coarse cage is susceptible to committing the so-called varia-

tional crime [Strang and Fix 2008], where the function space and

the computation domain are mismatched.

A more closely related prominent approach to refinable spaces

is Isogeometric Analysis [Hughes et al. 2005]. The premise is

computation over refinable B-spline basis functions, replacing the

piecewise-linear FEM functions. The setting promotes integration
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Fig. 2. SHM pipeline. A face-based tangent field in the space X is converted to the equivalent halfedge representation in space Γ (Section 5). The halfedge

form is further separated into a DEC 1-form z1 and a nonconforming function ϵ that is the half-curl of the field (Section 5.3). They are individually subdivided

(Section 6) and assembled back to a field on a finer mesh.

over the target (smooth) domain and therefore is theoretically cor-

rect and structure preserving. However, they rely on quadrature

rules to perform the complicated integrals that involve the basis

functions. Methods such as those of Jüttler et al. [2016] and Nguyen

et al. [2014] employ subdivision rules for evaluation on the limit

surface but then design approximative quadrature rules for the ex-

act integrals, tailored to fit specific differential operators.

A recent work by de Goes et al. [2016b] utilizes subdivision for

1-forms (first introduced in Wang et al. [2006]) as a means to repre-

sent vector fields in recursively refinable spaces. By doing so, they

efficiently emulate the IGA premise in a linear setting and directly

on the discrete meshes. This technique substitutes coarse inner-

product matrices with inner-product matrices restricted from the

fine domains, encoding fine-mesh geometry on the coarse mesh.

Using subdivision matrices as prolongation operators is akin to

collapsing a single V-cycle in a multigrid setting [Brandt 1977]. The

essence of the technique is to design stationary 1-form subdivision

operators that commute with the discrete differential operators.

This is made possible as DEC operators are purely combinatorial.

Unfortunately, their approach does not readily extend to face-

based piecewise-constant fields. The effect of stationary subdivi-

sion methods on triangle areas and normals is not linear, which

makes it difficult to establish the required commutation rules. Our

article introduces a novel representation of face-based fields using

halfedge-based forms, which can be readily subdivided using sta-

tionary operators. As such, we introduce a metric-free subdivision

method for face-based directional fields that guarantees structure

preservation.

Directional fields. Much less has been explored in the litera-

ture about differential operators on directional fields. In Bommes

et al. [2009] and Kälberer et al. [2007], directional fields are used

as candidate gradients for functions on branched covering spaces.

Diamanti et al. [2015] further define PolyCurl, which encodes the

curl of N -directional fields. They then optimize for curl-free fields.

However, we are not aware of any study of general directional cal-

culus and its applications to geometry processing. We provide a

branched subdivision scheme, and subsequently a multiresolution

representation and a calculus suite for directional fields.

2.3 Subdivision Surfaces in Geometry Processing

Subdivision surfaces are popular objects in geometry processing,

and are methods of choice for shape design for animation [Liu et al.

2014] and architectural geometry [Liu et al. 2006]. Their most pop-

ular utility is that of multiresolution (or just coarse-to-fine) mesh

editing. In the context of simulation, they have been applied to

fluid simulation [Stam 2003], thin-shell design [Cirak et al. 2002],

and surface deformation [Grinspun et al. 2002; Thomaszewski et al.

2006]. The latter work also uses the folded V-cycle approach to

work on the coarse mesh with the limit surface metric; neverthe-

less, they work with quadrature as well to approximate the exact

solution.

3 CONTRIBUTIONS

The main contributions of our article are summarized as follows.

Halfedge forms (Section 5). We define a novel coordinate-free

representation for piecewise-constant vector fields (PCVF) on

faces. The essence of this representation is to consider their projec-

tion on the halfedges defining each triangle. We prove the equiva-

lence of this representation to that of face-based fields, and show

that these halfedge forms can be represented as the combination

of a DEC 1-form and edge-based curl, which is consistent with the

case where the 1-form is exact (the gradient of some scalar func-

tion). Halfedge forms are then a new type of 1-form that bridges

mixed-FEM representation with that of DEC.

Subdivision vector fields (Section 6). Given the coordinate-free

halfedge-form representation, we introduce a subdivision scheme

to face-based vector fields with the following properties:

• Coarse gradient fields are subdivided into fine gradient fields,

where the underlying scalar function is refined using a

vertex-based scalar subdivision method.

• The curl of a subdivided vector field, as a scalar function, is

a refinement of of the curl of the coarse vector field.

We depict the subdivision pipeline in Figure 2.
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Fig. 3. The FEM function spaces and associated differential operators.

Subdivision directional fields (Section 7). Since we work with

face-based fields, we show how our subdivision readily extends

to N -directional fields, where there are N vectors per face, by re-

ducing this case into working with single-vector fields in branched

spaces.

We apply this structure-preserving subdivision to several appli-

cations in Section 8: earth mover’s distance computation, seam-

less parameterization, vector field design, and operator-based ad-

vection. The common advantage that our method provides is the

ability to process vector fields on subdivided meshes (with many

triangles), considering only the degrees of freedom spanned by

the coarse control mesh. By doing this, we save both time and

memory.

We denote our face-based directional-field subdivision frame-

work as the subdivision halfedge-form method (SHM).

4 BACKGROUND

We introduce a new discrete representation for vector fields that

bridges mixed FEM and DEC. For this, we require an extensive

amount of background on these spaces. Nevertheless, for the sake

of compactness, we mostly introduce these well-known notions in

the notation and formulation we use and little else; see Table 1

for our notations, Table 2 for the definitions of the discrete dif-

ferential operators, and Figure 3 for the FEM space that we work

in. We refer the reader to de Goes et al. [2016a] and Wardetzky

[2006] for a more comprehensive account of the operators in FEM,

and to Desbrun et al. [2005] for the operators in DEC. For com-

pactness, we reduce the polysemous “FEM” to only mean the con-

forming/nonconforming piecewise-linear finite-element represen-

tation, to distinguish it from DEC, which is in essence another type

of finite-element representation.

4.1 Function Spaces

We work with a triangle mesh M = (V ,E, F ) of arbitrary genus,

and with or without boundaries. As we combine FEM and DEC

formulations, we need to streamline notation at the expense of

conventionality. We define V as the space of piecewise-linear

(conforming) vertex-based functions, corresponding to 0-forms

with linear Whitney forms in DEC and Sh in FEM. We further de-

fine E as the space of piecewise-linear mid-edge (nonconforming)

functions, also known as the Crouzeix-Raviart elements [Crouzeix

and Raviart 1973], corresponding to S∗
h

in FEM. We define F as

the space of piecewise-constant functions on faces, corresponding

with dual 2-forms in DEC. We define the corresponding integrated

(weak) function spaces on vertices as V∗ (corresponding to dual

0-forms, integrated over Voronoi areas), on edges as E∗ (integrated

over edge diamond areas), and on faces as F ∗ (corresponding to

primal 2-forms in DEC). Finally, we denote the space of face-based

PCDFs of degree N , defined on the tangent spaces spanned by the

supporting planes to the faces, as XN . The latter is in accordance

with the conventional notation. We introduce our operators to the

classic case of N = 1 and then generalize our constructions to N -

directional fields in Section 7. For case N = 1, we omit the power

and just use X, the space of PCVF.

Orientation. We choose an arbitrary (but fixed) orientation for

every edge in the mesh. This orientation consistently defines

both source and target vertices (primal orientation), and left and

right faces for each edge (dual orientation; corresponding with

the CCW orientation of every face). For instance, in our notation,

we use eik and get left (eik ) = ikl = t2 and right (eik ) = ijk = t1
(Figure 4). For edge e and adjacent face f , we define se,f = ±1

as the sign encoding the orientation (positive if f = le f t (e ), i.e.

e is oriented CCW with respect to the face normal of f ). DEC

1-forms depend on the direction and sign of the edge, so they

are denoted as oriented quantities. Quantities in E∗ depend on

the direction of the edge on which they are defined, but not on

the specific sign (whether eik or eki ), and thus we denote them

as unsigned quantities. For a face f , we define J |f = [n̂f ×] as

the operator that performs the rotation around its normal n̂f .

Fig. 4. Our notation for a single flap.

Mixing spaces. It is well

known [Polthier and Preuß

2003] that the discrete differ-

ential FEM operators preserve

the structure of differential

operators in the discrete set-

ting. In other words, we have

a sequence Image(GV ) ⊂
ker(CE∗ ) (gradient fields are

curl free) and a (dual) sequence Image(JGE ) ⊂ ker(DV ) (rotated

cogradient fields are divergence free). This structure-preserving

property is essential to the correct and stable behavior of differ-

ential equations discretized with such operators. Note that the

entire formulation can be done in a dual manner by switching

conforming and nonconforming spaces and operators. However,

we restrict ourselves to conforming gradients and nonconform-

ing rotated cogradients. As such, we omit the space-indicating

ACM Transactions on Graphics, Vol. 39, No. 2, Article 11. Publication date: January 2020.
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Table 1. List of Notations and Symbols

Notation Dimensions Explanation

V,V∗ |V | Primal and dual vertex-based PL conforming functions.

E,E∗ |E | Primal and dual midedge-based PL nonconforming functions.

F ,F ∗ |F | Primal and dual face-based PC functions.

X 3 |F | Piecewise-constant face-based vector fields.

Z1 |E | Edge-based DEC 1-forms.

Γ 2 |F | Halfedge forms.

P |Γ | × |X| Projection operator X → Γ (Equation (10)).

U 2 |F | × 3 |F | Unpacking operator for halfedge form in each face, respecting null-sum (Equation (9)).

MV |V | × |V | Mass matrix for vertices (Voronoi areas).

ME∗ |E | × |E | Mass matrix for integrated edge quantities (inverse diamond areas).

MF |F | × |F | Mass matrix for face (triangle areas).

MΓ 2 |F | × 2 |F | Mass matrix for halfedge forms (packed cotangent weights; Equation (14)).

MX 3 |F | × 3 |F | Mass matrix for piecewise-constant face-based vector fields. This amounts to repeating

MF three times per triangle.

Sl
P

���P
l+1��� ×

���P
l ��� Subdivision matrix for space P from level l to l + 1. We use P ∈ {V,E∗,F ∗,Z1, Γ}.

Sl
P

���P
l ��� ×

���P
0��� Aggregated subdivision matrix from levels 0 to l .

M0
P

���P
0��� ×

���P
0��� Restricted mass matrix from some level l to level 0 (Equation (5)).

AZ1→Γ |Γ | × |E | Assigning a 1-form value from an edge to its halfedges. AΓ→Z1
= (AZ1→Γ )T sums the

halfedge values to a single 1-form per edge.

AE∗→F ∗ |F | × |E | Summing integrated edge quantities to the adjacent faces.

W |Γ | × 2 |E | Computing edge mean 1-form z1 and half-curl ϵ (Equation (16)).

PN |P |N N -branched space of functions in P (e.g., N -directional fields are in XN ).

For differential operators see Table 2. Superscript capital N is for number of vectors, and small l is for subdivision level.

subscripts, and just use D for (conforming) divergence and C for

(nonconforming) curl.

Helmholtz-Hodge decomposition. Mixing conforming and non-

conforming operators is essential to have a dimensionality-

consistent Hodge decomposition [Wardetzky 2006]. For a closed

surface without boundary, there is a well-defined Helmholtz-

Hodge decomposition of X as follows:

X = Image (GV ) ⊕ Image (JGE ) ⊕ HX . (1)

Image(GV ) is the space of vectors fields that are gradients of

functions inV , Image(JGE ) is the space of rotated cogradients of

functions in E, and HX = ker(C )
⋂

ker(D) is the space of PCVF

harmonic fields. The space of harmonic fields has the correct

dimension 2д, where д is the genus of the mesh.

Inner products. Inner products on the function spaces are rep-

resented as mass matrices M , where two elements u,v in column

vector form have the inner product 〈u,v〉P = uT MPv in some

function space P. MX is the mass matrix of space X, comprising

diagonal values of triangle areas for each component of the vector

field, and we further define MV to be the diagonal matrix of

Voronoi areas of every vertex. We define ME to be the diagonal

matrix of diamond areas supported on each edge (see Figure 3).

Mass matrices for dual spaces are inverted mass matrices of the

corresponding primal spaces. We note that MV and ME are in

fact lumped versions of the FEM mass matrices. This lumping is

done to make them diagonal and thus have simple inverses. We

denote the L2 norm of space P by | |u | |P =
√
〈u,u〉P .

Hodge Laplacian. The integrated discrete Hodge Laplacian is ob-

tained from minimizing the Dirichlet energy of vector fields and

has the following form [Brandt et al. 2017]:

LX = C
T ME∗C + D

T MV∗D.

Its null space contains the harmonic vector fields. The pointwise

version is M−1
X LX .

4.2 Discrete Exterior Calculus

DEC function spaces. The setup of DEC [Desbrun et al. 2005] on

surface meshes is an alternative to the piecewise-constant repre-

sentation. Instead of representing vectors explicitly, DEC works

with primal and dual k-forms, where primal 0-forms are (point-

wise) vertex-based functions, primal 1-forms are (integrated) edge-

based functions (representing vectors), and primal 2-forms are (in-

tegrated) face-based functions. The space of primal 0 forms Z0,

with the interpolation of linear Whitney forms, identifies withV .

The space of 1-formsZ1 comprises scalars on edges, representing

oriented quantities. Such quantities are oriented in the sense that

when a scalar z is attached to edge eik , then the corresponding

scalar for the edge eki is −z. Note that the FEM space E∗ does not

have this property or edge sign dependence, and therefore it does

not identify withZ1. The space of 2-formsZ2 identifies with F ∗
(note the dual space, as elements inZ2 are integrated).

The space of dual 0-formsZ∗0 are integrated vertex-based quan-

tities and identifies withV∗. Similarly,Z∗2 identifies with F . Dual

1-forms in the space Z∗1 are defined on the union of the orthogo-

nal duals to the edges. For edge ik in triangles ijk and ikl , the dual

e∗
ik

is the two perpendicular bisectors to eik from the center of the

ACM Transactions on Graphics, Vol. 39, No. 2, Article 11. Publication date: January 2020.
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Table 2. Operators Per Representations

Operator FEM DEC Γ

Spaces Formulation Spaces Formulation Spaces Formulation

Primal gradient V → X GV V → Z1 d0 V → Γ d0,Γ = U −1AZ1→Γd0

Dual rotated gradient E → X JGE F ∗ → Z1 (M1)−1dT
1 E → Γ −(MΓ )−1CT

Γ

Divergence X → V∗ D = GT
VMX Z1 → V∗ dT

0 M1 Γ → V∗ DΓ =
(
d0,Γ

)T MΓ

Curl X → E∗ C Z1 → F ∗ d1 Γ → V∗ CΓ = C ·U

Primal Laplacian V → V∗ LV = GT
VMXGV V → V∗ dT

0 M1d0 V → V∗ (
d0,Γ

)T MΓd0,Γ

Dual Laplacian E → E∗ LE = (JGE )T MX JGE F ∗ → F d1M−1
1 dT

1 E → E∗ CΓM−1
Γ (CΓ )T

Hodge Laplacian X → X LX = GVMV∗G
T
VMX+ Z1 → Z1 L1 = d0MV∗d

T
0 M1+ Γ → Γ LΓ = d0,ΓMV∗

(
d0,Γ

)T ·MΓ+

JGEME∗ (JGE )T MX M−1
1 dT

1 M∗F d1 M−1
Γ (CΓ )T ME∗CΓ

All operators are presented in their integrated versions when applicable.

circumscribing circles of each triangle and therefore differs from

the rotated edge e⊥
ik

used in FEM.

Differential operators. Two fundamental discrete operators are

combined to create an entire suite of vector calculus: the exterior

derivatived , taking k-forms into (k + 1)-forms, and the Hodge star

�, taking primal k-forms into dual 2 − k dual forms. For instance,

the lumped �1 : Z1 → Z∗1 is defined as �|ik,1 =
|e∗

ik
|

|eik | . To stream-

line notation, we useM1 to represent�1.M1 : |E | × |E | is a diagonal

matrix that contains the weights per edge. M0 identifies with MV ,

as a diagonal matrix of Voronoi areas, and M2 identifies with MF ∗ .
DEC operators also define a (de-Rham) sequence, as d2 = 0 in

the discrete setting. Therefore, DEC is also structure preserving.

In the dual setting, we also work with the boundary operator

∂ = dT . Intuitively, ∂ sums up (k + 1)-forms into k-forms of ele-

ments (chains) adjacent to them, with relation to the mutual ori-

entation. The vector calculus operators are then interpreted as fol-

lows: the curl operator is simply d1, where curl is a primal 2-form

in DEC, and primal (weak) divergence is (d0)T M1, producing a

dual 0-form.

The DEC version of Hodge decomposition for 1-forms is such

that for each z1 ∈ Z1 there exist z0 ∈ Z0 and z2 ∈ Z2 such that

z1 = d0z0 +M
−1
1 dT

1 M2z2 + h1, (2)

where h1 is a harmonic 1-form that is both closed and coclosed.

Between DEC and FEM. As linear discrete frameworks, DEC and

FEM admit a similar power of expression, for instance L0 = LV ,

the cotangent weights Laplacian. However, they are incompatible

otherwise; |Z1 | = |E |, whereas |X| = 2 |F | (the ambient dimension

in the raw representation is 3 |F |). As such, the differential opera-

tors are also different in dimensions.

Note that the commonly used diagonalM1 is a lumped version of

the “correct” (Galerkin) mass matrix for 1-forms, integrating over

the interpolated linear Whitney forms [de Goes et al. 2014]. The

lumped version results in diagonal matrices that are efficient to

work with, especially with regard to solving equations. Moreover,

interpolated closed (and, as a subset, exact) 1-forms are piecewise

constant; in that case, the lumped M1 is the correct inner product.

This is the reason that FEM and DEC vertex Laplacians identify.

DEC has an advantage over FEM in the sense that it allows for

a natural separation between the combinatorial differential opera-

tor d , and the metric encoded in the mass matrices, whereas PCVF

spaces do not exhibit this separation. This distinction plays an im-

portant part in our definition of the subdivision operators.

4.3 Subdivision Exterior Calculus

Subdivision surfaces. A subdivision surface is a hierarchy of re-

fined meshes, starting from a coarse control mesh and converging

into a smooth fine mesh. We focus on approximative triangle-mesh

schemes for both vertex-based and face-based functions. Extend-

ing notation from de Goes et al. [2016b] and Wang et al. [2006], we

denote a subdivision operator as Sl
P , where it subdivides an ob-

ject of space P defined on a mesh in level l , denoted asMl , to an

object on a mesh of the refined space inMl+1. For instance, S5
E∗

subdivides an unsigned integrated edge quantity in E∗ from level

5 to level 6.

We denote the product of subdivision matrices from the coarsest

level to a given level l as Sl
P =

∏l−1
i=0 S

i
P . The columns of Sl

P con-

verge into refined basis functions Ψ0
P defined onMl . These basis

functions admit a nested refinable heirarchy:

Ψ0
P ⊂ Ψ1

P ⊂ · · · ⊂ Ψl
P , (3)

where a function Ψk
P is a linear combination of basis functions at

level Ψk+1
P , encoded in the matrix Sk

P : Ψk
P = Ψk+1

P Sk
P . Note that

Ψ0
P = Ψl

PS
l
P .

Structure-preserving subdivision. The essence of Subdivision

Exterior Calculus (SEC) is the definition of stationary subdivi-

sion matrices for k-forms that commute with the differential as

follows:

d0S0 = S1d0,

d1S1 = S2d1. (4)

This commutation subdivides exact 1-forms into exact 1-forms

where the underlying 0-form is refined. Similarly, the curl of a fine

1-form is the subdivided curl of the coarse 1-form.
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Restricted inner products. Choosing Loop subdivision [Biermann

et al. 2000; Loop 1987] for S0 and half-box spline subdivision

[Prautzsch et al. 2002] for S2 completely defines S1, with some

assumptions on the symmetry of the S1 stencil. In de Goes et al.

[2016b], the subdivision operator is mainly used for the purpose of

defining mass matrices on the coarse mesh as restricted fine mass

matrices:

M0
P =

(
Sl
P
)T ·Ml

P · S
l
P (5)

for the space P and associated subdivision matrix Sl
P from level 0

to level l as earlier. The restricted mass matrix M0
P is exactly the

product between subdivided P-forms in the fine level l . The re-

stricted mass matrices are in general no longer diagonal; however,

they have a limited support (usually just two rings), derived from

the support of the subdivision matrix. Working with restricted

mass matrices provides SEC with a smooth, localized, and small

function space on the limit surface in a structure-preserving man-

ner that does not require special treatment for singularities, replac-

ing the quadrature methods employed by IGA.

Divergence pollution. The relation of the SEC divergence to the

fine DEC divergence reveals an interesting insight:

(d0)T M0
1z

0
1 = (d0)T

(
Sl

1

)T ·Ml
1 · S

l
1z

0
1 (6)

=
(
Sl

0

)T
(d0)T ·Ml

1 ·
(
Sl

1z
0
1

)
=

(
Sl

0

)T (
(d0)T ·Ml

1 · z
l
1

)
.

In words, the SEC divergence of a coarse 1-form z0
1 subdivided into

fine 1-form zl
1 is not exactly the subdivided coarse divergence; it

is rather equivalent only when tested against the test functions Ψ0
0 .

Simply put, the divergence of the fine form might contain “high-

frequency” components that are in ker(Sl
1)T , where (Sl

1)T acts ef-

fectively as a low-pass filter. We denote this as divergence pollution.

5 HALFEDGE FORMS

We aim to create a stationary subdivision scheme for PCVFs, in-

spired by SEC, achieving our goal of establishing a framework of

hierarchical spaces for directional fields. For this, we need to first

overcome the challenge of metric-free representation that allows

for stationary commutation. We do so in the following by creating

a halfedge representation for X.

For each oriented edge eik adjacent to faces t1 and t2, we con-

sider its halfedges eik,1 and eik,2 (with the notation of Figure 4).

Note that they are both oriented in the same direction as eik ; this

departs from the usual doubly connected edge list convention [de

Berg et al. 2008], where halfedges are of opposing orientations,

and counterclockwise oriented with respect to their face normal.

We choose to co-orient them with the edge, as it is a more natural

convention for our differential operators.

We define Γ as the space of null-sum oriented scalar quantities

on halfedges: for every face t with halfedges e1,t , e2,t , e3,t , and

with signs s1,t , s2,t , s3,t that encode the orientation of the respec-

tive halfedges with regard to t (see Section 4.1), we consider cor-

responding scalar quantities γ1,t ,γ2,t ,γ3,t that must satisfy

s1,tγ1,t + s2,tγ2,t + s3,tγ3,t = 0. (7)

We denote γ =
{
γe,t

} ∈ Γ as a halfedge form.

Equivalence toX. We represent the halfedges as row vectors e.,t .

With that, we define the projection operator P ′ : X → Γ as follows:

P ′|t =
��
�

e1,t

e2,t

e3,t

��
�
. (8)

Note that P ′|t has zero row sum, which is the sum of edges of a sin-

gle triangle oriented with the proper signs; its null space is spanned

by vectors along the normal of the triangle. For eachv ∈ X, the null

sum of γ = P ′v is trivially satisfied. The operator P ′ is analogous

to the “�” operator that converts a vector field to a 1-form.

Conversely, for every γ ∈ Γ, which has null sum by definition,

the system P ′v = γ has a single solution that is also a tangent

vector (without normal components)—it can be reproduced by the

Penrose-Moore pseudo-inverse v = P ′−1γ (the analogue to the “#”

operator). This creates a bijection between the spaces Γ and X,

and they are therefore isomorphic. We are not aware of this con-

struction made explicitly in the literature to represent the PCVF

spaceX; a similar construction is alluded to in Poelke and Polthier

[2016].

Packed and unpacked representations. To naturally encode a null

sum of γ ∈ Γ, in each face we only store the first two γ values:

γ1,t and γ2,t . The choice is made without loss of generality—the

choice of edges can be arbitrary, except e2 should follow e1 in the

counterclockwise order of the face. To reproduce all three when

needed, we define an unpacking operator U as follows:

U |t

(
γ1,t

γ2,t

)
=
��
�

γ1,t

γ2,t

s3
(−s1,tγ1,t − s2,tγ2,t

) ��
�
. (9)

The packed representation “costs” 2 scalars per triangle, which is

exactly the true dimension ofX. The effect of the packing operator

U −1 (in pseudo-inverse) is to simply throw away γ3,t if the null-

sum condition is met: U −1
|t ·U |t = I2×2. We get that U |t ·U −1

|t is a

3 × 3 matrix that filters away any non-null sum while changing the

γ values if they violate it; we always avoid using it in this capacity.

With this representation, we reduce P ′ to the operator we use in

practice, P , where its pseudo-inverse P−1 is an actual inverse, and

both are defined as

P |t =

(
e1,t

e2,t

)

P−1
|t =

s1s2

2At

(−e⊥2,t
e⊥1,t

)T

. (10)

We use the convention e⊥2 = J |te2. P and P−1 aggregate the pre-

ceding per-face matrices into global operators. Note that (e1) ·(
−e⊥2

)
= Nt · (e1 × e2) = 2s1s2At . As such, we have P · P−1 = I2×2

and P−1 · P is a 3 × 3 matrix that projects out the normal compo-

nent from an ambient vector field in R3. We avoid the normal-

component filtering capacity in our formulations here as well and

provide a proof that P−1 · P is an identity for tangent vector fields

in Appendix A.

5.1 Halfedge Differential Operators

We next redefine all differential operators for Γ with the underly-

ing paradigm that they should be equivalent to the operators in
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Fig. 5. The operators in the halfedge representation Γ.

X, albeit formulated in Γ terms. We illustrate these operators in

Figure 5 and provide the entire set of differential operators for X
in the Γ setting in the rightmost columns of Table 2, comparing

them to the analogous DEC and FEM operators.

Conforming gradient. Consider the assignment operator AZ1→Γ
that creates a halfedge form from a 1-form by copying the associ-

ated oriented scalar on an edge to its two halfedges. We then get

P−1 ·U −1 · AZ1→Γ · d0 f = GV f . (11)

The preceding relation demonstrates how DEC aligns with Γ
where exact 1-forms, copied to halfedge forms, represent gradi-

ent fields—a fundamental parallel relation between DEC andX. To

avoid cumbersome notation, we denote d0,Γ = U
−1 · AZ1→Γ · d0,

which is the differential operator of dimensions 2 |F | × |V | in Γ
space.

We extend the DEC d1 to be the (oriented) sum operator

d1 =
∑3

i=1 si,tγi,t (working similarly to DEC d1, except with the

halfedges of the face rather than 1-forms). To work with the packed

form, we used1,Γ = d1 ·U . The null sum constraint is then encoded

as the identity d1,Γ · γ = 0 for every γ ∈ Γ.

The transpose operator (AZ1→Γ )T ≡ AΓ→Z1
creates 1-forms

from halfedge forms by summing up both halfedges scalars of each

edge; we use it extensively in Section 5.3.

Curl. We consider again γik,1 and γik,2, the two halfedge forms

restricted to the edge eik on the respective triangles t1 and t2. The

curl operator C : Γ → E∗ is defined in Γ space as

C |ik = γik,1 − γik,2. (12)

It is evident that curl-free fields in Γ (or the equivalentX) are such

that the halfedge forms are equal on both sides of the edge, which

means they are isomorphic to 1-forms. As the null-sum constraint

also dictates d1,Γγ = 0 by definition, we have have that a curl-free

γ is isomorphic to a closed 1-form. However, a halfedge form that

is not curl free is not compatible with any DEC quantity. Since we

represent Γ with only two scalars per face, the complete definition

for the curl operator isCΓ = C ·U . Note that we haveCΓ · d0,Γ = 0,

which preserves the discrete structure of X.

5.2 Inner Product

The inner product between halfedge forms γ1,γ2 ∈ Γ is defined as

(P−1γ1)T MX (P−1γ2) = γT
1 (P−T MXP

−1)γ2 = γ
T
1 MΓγ2. (13)

MΓ : 2 |F | × 2 |F | has the following simple structure:

MΓ |t =
1

2
(U |t )T ��

�

cot (α1)
cot (α2)

cot (α3)

��
�
U |t , (14)

where α j is the angle opposite edge j in face t and U is the un-

packing operator as before. Simply put, we get a diagonal mass

matrix for the unpacked null-summedγ ∈ Γ. We show the proof in

Appendix B. Equipped with these basic operators, the divergence

and Laplacian can be directly defined as in Table 2.

5.3 Mean-Curl Representation

Although the halfedge forms γ ∈ Γ are equivalent to PCVFs in X
through the projection operator P , we need an alternative and

equivalent representation for them that reveals their differential

properties, to be used in our subdivision schemes. Given the two

halfedge forms γik,1 and γik,2 on both sides of edge ik adjacent to

triangles t1 and t2 in our usual notation, we define the following:

z1 |ik =
γik,1 + γik,2

2
⇒ z1 =

1

2
AΓ→Z1

·U · γ (15)

ϵ |ik =
γik,1 − γik,2

2
⇒ ϵ =

1

2
CΓ · γ .

In words, z1 is the DEC 1-form that is the mean of the two

halfedge forms and ϵ is half of the FEM curl of γ . This represen-

tation is trivially equivalent to that of the unpacked γ . We denote

the conversion operator asW , defined as:(
z1

ϵ

)
=W · γ = 1

2

(
AΓ→Z1

C

)
U · γ ,

W −1 = U −1
(
AT

Γ→Z1
CT

)
. (16)

Note that z1 ∈ Z1 is a signed oriented quantity, whereas ϵ ∈ E∗ is

an unsigned integrated quantity. We emphasize that the null-sum

constraintd1,Γ · γ = 0 does not imply that z1 is curl free in the DEC

sense. In other words, we do not have d1z1 = 0 in general.

Null sum constraint in mean curl. The mean-curl representation

is not trivially equivalent to the packed Γ we use, since it has values

for all edges, whereas γ is spanned by two halfedges within each

triangle (hence the use of U −1 in W −1). To get equivalence, we

need to formulate the Γ null-sum requirement with (z1, ϵ ). This

formulation has a surprisingly elegant form. Consider the face t =
ijk and the signs s for the coincident halfedge forms γ . Then,

d1,Γ |t · γ |t = 0 = si jγi j + sjkγjk + skiγki = (17)

si jzi j + sjkzjk + skizki − ϵi j − ϵjk − ϵki =

d1 |tz1 |t −AE∗→F |tϵ |t,
where d1 |t is the DEC d1 operator restricted to f and AE∗→F ∗ is

the summation operator ϵi j + ϵjk + ϵki (analogous to AΓ→Z1
). In

global notation, the null-sum constraint reads as follows:

d1z1 −AE∗→F ∗ · ϵ = 0. (18)

Note again that when ϵ is 0, z1 is a closed 1-form and we get the

DEC identity d1z1 = 0. More generally, as the DEC definition of
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curl (see Table 2) is exactly d1z1, the DEC face-based curl of the

mean 1-form z1 is then nothing but the face-summed edge-based

FEM curl of the underlying field γ . We are not aware of this con-

nection between DEC curl and FEM curl pointed out before.

The mean-curl representation reveals important ties between

DEC and FEM more clearly:

• γ is FEM-exact if and only if z1 is DEC-exact with the same

function f ∈ V so that d0 f = z1, and where ϵ = 0.

• γ is FEM-harmonic if and only if z1 is DEC-harmonic. This

is straightforward to see, as the DEC divergence operators

dT
0 M1 and DΓ identify when ϵ = 0.

• FEM-coexact γ does not correspond to coexact z1; this is ev-

ident by the incompatible dimensions of the spaces. How-

ever, suppose that ϵ ∈ E∗ is the curl of γ ; then, we have

in this case a simple expression for the divergence of z1:

dT
0 M1z1 = DΓC

T ϵ .

Discussion: Refinable Hodge decomposition. Given the insights

of the mean-curl representation, there is a subtle, yet important,

distinction between the way DEC and FEM treat the Hodge decom-

position, which we need to make to properly define the subdivision

for PCVFs in X. The DEC Hodge decomposition factors a 1-form

z1 ∈ Z1 into pointwise z0 ∈ V , harmonic part zh , and integrated

z2 ∈ F ∗ (the equivalent of Z2). They further rely on refinable

function spaces to perform subdivision (Section 4.3). For this, us-

ing integrated F ∗ is the correct choice, sinceZ2 admits a natural

refinable hierarchy by triangle quadrisection. The pointwise dual

2-forms do not admit a refinable structure in this manner, and sub-

dividing them directly would constitute as a “variational crime.”

However, the FEM Hodge decomposition classically uses the

pointwise elements in E to span its coexact part, which is, simi-

larly to the dual 2-form spaceZ∗2 , not a refinable space. Neverthe-

less, the Hodge decomposition can be defined in Γ analogously to

DEC by using f ∈ V , (half) curl ϵ ∈ E∗, and harmonic h ∈ HΓ as

follows:

∀γ ∈ Γ, ∃f ∈ V, ϵ ∈ E∗, h ∈ HΓ : γ = d0,Γ f + 2M−1
Γ CT L−1

E ϵ + h.

Other than just for revealing algebraic relations between FEM

and DEC, we use the halfedge representation, mostly in its mean-

curl representation, to establish PCVF subdivision schemes.

6 SUBDIVISION VECTOR FIELDS

Our purpose in constructing subdivision schemes for halfedge

forms is the ability to work with PCVFs in a multiresolution

structure-preserving manner. Specifically, we work with subdi-

vided vector fields on very fine subdivided meshes, which are re-

stricted to low-dimensional fields defined with the coarse con-

trol cage, for purposes of efficiency and robustness. We define

SV as the Loop subdivision matrix for vertex-based quantities

and SF ∗ = S2 as the half box spline face-based subdivision matrix,

equivalent to S0 and S2 in the SEC scheme. For halfedge-based sub-

division, we construct three distinct and interrelated operators for

each subdivision level l :

• Sl
1, for 1-forms, of dimensions |V l+1 | × |V l |.

• Sl
E∗ , for unsigned integrated edge-based quantities (like curl),

of dimensions |El+1 | × |El |.

Fig. 6. A refined (l = 4) basis function from a single coarse (l = 0) unit-

length vector. The color coding on the fine level depicts the per-face Hodge

energy component ��CΓγ ��2 + ��DΓγ ��2 of the field, averaged to the vertices for

visualization purposes. The glyph arrows on the fine level visualize direc-

tions and relative magnitudes.

• Sl
Γ , for halfedge forms composed of both. It is then of dimen-

sions 2|F l+1 | × 2|F l |.

S1 is defined as in SEC (except our boundary modifications; see

auxiliary material), so we need to define the latter two. For clarity,

we often omit the level indicator l , as the operators are stationary,

and the level can be understood from the context. We provide the

full set of stencils in the auxiliary material.

To define structure-preserving operators on Γ, we require that

SΓ and SE∗ obey the following commutation rules:

d0,Γ · SV = SΓ · d0,Γ (19)

CΓ · SΓ = SE∗ ·CΓ .

In words, subdivided halfedge forms that represent gradient fields

should result in gradient fields of the subdivided vertex-based

scalar function, and the curl of a subdivided vector field should

be equal to the subdivided curl of a vector field. To satisfy these

conditions, our subdivision matrix for halfedge forms is defined

directly on the mean-curl representation as follows:

SΓ · γ =W −1

(
S1 0

0 SE∗

) (
z1

ϵ

)
=W −1

(
S1 0

0 SE∗

)
W · γ , (20)

Since SΓ is defined with the mean-curl representation that is in

unpacked form, we need to verify that the null-sum requirement

for the subdivided field (zl+1
1 , ϵ

l+1) is satisfied before the appli-

cation of W −1, or otherwise W −1 will project the result unto the

null-summed space Γ and the requirements in Equation (19) will

not result in the promised structure-preserving properties. In other

words, we require the following (as per Equation (18)):

d1z
l+1
1 −AE∗→F ∗ϵl+1 = 0.

As we inherit (albeit with some slight modifications) S1 and SF ∗
from SEC, our degrees of freedom for the requirements are in the

definition of SE∗ . To satisfy all requirements, we design it to adhere

to the following additional commutation relation:

SF ∗AE∗→F ∗ = AE∗→F ∗SE∗ . (21)
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In words, the face-based average of the subdivided curl should be

equal to the subdivided face-based average of the coarse curl. This

commutation elegantly preserves the null-sum requirement, as for

level l , with mean zl
1 and half-curl ϵl , we get

(Level l null-sum constraint

(Equation(18))) d1z
l
1 −AE∗→F ∗ϵ

l = 0⇒

(Subdivision) SF ∗d1z
l
1 − SF ∗AE∗→F ∗ϵ

l

= 0⇒

(Commutation) d1S1z
l
1 −AE∗→F ∗SE∗ϵ

l

= 0⇒

(Level l + 1 null-sum constraint) d1z
l+1
1 −AE∗→F ∗ϵl+1 = 0.

(22)

Having secured the null-sum constraint, we can safely useW −1

to get the fine-level fieldγ l+1, where all promised differential prop-

erties are guaranteed. We show an example of a basis function of

the subdivision operator in Figure 6 and some examples of full sub-

division vector fields in Figure 7.

6.1 Boundary Behavior

Our concepts of halfedges and the differential operators do

not trivially extend to meshes with boundaries. Recall that

our reasoning for subdivision is to commute with the gradient

and the curl operators. However, the discrete curl operator on

the boundary is not well defined for a single edge: consider a

boundary face t = ijk with boundary edge ei j and the associated

halfedge form γ |i j . As studied in Poelke and Polthier [2016], the

Hodge decomposition for meshes with boundaries admits several

valid choices for decomposition, culminating in either Dirichlet

or Neumann boundary conditions. We choose to assume that a

function f ∈ V is defined everywhere, including the boundary,

and that we commute with its gradient. Consequently, we assume

that the boundary curl is zero by definition. In other words, on

the boundary, we define z1 |i j = γi j and ϵ |i j = 0. We adapt W and

W −1 accordingly, noting that z1 |i j is the only contribution to the

field for boundary edge ij. Our subdivision matrices are designed

to reflect this choice of decomposition, where SE∗ reproduces zero

curl on the boundary, and S1 is redefined to preserve the null-sum

with this constrained SE∗ . We show an illustration of boundary

vector field basis functions on the boundary in Figure 8.

6.2 SHM Differential Operators

Following the reasoning of Section 4.3, we restrict MΓ from a fine

mesh back to a coarse mesh as follows:

M0
Γ =

(
Sl

Γ

)T ·Ml
Γ · S

l
Γ . (23)

By this process of mass-matrix restriction, we process fine-

level PCVFs that are spanned by the low-dimensional subdivided

coarse-level PCVFs, directly on the coarse mesh. In analogy to SEC,

we denote this technique as SHM.

By the commutation relations, the subdivided SHM curl of

a field is equal to the fine curl, and when a field is SHM-exact

on the coarse mesh, then it is also FEM-exact on the fine mesh,

Fig. 7. Multiple levels of subdivision vector fields on the cathead (top,

genus 0) and bitorus (bottom, genus 2) models. Note that the subdivsion

preserves the features (sources, sinks, and vortices) of the fields.

where the fine function is the subdivision of the coarse one.

Nevertheless, the SHM divergence behaves differently from the

fine FEM divergence, as

D0
Γγ

0 = dT
0,ΓM

0
Γγ

0 =

dT
0,Γ

(
Sl

Γ

)T ·Ml
Γ · S

l
Γγ

0 =(
Sl
V

)T
dT

0,Γ ·M
l
Γγ

l =
(
Sl
V

)T
Dlγ l . (24)

Note that we use DΓ to denote the SHM divergence operator in

line with other notation. In words, the divergence of a subdivided

field is equal to the divergence of the resulting coarse field only

through the restriction (Sl
V )T . That essentially means that the di-

vergence of the fine field might have “high frequency” components

in ker(Sl
V )T (Figure 9). This is an analogous phenomenon to the

divergence pollution of SEC (Section 4.3). Note that the structure

of SHM is preserved notwithstanding: SHM-exact fields are SHM

curl free, and SHM-coexact fields are SHM divergence free.

The restricted mass matrices M are not diagonal anymore due

to the two-ring support of any S. Additionally, some operators

are defined with inverse mass matrices, which are dense and

nonlocal. In practice, we almost never need to compute the exact

inverse, and we show how to circumvent this problem in the

relevant applications.

Hodge decomposition. In Figure 9, we show a Hodge decompo-

sition of a procedurally generated field with the SHM operators,

subdivided to a fine-level l = 3. It is evident that the exact part sub-

divides as defined, but also that there is high-frequency divergence

that pollutes the co-exact and the harmonic parts.

Hodge spectrum. The spectrum of the PCVF Hodge Laplacian

LX is studied in Brandt et al. [2017], where they show that the

spectrum of LX comprises harmonic fields (in its null space), gra-

dients of eigenfunctions of LV , and cogradients of eigenfunctions
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Fig. 8. Basis functions for coarse and fine levels near the boundary. The

initial vector is of unit length. The color coding depicts the local face av-

eraged curl AE∗→F ∗C · γ .

of LE . Using the SHM mass matrices, these relations still hold for

the SHM Hodge Laplacian LΓ :

∀ϕ ∈ V, λ ∈ R, s .t . LVϕ = λMVϕ

⇒ LΓ · d0,Γ · ϕ = λMΓ · d0,Γ · ϕ .
∀ψ ∈ E, μ ∈ R, s .t . LEψ = μMEψ

⇒ LΓ ·M−1
Γ CT

Γ ·ψ = μCT
Γ ·ψ . (25)

Note that a term of MΓ ·M−1
Γ was simplified in the right-hand

side of the last equation. We used subdivision level l = 3 and com-

puted the SHM Hodge eigenfunctions for several eigenvalues. We

compare them against the ground-truth fine eigenfunctions in

Figure 10. In Figures 11 and 12, we further analyze the relative

error between the fine spectrum and the FEM and SHM spectra

for the Hodge Laplacian. As can be seen, the SHM spectrum is a

much better approximation of the fine Hodge spectrum than the

coarse FEM one, for more than half of the full spectrum.

Errors and convergence. To study the behavior of our PCVF sub-

division, we look at the behavior of the SHM Hodge Laplacian for

the vector equation:

LΓ · γ = b,
where b ∈ Γ is some given field and LΓ is the SHM Hodge Lapla-

cian. We conduct two error and convergence tests as follows.

Projection error. We measure the error that is obtained by ap-

proximating the fine-level FEM with the low-dimensional SHM.

For this, we choose the right-hand b0 procedurally on some coarse

mesh (level 0) and subdivide it several times to get bl , where we

consider the solution γ l to the Hodge Laplacian system with this

right hand as the ground-truth reference. For each level 0 ≤ k < l ,

we solve for Lk
Γγ

k = bk , where Lk
Γ is the SHM Hodge Laplacian at

level k restricted from level l . We then subdivide γk to get γk→l ,

and measure the L2 and L∞ error against the ground-truth solu-

tion γ l . For reference, we compare to a regular FEM solution at

level k , computed as Lk
Γγ
′k = bk , also subdivided to level l and

measured against the ground-truth solution. We show the results

in Figure 13 and analyze convergence rates later in Table 3. It is

Fig. 9. SHM Hodge decomposition on models with genus 6 (first row) and

1 (third row), where a field is decomposed with SHM operators, subdivided,

and shown in streamlines. The second and fourth row show the absolute

value of the fine-level divergence, from which the high-frequency diver-

gence pollution in the co-exact and harmonic part is evident. The fields

are given by �vt (x, y, z ) = {sin(π x )y, sin(π xy )/r 2, cos(π z ) + x 2 + y2 },
where x, y, z are the coordinates of the face barycenter and r 2 = x 2 +

y2 + z2. We add a random harmonic field from the null space of the Hodge

Laplacian to the original field, and it is reproduced in the decomposition.

evident that the SHM solution has superior performance in terms

of error when compared against the regular FEM solution, almost

consistently with one to two order of magnitudes less error. Inter-

estingly enough, the convergence rates are similar.

Operator error. We measure the error that is obtained on the

coarse level l = 0 operator, by restricting the SHM operators only

from a level k < l , rather than from the fine level l on which we

wish to work. For instance, regular FEM operators are used when

k = 0 and the full SHM when k = l . We show the result in Table 4.

As is evident, the operator error diminishes quickly in the very

coarse levels, but then it plateaus to a reasonable error. This sug-

gests that a good approximation for processing on level l can be

accomplished with a fairly low SHM level k ; that can be explained

by the rapid convergence of subdivision schemes [Dahmen 1986].

7 SUBDIVISION N -DIRECTIONAL FIELDS

We next extend our subdivision operators to N -directional subdi-

vision, with the same structure-preserving guarantees. We do so

by applying the local reduction of such fields into single-vector

fields on branched cover spaces, which are introduced in Roy et al.

[2018].

We work with N -directional fields that are elements of XN :

in every face t , there are N indexed vectors {vt,1, . . . ,vt,N }, not

necessarily symmetrically ordered. We assume that the field is

equipped with a matching: a map between the vectors on a face

t1 to those in an adjacent face t2, associated with the dual edge

e between them. Furthermore, we assume the matching is (index)

order preserving: the matching is parameterized by a per-edge in-

dex Ie , where a vector of index k on face t1 is matched to vector of

index k + Ie (modulo N ) on face t2 (Figure 14). We denote the full

matching as IE .
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Fig. 10. Exact (top) and co-exact (bottom) eigenfunctions of the SHM

(l = 3) Hodge Laplacian, subdivided and visualized at the fine level. The

color coding denotes the norm difference | |P−1γ ′t − P−1γ l
t | |2 per triangle

t , where γ ′t is the eigenfunction subdivided from the coarse-level (FEM

and SHM) eigenfunction to the fine level (with normalization so that

γ ′Tt M l
Γγ ′t = 1), and γ l

t is the ground-truth eigenfunction of the fine-level

Hodge Laplacian. The color scale depicts this pointwise error.

Fig. 11. Comparing eigenvalues between the fine-level conforming part

of the Hodge Laplacian and the SHM or coarse-FEM eigenvalues, where

the error is calculated for SHM as E (λn ) = |λn,S H M − λn, fine |/ |λn, fine |,
and similarly for FEM. The same mesh as Figure 10 is used, with |V | = 752

at l = 0 and |V | = 48,002 at l = 3. We note that a concrete proof for this

relation appears in Shoham et al. [2019].

The indices of the vertices are defined as IV =
1
N dT

0 · Ie [Crane

et al. 2010], as dT
0 is the DEC boundary operator that encodes the

dual cycle orientations around the vertex. A regular vertex v has

Iv = 0, and otherwise it is called singular. The field on the 1-ring

of a regular vertex can be combed (see Figure 14): it can be locally

re-indexed in every face of the 1-ring such that ∀e ∈ N (v ), Ie = 0.

With re-indexing, an N -field is locally reduced to N independent

fields. A fractional singular vertex is defined by having Iv � N ,

Fig. 12. Similar comparison as in Figure 11 for the nonconforming part

of the Hodge Laplacian, where the error in SHM is E (μn ) = |μn,S H M −
μn, fine |/ |μn, fine |, and similarly for coarse FEM. The same mesh has |E | =
2,250 at l = 0 and |E | = 144,000 at l = 3.

Table 3. Projection Error Convergence Rates for the Models in Figure 13

Error Model

Star Mannequin Cone

SHM L2 2.54 1.77 1.82

FEM L2 2.00 1.91 2.00

SHM L∞ 1.90 0.978 1.10

FEM L∞ 1.80 1.06 1.07

SHM Curl L2 1.95 1.13 1.59

FEM Curl L2 1.87 1.24 1.54

The values correspond to the convergence factor β for the error hypothesis a0h−β ,
where h is the mean edge length of the mesh. Fine levels l are at 6 for the Cone and
Star experiment and 5 for the Mannequin experiment.

where such combing is not possible. Fields with fractional sin-

gularities cannot be globally combed. This is generally the case,

as
∑
∀v ∈V Iv = χ (M), with χ (M) the Euler characteristic of the

mesh. Integral singularities do not induce matching mismatches

and therefore appear in single-vector fields as well, as sources,

sinks, and vortices. They are basically sources of divergence and

curl, and are irrelevant to our extension to N -directional fields.

7.1 Extending FEM Calculus

To be able to extend our subdivision scheme for N -directional

fields, we need a concept of N -halfedge forms, N -scalar functions,

and the entire suite of differential operators. For this, we next

adapt existing notions from discrete calculus of branching cover-

ings [Bommes et al. 2009; Diamanti et al. 2015; Kälberer et al. 2007].

Figure 15 presents an exemplification of the directional calculus

presented here.

Seamless function spaces. Consider a vertex v ∈ V with adjacent

faces (in CCW order) t1, . . . , td and associated corners v1, . . . ,vd .

Further consider edges ei between corners vi and vi+1. The func-

tion spaceVN is parameterized by a vector fvi of N functions per

corner i: fvi =
(
fv1 , . . . , fvN

)T . This amounts to N · d values for

a single vertex (they are in fact spanned by a lower-dimensional

parameter space, as we see in the following). The functions are

matched across edges similarly to N -directional fields: consider

two adjacent corners vi and vi+1 across edge ei with matching in-

dex Iei . We construct the permutation matrix π (ei ) that represents
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Fig. 13. L2, L∞, and the L2 error of the curl, for the projection error of the vector Poisson equation on three models, as a function of subdivision level. We

measure L∞ = max |δγ | and L2 =

√
(δγ )T MΓδγ /

∑
MΓ , where δγ = γ̄ l − γ l , with γ̄ l as the ground-truth solution and γ l as the subdivided solution. The

curl L2 error is measured as

√
(Cδγ )T ME∗Cδγ /

∑
ME∗ . We use l = 6 for the Cone and Star models, and l = 5 for the Mannequin.

Table 4. Operator L2 and L∞ Errors for the Three Models

Level Cone Mannequin Star

L∞ L2 L∞ L2 L∞ L2

0 10.8 7.22 0.229e-1 0.460e-4 2.02 0.618

1 4.88 0.326 0.145e-1 0.724e-5 0.578 0.496e-1

2 4.48 0.221 0.148e-1 0.631e-5 0.492 0.396e-1

3 4.46 0.222 0.148e-1 0.638e-5 0.468 0.409e-1

4 4.47 0.225 0.149e-1 0.644e-5 0.461 0.417e-1

5 4.47 0.227 — — 0.459 0.420e-1

the map that the matching induces, to obtain the following:

fvi+1 = π (ei ) · fvi . (26)

We always assume that within a single face, the corners have a

trivial matching (so they are separate N functions); the only non-

trivial matching is between corners across edges.

Combing. For regular vertices, and by successively applying

Equation 26, we get that fv1 = π (ed ) · fvd
. As such, we can comb

the functions over regular vertices in the same way we do for di-

rectional fields: for a single 1-ring, we start from corner v1 in face

t1 and transform every fvi into fv1 by inverting Equation 26 recur-

sively. We denote this linear transformation as Π(v ). Note that it

means that there are only N independent functions in every regu-

lar vertex, parameterized by fv1 , which is expected.

Conforming operators. All conforming differential operators

can be directly extended from the single-vector calculus around

regular vertices, by conjugation with the combing (see Figure 15).

For instance, we have that the divergence DN (v ) : XN →V∗N is

DN = Π−1 (v )
���
�

dT
0 MX

. . .

dT
0 MX

���
�
Π(v ). (27)

In words, we comb a function and a field around a regular

vertex, use the operators on every function in the vector fv1 inde-

Fig. 14. Matching and combing. Left: A nonsingular matched 1-ring.

Right: As the 1-ring is nonsingular, applying Π(v ) results in a combed sep-

arated field with a trivial matching.

pendently, and then comb back. The result is a vector of N scalars

representing the independent divergences of the combed func-

tions. Then, Π−1 (v ) combs the N scalars to corner-based values

corresponding to original corner indexing. It is important to note

that the identity of the “first” corner v1 does not result in any loss

of generality, due to the conjugation with Π(v ); the result per cor-

ner would be exactly the same regardless of which corner is first.

The gradient operator GV extends to GN
V : VN → XN by sim-

ply operating on the elements in the function values of the corners

of the face independently, to produce N vectors. Therefore, it does

not require combing; the corners of every single face are always

trivially matched to each other.

Nonconforming operators. Nonconforming differential opera-

tors, namely the curlCN , are easier to generalize: we only have to

locally comb two faces sharing a single edge and then conjugate

the curl operator independently for the N vectors in both faces

with the combing operation. The result is a function in E∗N . The

rotated co-gradient JGN
E , exactly like GN

V , is defined per face and

therefore does not require any matching or combing.

Structure-preserving calculus. It is easy to verify that directional-

field calculus is structure preserving with relation to the sequence
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around regular vertices. We have thatCN ·GN
V = 0, and that DN ·

J ·GN
E = 0 as well. The formal proof is straightforward, given the

conjugation of combing and differential operators, and we omit

it for brevity. Essentially, the existence of such sequences means

that we can also define a directional Hodge decomposition, but we

leave this line of research for future work.

Around singular vertices. For singular vertices, the product of

π (e ) matrices leads to a nontrivial permutation matrix. In other

words, “returning” tov1 after applying Equation (26) successively,

we get fv1 � π (ed ) · fv1 . As such, conforming differential opera-

tors are not well defined for fractional singularities. To rationalize

this, they can be interpreted as isolated boundary points in the

field where there is not enough continuity by definition to allow

for well-defined conforming operators. The nonconforming oper-

ators are well defined everywhere, as they only require two faces

in every stencil.

7.2 Extending ΓN

Calculus of halfedges is natural in the N -directional setting. We

define γ ∈ ΓN as a vector of N scalars per halfedge. The operators

dN
0,Γ and dN

1,Γ are trivially extended with respect to the matching of

the corners. Note that we have a null-sum constraint for each ele-

ment of γ independently. The same is done for per-face operators

PN : XN → ΓN (and its inverse), unpacking operatorU N , and the

summation operator AE∗N→F ∗N .

The mean-curl representation and, consequently, the operator

W N are defined with the combing in the same manner as non-

conforming differential operators like CN : one of the halfedges in

every edge is chosen arbitrarily as the “first,” and then we define

AΓN→ZN
1

to conjugate with the matching. As such, both the re-

sulting mean z1 and (half) curl ϵ are defined with relation to one

of the halfedges, and this choice of “first halfedge” is well defined

up to permutation.

7.3 Extending Subdivision Operators

Equipped with an extension of the Γ representation to ΓN , we next

extend our subdivision operators to work with directional fields

and preserve their structure.

Branched Loop and half-box splines. For regular vertices, both the

Loop SV and the half-box spline S∗F subdivision operators extend

to the branched spacesVN and (F ∗)N by conjugation with comb-

ing as well. For instance, for Loop subdivision we get the following:

(SV )N = Π−1 (v )��
�

SV
. . .

SV

��
�
Π(v ). (28)

The result creates new even and odd edges, where the permu-

tation π (e ) for even edges is the same as the coarse edges they

originate from, whereas π (e ) for odd edges is an identity, since

they are created within coarse faces.

For singular vertices, we require a different definition of the sub-

division operators. We do so by unfolding the branch (Figure 16):

consider again a 1-ring with d faces, with singularity index IV =
i
N . We pick a single vector, follow its matching around the ring

until we reach it again, and create a new ring just with this vector.

Fig. 15. Example of directional calculus with the N -Laplacian on a regular

vertex. A corner-based vertex function is combed to a single vertex func-

tion, after which a gradient is applied to obtain a combed directional field.

Applying the divergence then results in a combed integrated value on the

vertex, which is combed back to the original labeling.

We then do so until all vectors are taken. That creates GCD(i,N )
(greatest common divisor) new rings. We are always guaranteed to

return to the original vector since (π (v ))N = I . We denote the un-

folding operation as Φ(v ). Then, we can conjugate SV for singular

vertices with the unfolding:

(SV )N = Φ(v )−1SVΦ(v ).

The unfolding Φ(v ) is a generalization of the combing operator

Π(v ) that allows us to extend all our subdivision operators with-

out altering the original scalar subdivision stencils, as the com-

mutation also works through the conjugation. For example, for a

regular vertex, we just create N new rings each with the separated

single vector field. As a result, we maintain all differential prop-

erties of the subdivision, and among them structure preserving of

curl and exactness. We demonstrate this in Figures 17 and 18.

8 APPLICATIONS

In the following, we apply our SHM framework to several appli-

cations that use PCVF directional fields in their pipeline. We im-

plemented the subdivision operators in C++ using the Directional

library [Vaxman 2019] and the applications using MATLAB. Times

are measured on a laptop with an Intel i7-7700HQ (2.8 GHz) CPU

and 32 GB of RAM.

Vector field design. In Figure 19, we show an example of coarse-

to-fine vector field design. Vectors are constrained on a small set

of faces of a coarse mesh and interpolated to the rest of the mesh

by minimizing the SHM (with level l = 3) Hodge energy

EH (γ ) =MΓ0

(
|CΓγ

0 |2 + |DΓγ
0 |2

)

of a field γ 0 on the coarse mesh. This is done by solving L3
Γγ

0 = 0

with fixed values for a subset of constrained faces. We then subdi-

videγ 0 to getγ 3 as our result. We get a fine smooth field efficiently

designed with the coarse (restricted) degrees of freedom.

Earth mover’s distance. We apply our subdivision to the optimal

transport algorithm presented in Solomon et al. [2014]. For brevity,

we do not consider meshes with boundary in this experiment. The

formulation computes a geodesic vector field between two proba-

bility distributions μ0, μ1 ∈ V∗ with
∑

v ∈V μ0 |v =
∑

v ∈V μ1 |v = 1,

which are defined on the fine mesh of level l . These distributions

are defined by densities ρ0 |1 = M−1
V μ0 |1 ∈ V . The geodesic field

is computed to minimize (a simplification of) the 1-Wasserstein
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Fig. 16. The unfolding operator Φ(v ), illustrated for a singular vertex in

the space XN . We unfold a valence 5 vertex with singularity index − 1
2 into

a valence 10 ring with a single vector field. The vector field is then locally

subdivided with SΓ and then folded back.

distance ζ (μ0, μ1) between the probability measures as follows:

ζ (μ0, μ1) = inf
д,h

∑
t ∈F l

A(t ) |GV |t f + JGE |tд + h |L2
(29)

s .t . Ll
V f = Ml

V (ρ0 − ρ1),

where д ∈ El and h is a harmonic field in H l . f ∈ Vl is fully de-

termined from the Laplacian constraint. To limit the solution space

on a fine mesh, they use a spectral subspace for д from its Lapla-

cian LE . We offer an alternative low-rank SHM approximation that

uses coarse-mesh function values instead, which is more efficient

due to the sparsity of the subdivision matrix. Here, we deviate from

the multigridV -cycle folding paradigm of SHM and solve the prob-

lem directly on the fine mesh. Nevertheless, we limit the solution

space to subdivided coarse functions. To use the refinable con-

forming functions, we note that the underlying continuous norm

is invariant to rotations. Therefore, we dualize the discretization

of the problem: we consider mid-edge distributions ρ ′0, ρ
′
1 ∈ E

∗,
transform the problem to refinable γ ∈ Γ, and solve for

ζ (μ0, μ1) = inf
f 0,h

∑
t ∈F k

√(
γ l
|t

)T
·Ml

Γ · γ
l
|t (30)

s .t . γ l = SΓ (d0,Γ f
0) + JGl

Eд
l + SΓh

0

Ll
Eд

l = Ml
E (ρ ′0 − ρ

′
1).

In words, we solve for coarse f 0 so that its subdivided gradi-

ent γ l creates the least-norm vector field with the Laplacian-

computed coexact component д (we use a simply connected mesh

with no harmonic component for simplicity). This is solved using

the ADMM procedure described by Solomon et al. [2014]. Note

that the coexact component is computed beforehand and therefore

fixed after solving the Laplacian equation.

Our experiment is conducted as follows: we compute our SHM

solution and compare the result to a spectral-subspace FEM so-

lution with an increasing number of eigenbases. A similar ac-

curacy (measured to the ground-truth solution in the fine level)

is achieved with approximately 360 eigenvalues, at almost three

times the computation time. We show our results in Figures 20

and 21.

Operator-based advection. Our framework can be used to modify

the operator-based representation of PCVFs introduced in Azencot

et al. [2013, 2015]. Their method constructs a discrete version of

Fig. 17. A subdivided 3-directional field. The spheres mark the singulari-

ties (red = − 1
3 , white = 1

3 ). Middle: Zooming in around a singularity. The

color coding shows the vector norm of the curl per edge, averaged to faces

and divided by face area. The curl is evidently refined under subdivision.

Fig. 18. An approximately curl-free 4-directional field subdivided. Bottom:

zoom-in, with singularity colors red = − 1
4 , orange = − 2

4 , and white = 1
4 .

The L∞ norms of the curl per edge for the three levels are 5.05e-6, 9.50e-7,

and 2.18e-7, respectively, which demonstrate that the (lack of) curl of the

field is preserved under subdivision.

the classical representation of vector fields as derivations of scalar

functions: for a field u and a scalar function f , the operator pro-

duces ∇u f = 〈u,∇f 〉. Given a vector fieldu ∈ X, their discrete op-

erator is represented by a matrix BV : |V | × |V | on a mesh that is

composed as follows:

BV =
1

3
(MV )−1 AF→VMXBFGV ,

where BF : |F | × 3 |F | is a matrix that performs the facewise dot-

product of the face-based gradient withu, andAF→V sums values

from faces to adjacent vertices, in our usual notation. Essentially,

the dot products are made per face and averaged to the vertices

using the respective mass matrices of the mesh.

The operator representation makes it simple to advect a function

f ∈ V on a surface: given time t , and the initial function value

f (0), they solve the advection equation in the weak sense, inte-

grated over a spectrally reduced subspace. Consider Ψ as the ma-

trix with n lowest Laplacian eigenvectors as columns. They work
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Fig. 19. SHM vector-field design. The local constraints (left) are interpo-

lated to the rest of the coarse mesh (center) and subdivided to the fine

mesh (right) at l = 3.

with a vector of coefficients α so that f (t ) = Ψα (t ), and solve for

ΨT MV ·
∂ (Ψα (t ))

∂t
= ΨT MV · BVΨα (t ),

where ΨT MVΨ = Id . We get α (t ) = exp(t · BEIG
V ) · α (0), where

BEIG
V = ΨT MVBV Ψ.

We follow a similar construction, except we integrate over a sub-

space of refined subdivision basis functions, and our degrees of

freedom are the coarse function f 0 so that f (t ) = SV f 0 (t ). Pos-

ing the system in the weak sense, we get the following:

ST
VMV ·

∂SV f 0 (t )

∂t
= ST
VMV · BVSV f 0 (t ),

where the solution is f 0 (t ) = exp(t · BSH M
V ) · f 0 (0), and

BSH M
V =M−1

V ST
VMVBVSV .

The weak form is natural to the eigenfunction reduction, as the

eigenfunctions are orthogonal w.r.t. MV , and ψ † = ψT MV . Nev-

ertheless, we empirically witnessed that omitting MV actually

slightly improves the accuracy of SHM advection; we conjecture

that this is since the subdivision bases are “more orthogonal” w.r.t.

a uniform matrix but reserve the concrete analysis for future work.

We compute a ground-truth solution at the fine level l = 5,

project it to the reduced basis, and compare the SHM advection

(both uniform and weights with MV ) against the spectral advec-

tion for a different number of eigenbases. We show the result in

Figure 22 and the error in Figure 23. The spectral-subspace approx-

imation has a comparable error profile between 50 and 100 eigens,

but the computation is about 8 to 10 times as slow, where the eigen-

basis extraction is the expensive part. Note that for both SHM and

the spectral approximation, the error diverges with time, due to

the high frequencies inevitably created by the advection equation.

Seamless parameterization. We next employ our structure-

preserving subdivision for N -directional fields to compute

coarse-to-fine curl-reduced fields. This allows us to compute

fine-level rotationally seamless parameterizations (where the

direction identifies across cuts but without perfect integer

translations) with a very low integration error. We compute an

N -RoSy (with Knöppel et al. [2013]) on the coarse mesh, optimize

it to be (approximately) curl free with [Diamanti et al. 2015],

and compute a coarse parameterization that consequently has a

very small integration error. The subdivision preserves the small

amount of curl, and the fine-level parameterization also has a

small error as a result. We compare this process to performing the

Fig. 20. Top: Relative error ��ζ − ζGT
��/ζGT of the computed distance value

via SHM (horizontal dotted line, for reference) and the FEM spectral-

subspace approximation with number of eigenvalues from 20 to 500 in

steps of 20. Bottom: Total running time for SHM (horizontal dotted line,

for reference) and the spectral approximation for the preceding specified

number of eigenvalues.

Fig. 21. A comparison of the EMD algorithm between the spectral (center-

right) approximation with 360 eigenvalues and our SHM (right), with simi-

lar accuracy with relation to the ground truth (center-left). Left: The initial

mass distribution. The big figures depict the geodesic fields γ l resulting

from the optimization, with insets depicting the vector norm per face of

the difference between the fine-level solution and the chosen approxima-

tion. The total running times are given: for the spectral-subspace solution,

68.1 seconds were spent on the ADMM optimization, and 27.8 seconds on

computing the basis and prefactoring. For SHM, this was 30.8 and 4.5 sec-

onds, respectively. The L2 error to the ground truth is provided.

curl-free optimization on the fine mesh directly. Our coarse-to-

fine optimization is faster in almost two orders of magnitude. We

demonstrate this in Figure 24 and in the teaser (Figure 1).

9 DISCUSSION

Convergence and smoothness. As we discuss in the auxiliary ma-

terial, our subdivision stencils for SE∗ and SΓ have a few degrees
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Fig. 22. Operator-based advection. The initial (color-coded) function f is

projected to the reduced basis and advected with the given vector field v

(streamlines), with time t = 0.5. The bottom row shows the approximation

using the first n Laplacian eigenfunctions. We provide the preparation and

advection times tprep and tadv. v is given by vt (x, y, z ) = −x per trian-

gle t, where x, y, z are the coordinates of the barycenter of t . f0 (before

projection) is given by f0,v (x, y, z ) = sin( 4
5 π x ) for the x coordinate of

vertex v . We localize the function below xmin = min(Vx ) + 1
3 (max(Vx ) −

min(Vx )) and above xmax = min(Vx ) + 2
3 (max(Vx ) −min(Vx )) by mul-

tiplying f0,v with exp(−5 |vx − xmin |) below xmin and exp(−5 |vx −
xmax |) above xmax . The model has |V 0 | = 435 and |V 5 | = 449,532.

of freedom (after counting the commutation constraints) that we

use to optimize the spectrum of the subdivision stencil such that

it converges in the limit since the subdominant eigenvalues are

less than 1. We conjecture that since the fields are derivatives of

smoothly subdivided functions, they are then one level of smooth-

ness lower in the limit. However, we leave a formal theoretical

analysis of convergence and smoothness to future work. We be-

lieve that a better design practice might be to allow SV and SF ∗ to

vary entirely, where the smoothness of all subdivision operators is

optimized concurrently (similarly to Huang and Schröder [2010]),

rather than modify the existing schemes.

Dual formulation. Our Γ space uses 〈v, e〉 for the projection oper-

ator P . Nevertheless, the entire formulation can be made with the

perpendicular 〈v, e⊥〉, using the nonconforming divergence and

conforming curl. This can be beneficial to fluid simulation.

Preconditioning and its disadvantages. The mass matrices of SHM

are generally more strongly positive definite than those of the FEM

in the coarse mesh. The reason is that the uniform and stationary

subdivision operators average the mesh, and create better triangu-

lations. Nevertheless, the fact that the subdivision does not com-

mute with the fine mass matrix also creates the high-frequency di-

vergence pollution in the subdivided fields. It is then worthwhile to

try and explore alternatives that consider the mass matrices within

the templates, to obtain precise fine Hodge decompositions.

Full multiresolution processing. Our article explores low-

dimensional coarse-to-fine approximations. Moreover, the basis

functions are not orthonormal as an eigenbasis, albeit consider-

ably cheaper to obtain. Nevertheless, SHM can be augmented by

Fig. 23. Normalized L2 error for the SHM (with and without mass matrix

MV ) and spectral approximations, depicted in Figure 22, compared to the

ground truth for times t = [0, 0.5], with step size of Δt = 1
32 . We define

the ground truth f (t ) as the initial function, expanded in the respective

basis and advected with the fine-level operator.

Fig. 24. Seamless parameterizations with coarse-to-fine curl-free fields.

Left: Coarse curl optimization and subdivision, and fine-level parameteri-

zation. Right: Fine curl optimization and parameterization. The runtime is

significantly reduced by optimizing in the coarse level, the integration er-

ror is lower, and the result is more appealing. The fine level is at l = 2. We

use 250 iterations for the curl optimization. tsub is the subdivision time,

topt is the curl optimization time, and tpar is the parameterization time.

The optimization time evidently dominates the total running time.

incorporating biorthogonal subdivision wavelets [Bertram 2004;

Lounsbery et al. 1997], to obtain exact multiresolution represen-

tation of functions over the fine mesh, with the advantages of

increasing locality—this could benefit applications such as solving

diffusion problems.

Nontriangular meshes. The space X is not well defined for non-

planar polygonal meshes. Nevertheless, in the spirit of mimetic el-

ements [Bossavit 1998], the space Γ, with its null-sum constraint,

is well defined for any polygonal mesh, implicitly defining X.

As such, our framework can consider other subdivision operators

(e.g., Catmull-Clark). We will explore this in future work.

General restriction operators. Finally, our setting is currently

limited to subdivision surfaces. It could be beneficial to also

allow for a multiresolution setting on general fine meshes using

simplification operators (e.g., quadratic-error-based simplification

[Garland and Heckbert 1997]) as the restriction operators. This

should prove challenging as the vertex- and face-based restrictions

have to be defined first but will allow a very general framework

for directional-field processing on arbitrary triangle meshes.
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APPENDIX

A P−1 AS INVERSE OF P

We next show that tangential vector fields are preserved under the

operation P−1 · P .

Let e1, e2, e3 be the CCW oriented edges of a face in CCW order

(i.e., si = 1∀i ∈ {1, 2, 3}), and let α1,α2,α3 be the angle opposite the

corresponding edge. Here, we will interpret ei as column vectors.

Consider a tangential vector field, which is locally defined on a

triangle t as vt = ae1 + be2, without loss of generality. Then,

P |tvt =

(
a |e1 |2 + be1 · e2

ae1 · e2 + b |e2 |2

)
. (31)

Applying P−1, we get

P−1
|t P |tvt =

1

2A

(
−e⊥,T2 e⊥,T1

) ( a |e1 |2 + be1 · e2

ae1 · e2 + b |e2 |2

)
(32)

=
1

2A

(
− e⊥,T2

(
a |e1 |2 + be1 · e2

)
(33)

+ e⊥,T1

(
b |e2 |2 + ae1 · e2

))
(34)

=
1

2A
(X + Y ), (35)

where we renamed the summed terms in the brackets for conve-

nience. Note that 2A = |e1 |e2 | sinα3. We can express e2 in terms of

e1 via orthogonal decomposition

e2 = |e2 | �
�
cos(π − α3)

e1

|e1 |
+ sin(π − α3)

e⊥1
|e1 |

�
�
, (36)

which allows us to write

e⊥1 =
|e1 |
|e2 |

e2

sinα3
+ cotα3e1 (37)

=
|e1 |2
2A

e2 + cotα3e1 (38)

= (cotα2 + cotα3)e2 + cotα3e1, (39)

where we use |e1 |2
2A = cotα2 + cotα3. Similarly,

−e1 = |e1 | �
�
cosα3

e2

|e2 |
+ sinα3

e⊥2
|e2 |

�
�
⇐⇒ (40)

e⊥2 = −
|e2 |
|e1 |

e1

sinα3
− cotα3e2 (41)

= −(cotα1 + cotα3)e1 − cotα3e2. (42)

Working out X
2A , we get

X

2A
= ((cotα1 + cotα3)e1 + cotα3e2)

(
a
|e1 |2
2A
+ b

e1 · e2

2A

)
. (43)

= ((cotα1 + cotα3)e1 + cotα3e2) (a(cotα2 + cotα3)

−b cotα3) (44)

= cot2 α3 (ae1 + ae2 − be1 − be2) + ae1 (45)

+a cotα2 cotα3e2 − b cotα1 cotα3e1, (46)

where we use e1 ·e2
2A = −s1s2 cotα3 and cotα1 cotα2 +

cotα1 cotα3 + cotα2 cotα3 = 1 for the interior angles of a

triangle. For Y
2A , we get

Y

2A
= ((cotα2 + cotα3)e2 + cotα3e1)

× (−a cotα3 + b (cotα1 + cotα3)) (47)

= cot2 α3 (−ae2 − ae1 + be2 + be1) + be2 (48)

−a cotα2 cotα3e2 + b cotα1 cotα3e1 (49)

and combining gives

1

2A
(X + Y ) = ae1 + be2 (50)

as desired.

To generalize this result for arbitrarily oriented edges, we need

to multiply −e⊥2 and e⊥1 by their appropriate sign, and sign the γ
values to be correctly oriented. This amounts to

P−1
|t =

1

2A

(
−s2e

⊥,T
2 s1e

⊥,T
1

) ( s1 0

0 s2

)
=

s1s2

2A

(−e⊥2
e⊥1

)
(51)

as stated before.

B INNER PRODUCT ON Γ

In the following, we develop the inner product mass matrix MΓ to

prove the formulation of Equation (14).

Consider a face t = 123 with three edges e1, e2, e3 that are, with-

out loss of generality, positively oriented toward the face. Further

consider two halfedge forms γx ,γy ∈ Γ restricted to the face on

these edges, γx |(1,2,3) and γy |(1,2,3) , representing respective face-

based vectors vx |t and vy |t . We “pack” their representation to

edges 1 and 2 alone, and by so trivially encoding the null-sum con-

straint γx |1 + γx |2 + γx |3 = 0 (and respectively for γy ). Following

Equation (13), we have that the inner product MΓ , restricted to the

face, is given by

MΓ = P−T MXP
−1.

This reproduces the inner product between vy and vx in the face

t . We then get that

MΓ = P−T MXP
−1 =

1

4A2
t

(−e⊥2
e⊥1

)
��
�

At

At

At

��
�

(−e⊥2
e⊥1

)T

=
1

4At

(
e⊥2 · e

⊥
2 −e⊥2 · e

⊥
1

−e⊥2 · e
⊥
1 e⊥1 · e

⊥
1

)

Consider the angles α1 |2 |3 opposite to edges e1 |2 |3. Then, we use

the identities

e⊥1 · e
⊥
1

2At
= cot (α2) + cot (α3)

−e⊥1 · e
⊥
2

2At
= cot (α3)
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for any cyclic shift of (1, 2, 3). Then, we get

MΓ =
1

2

(
cot (α1) + cot (α3) −cot (α3)

−cot (α3) cot (α2) + cot (α3)

)

=
1

2
UT ���

�

cot (α1)

cot (α2)

cot (α3)

���
�
U ,

where we use the unpacking operator U =

(
1 0
0 1
−1 −1

)
.
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