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Introduction

Looking beyond the Levi–Civita connection in Riemannian geometry, one finds a num-
ber of other metric connections with interesting properties. Normally these families of 
connections are defined by some characteristic of the torsion tensor and recurrent themes 
of research are connections with parallel torsion or connections with skew symmetric tor-
sion. The “strong” torsion condition refers to the latter: a strong torsion connection on 
a Riemannian manifold is a metric connection whose torsion is skew symmetric and 
closed. In this setting, a Kähler structure with strong torsion, or SKT structure is a Her-
mitian structure (g, I) together with a strong torsion connection for which I is parallel. 
A weaker notion is that of a (strong) parallel Hermitian structure which for us means 
a connection with closed, skew symmetric torsion for which the holonomy is U(n). The 
difference between a parallel Hermitian structure and an SKT structure being that in 
the former case integrability of the complex structure is not required.

A reason to study of such objects comes from string theory, where closed 3-forms arise 
naturally as fields in their sigma models [22,26]. Once a 3-form is added to the sigma 
model, if one still requires a nontrivial amount of supersymmetry, the type of geometry 
of the target space has to move away from the usual Kähler geometry. It was precisely 
following this path that Gates, Hull and Roček [12] discovered the bi-Hermitian geometry 
that nowadays also goes by the name of generalized Kähler geometry [16] as the solutions 
to the (2, 2)-supersymmetric sigma model. Requiring less supersymmetry without giving 
up on the idea altogether leads one to consider models where there is more left than 
right supersymmetry or models where the right side is simply absent. These conditions 
lead to (2, 1) or (2, 0) supersymmetric sigma models and supersymmetry holds if and 
only if the target space has an SKT structure [20]. This point of view also leads one to 
consider parallel Hermitian and bi-Hermitian structures as these are geometric structures 
imposed by a sigma model with an extended supersymmetry algebra [6,7].

Mathematical properties of SKT structures have been subject of study of several pa-
pers since the 90’s, including those of Bismut [1], Grantcharov et al. [14], Fino and 
collaborators [9,10] and more recently Streets and Tian [23,24]. Yet, until now there was 
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no framework in which one could extend results regarding Hodge theory of Kähler mani-
folds to the SKT world. Indeed the opposite seemed to be the case: Since SKT manifolds 
are, in particular, complex, their space of forms inherits a natural bi-grading, but a sim-
ple check in concrete examples shows that there is no corresponding decomposition of 
their cohomology. Further, by studying these structures on six dimensional nilmanifolds 
Fino, Parton and Salamon [9] produced examples showing that their Frölicher spectral 
sequence does not necessarily degenerate at the first page, they do not satisfy the ddc-
lemma, manifolds carrying these structures may not be formal and that these structures 
are not stable under deformations of the complex structure. In short, several Kähler 
properties seem to have been lost once the torsion was included. Put another way, given 
a complex manifold, we were left with no tools to decide whether it admitted an SKT 
metric or not.

Here we tackle SKT structures from a new point of view. The key observation is 
that SKT structures have yet another description, this time, as a ‘generalized structure’, 
i.e., a geometric structure on TM = TM ⊕ T ∗M . In fact, in this paper we show that, 
in a very precise way, SKT structures lie half way between generalized Hermitian and 
generalized Kähler structures. Using this approach, we show that some of the negative 
results mentioned earlier have a positive counterpart involving the torsion while those 
with negative answers obtain a conceptual explanation for their failure to hold.

Indeed, the first observation is that, as structures defined on TM with the H-Courant 
bracket, the natural differential operator to consider is dH = d + H∧, where H = dcω, 
and ω is the Hermitian form. Hence questions about d, and its decomposition as ∂ + ∂

miss an important ingredient and were doomed from the start. The cohomology of dH is 
only Z2-graded, yet we show that a parallel Hermitian structure induces a Z ×Z2 grading 
on the space of forms which itself induces a Z ×Z2 grading on the dH-cohomology. This is 
achieved by introducing the intrinsic torsion of a generalized almost Hermitian structure 
and using it to show that the dH-Laplacian preserves a Z × Z2-graded decomposition 
of the space of forms. For SKT manifolds one can go further and prove an identity of 
Laplacians, extending Gualtieri’s work on generalized Kähler geometry [15]. This way we 
relate a cohomology naturally defined in terms of the SKT data with the dH-cohomology. 
As an application, we return to the moduli space of instantons on a bundle over a compact 
complex surface and show that the existence of an SKT structure in this space (obtained 
by Lübke and Teleman [21] by an ad hoc method) can be seen as a consequence of the 
Hodge theory developed for SKT manifolds.

This paper is organized as follows. In Section 1 we develop the linear algebra pertinent 
to generalized complex, generalized Hermitian and SKT structures. In particular we show 
that an SKT structure gives rise to a Z ×Z2-grading on the space of forms. In Section 2
we introduce the intrinsic torsion of a generalized Hermitian structure and, in Sections 3
and 4, we relate SKT structures and parallel Hermitian structures to the vanishing of 
certain components of the intrinsic torsion. In Section 5 we study Hodge theory for 
SKT and parallel Hermitian structures and prove that in both cases the dH-cohomology 
decomposes according to the decomposition of forms induced by the structure. As an 
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application, in Section 7 we recover the result that the moduli space of instantons over 
a complex surface has an SKT structure.

Acknowledgments: This research was supported by the Marie Curie Intra European 
Fellowship PIEF-GA-2008-220178 and the VIDI grant 639.032.221 from NWO, the Dutch 
science foundation. The author is thankful to Anna Fino, Sönke Rollenske, Ulf Lindstrom, 
Martin Roček, Stefan Vandoren and Maxim Zabzine for useful conversations.

1. Linear algebra

Given a vector space V m we let V = V ⊕ V ∗ be its “double”. V is endowed with a 
natural symmetric pairing:

〈X + ξ, Y + η〉 = 1
2(η(X) + ξ(Y )), X, Y ∈ V ξ, η ∈ V ∗.

Elements of V act on ∧•V ∗ via

(X + ξ) · ϕ = iXϕ + ξ ∧ ϕ.

One can easily check that for v ∈ V

v · (v · ϕ) = 〈v, v〉ϕ,

hence ∧•V ∗ is naturally a module for the Clifford algebra of V . In fact, it is the space 
of spinors for Spin(V ) and hence comes equipped with a spin invariant pairing, the 
Chevalley pairing:

(ϕ,ψ)Ch = −(ϕ ∧ ψt)top,

where ·t indicates transposition, an R-linear operator defined on decomposable forms by

(α1 ∧ · · · ∧ αk)t = αk ∧ · · · ∧ α1,

and top means taking the degree m component.
The spin group, Spin(V ), acts on both V and on spinors in a compatible manner, 

namely, its action on V is by conjugation using Clifford multiplication

g∗v = gvg−1 for all g ∈ Spin(V ), v ∈ V

and on ∧•V ∗ by the Clifford action described above, so we have

g · (v · ϕ) = (gvg−1) · (gϕ) = (g∗v) · (g · ϕ) (1.1)

for all g ∈ Spin(V ), v ∈ V and ϕ ∈ ∧•V ∗.
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Example 1.1 (B-field transform). Given B ∈ ∧2V ∗ ⊂ spin(V ), it acts on V . Namely, we 
can regard B as a map from V into V ∗

B(X + ξ) = −iXB = −B(X).

Exponentiating this map we have

eB∗ : V −→ V eB∗ (X + ξ) = X + ξ −B(X).

And this action is compatible with the action of eB ∈ Spin(V ) on forms:

eB : ϕ −→ eB ∧ ϕ.

So we have eB∗ : ∧kV −→ ∧kV and for α ∈ ∧•V and ϕ ∈ ∧•V ∗

(eB∗ α) · eBϕ = eB(α · ϕ).

�

We will be interested in introducing geometric structures on V . The first we consider 
is a generalized metric, as introduced by Gualtieri [16].

Definition 1.2. A generalized metric on V is an automorphism G : V −→ V which is 
orthogonal and self-adjoint with respect to the natural pairing and for which the bilinear 
tensor

〈Gv, w〉, v, w ∈ V

is positive definite.

Since G is orthogonal and self-adjoint, we have G−1 = Gt = G, hence G2 = Id. 
Therefore G splits V into its ±1-eigenspaces: V = V+ ⊕ V− and the projection πV :
V −→ V gives isomorphisms π : V± −→ V . Further, given a generalized metric G we 
can write V = GV ∗ ⊕ V ∗ and GV ∗ is isomorphic to V via the projection πV : V −→ V . 
Since both V and GV are isotropic subspaces of V which project isomorphically onto 
V , we can describe GV as the graph of a linear map b : V −→ V ∗, that is b ∈ ⊗2V ∗. 
Isotropy means that b ∈ ∧2V ∗ and hence gives rise to an orthogonal transformation of 
the natural pairing, eb∗. This map has the property that eb∗ : GV ∗ −→ V , hence, after an 
orthogonal transformation of V , we can assume that GV ∗ = V . For this splitting,

G =
(

0 g
g−1 0

)
(1.2)

where g is an ordinary metric on V . The splitting of V determined by a generalized 
metric is the metric splitting.
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If V is endowed with an orientation, we can define a generalized Hodge star operator
[15] as follows. Since πV : V+ −→ V is an isomorphism, V+ inherits an orientation. Then 
we let {e1, e2, · · · , em} be a positive orthonormal basis of V+ and let 
 = −em ·· · · e2 ·e1 ∈
Clif(V ). Then


ϕ := 
 · ϕ,

where · denotes Clifford action.
With this definition, we have

(ϕ, 
ϕ)Ch > 0 if ϕ 
= 0 (1.3)

If the splitting of V is the metric splitting, we have

(ϕ, 
ψ)Ch = ϕ ∧ ∗ψ,

where ∗ is the usual Hodge star, hence, in this splitting, 
 is the usual Hodge star except 
for a change in signs given by the Chevalley pairing. Since 
 = −em · . . . · e2 · e1, we have 
that


2 = (−1)
m(m−1)

2

and hence it splits the space of forms into its eigenspaces, namely, into its ±1-eigenspaces 
∧•
±V

∗ if m is zero or one modulo four or its ±i-eigenspaces if n is 2 or 3 modulo 4. This 
allows us to define self-dual and anti self-dual forms in all dimensions:

Definition 1.3. We say that a form ϕ ∈ ∧•V ∗
C is SD if 
ϕ = −i

m(m−1)
2 ϕ and that it is 

ASD if 
ϕ = i
m(m−1)

2 ϕ. We denote the space of SD-forms by ∧•
+V

∗ and the space of 
ASD-forms by ∧•

−V
∗.1

The Clifford action of elements in V± either preserves or switches the eigenspaces of 
:

Lemma 1.4. Let v± ∈ V±. Then acting via Clifford action on forms we have

v+
 = (−1)m−1 
 v+ and v−
 = (−1)m 
 v−

hence for m even,

V+ : ∧•
±V

∗ −→ ∧•
∓V

∗ and V− : ∧•
±V

∗ −→ ∧•
±V

∗

and for m odd

1 The choice of signs on the Chevalley pairing and of � were made so that on a four manifold, the notion 
of SD and ASD agrees with the usual notions of self-dual and anti self-dual on 2-forms.
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V+ : ∧•
±V

∗ −→ ∧•
±V

∗ and V− : ∧•
±V

∗ −→ ∧•
∓V

∗

Proof. For v− ∈ V−, we have that 〈v−, V+〉 = 0 hence v− graded commutes with 
. For 
v+ ∈ V+, we can choose an orthonormal basis for V+ for which e1 = v/‖v‖, so that v
anti commutes with all the remaining elements of the basis and commutes with e1. �

For the rest of this section we will introduce structures on V which force its dimension 
to be even so we let m = 2n.

Definition 1.5. A generalized complex structure on V is a complex structure on V which 
is orthogonal with respect to the natural pairing. A generalized Hermitian structure or a 
U(n) ×U(n) structure on V is a generalized complex structure J1 on V and a generalized 
metric G such that J1 and G commute.

Given a generalized complex structure J on V , we can split VC, the complexification 
of V , into the ±i-eigenspaces of J : VC = L ⊕L. The spaces L and L are maximal isotropic 
subspaces of VC such that L ∩ L = {0}. Since the natural pairing is nondegenerate, we 
can use it to identify L = L∗. Precisely, we identify

v �→ 2〈v, ·〉 ∈ L∗, for v ∈ L. (1.4)

Given a generalized Hermitian structure (J1, G) on V , J2 = GJ1 is orthogonal with 
respect to the natural pairing and squares to −Id, hence it is also a generalized complex 
structure. Since πV : V± −→ V are isomorphisms, and J1|V± is a complex structure on 
V± orthogonal with respect to the natural pairing, it induces complex structures I± on V
compatible with the metric g induced by G making V into a bi-Hermitian vector space. 
We can further form the corresponding Hermitian forms ω± = g ◦ I±.

Given any generalized Hermitian structure, ∧•V ∗
C splits as the intersections of the 

eigenspaces of J1 and J2: Up,q = Up
J1

∩ Uq
J2

, where Up
Ji

is the ip-eigenspace of Ji in 

∧•V ∗
C . In this context, the generalized Hodge star is related to the action of Ji = e

πJi
2 , 

namely:

Lemma 1.6. (Gualtieri [15]) In a generalized Hermitian vector space one has


 = −J1J2.

This means that we can read the decomposition of forms into SD and ASD from the 
Up,q decomposition, namely 
|Up,q = ip+q. If we plot the (nontrivial) spaces Up,q in a 
lattice, each diagonal is made either of SD- or ASD-forms, with Un,0 made of SD-forms 
(see Fig. 1).

Definition 1.7. A positive U(n) structure or a positive Hermitian structure on V is a gen-
eralized metric G and a complex structure I+ on V+, the +1-eigenspace of G, orthogonal 
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SD

ASD U0,2

SD U−1,1 U1,1

U−2,0 U0,0 U2,0

U−1,−1 U1,−1

U0,−2

(1.5)

Fig. 1. Representation of the spaces of SD and ASD in terms of the (p, q)-decomposition of forms on a 
4-dimensional generalized Hermitian structure.

with respect to the natural pairing. A negative U(n) structure or negative Hermitian 
structure on V is a generalized metric with an orthogonal complex structure I− on its 
−1-eigenspace. We say that a generalized complex structure J extends a positive/nega-
tive U(n) structure (G, I) if I is the restriction of J to the appropriate space and (G, J )
is a generalized Hermitian structure.

Given a generalized Hermitian structure, since J1 and G commute, J1 preserves the 
eigenspaces of G and hence, upon restriction to V±, one obtains a positive and a negative 
Hermitian structure. Conversely, a positive (resp. negative) Hermitian structure can be 
extended to V by declaring that it vanishes on V− (resp. V+). Then a pair of positive and 
negative Hermitian structures, I+, I− gives rise to a generalized Hermitian structure by 
declaring that J1 = I+ + I−.

Given a positive U(n) structure on V , we can use the isomorphism V+ ∼= V to trans-
port the metric and the complex structure I+ from V+ to V , making it into a Hermitian 
vector space (V, g, I). Further, we can use I+ to define a complex structure I− on V−
using the isomorphisms V+ ∼= V ∼= V− and this way we have an extension of the U(n)
structure to a generalized Hermitian structure: namely we declare that J1 is I+ on V+
and I− on V−, hence, in the metric splitting of V , J1 is the generalized complex structure 
associated to the complex structure2 I and consequently J2 is the generalized complex 
structure associated to the Hermitian form ω = g ◦ I:

J1 =
(
I 0
0 −I∗

)
J2 =

(
0 −ω−1

ω 0

)
. (1.6)

For this set of choices, there is a relation between the (p, q)-decomposition of forms 
determined by the generalized Hermitian structure and the usual (p, q)-decomposition 
of forms determined by the complex structure I on V .

2 Note that usually, the generalized complex structure associated to a given a complex structure I on a 
vector space differs from J1 by a sign, or said another way, by overall conjugation. Hence, all the usual 
concepts get conjugated with this definition, for example, later we will have ∂J1 = ∂ and the generalized 
canonical bundle is ∧0,nT ∗M .
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Proposition 1.8. (Cavalcanti [4]) Let J1 and J2 be as above and let L2 be the 
+i-eigenspace of J2. The map

ψ : VC −→ VC; ψ(X + ξ) = eiω∗ e
i
2ω

−1

∗ (X + ξ)

preserves J1 and

ψ(VC) = L2, ψ(V ∗
C) = L2.

Therefore the corresponding action on spinors,

Ψ : ∧•V ∗
C −→ ∧•V ∗

C ; Ψ(ϕ) = eiωe
i
2ω

−1
(ϕ),

preserves the eigenspaces of J1 and maps ∧kV ∗
C into Un−k

J2
that is

Ψ(∧p,qV ∗) = Uq−p,n−p−q
J1,J2

.

A positive Hermitian structure is fully determined by the +i-eigenspace of I+, that 
is, an isotropic n-dimensional subspace V 1,0

+ ⊂ TCM for which V 1,0
+ ∩ V 1,0

+ = {0} and 
〈v, v〉 > 0 for all v ∈ V 1,0

+ \{0}.
If we are given a generalized complex extension J of a positive Hermitian structure 

(G, I+) we obtain a bigrading of forms into Up,q as explained earlier. However, from the 
point of view of the U(n) structure, the natural spaces to consider are

W k
+ = ⊕p+q=kU

p,q. (1.7)

Indeed Wn
+ corresponds to the vector space of all forms that are annihilated by the 

Clifford action of V 1,0
+ and Wn−2k

+ = ∧kV 0,1
+ · Wn

+, that is, the spaces W k
+ are solely 

determined by the complex structure I+. Notice that W k
+ is only nontrivial if −n ≤ k ≤ n

and n − k = 0 mod 2. Further, since the spaces W k
+ are the diagonals of the Up,q

decomposition, each W k
+ is made of either SD- or ASD-forms, with Wn

+ being SD.
Another description of the spaces W •

+ is obtained by extending I+ to an endomor-
phism of TM by declaring that I+|V− vanishes, so that I+ is a skew-symmetric operator 
on TM with respect to the natural pairing, that is, I+ ∈ spin(TM). Similarly to a gen-
eralized complex structure, J , for which the space Uk is the ik-eigenspace of the action 
of J , letting I+ act on forms one sees that the space W k

+ is the ik2 -eigenspace of I+. 
Hence, Lemma 1.6 takes the following form for positive U(n) structures:

Lemma 1.9. Let (G, I+) be a positive Hermitian structure on V , and let I+ = e
πI+

2 . Then

I2
+ = −
,

that is 
|Wk = −ik.

+
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Similarly, for a negative Hermitian structure (G, I−), we can extend I− to V by 
declaring that it vanishes on V+. If J1 is a generalized complex extension of I−, then 
the eigenspaces of I− correspond to the anti-diagonals of the Up,q decomposition: W k

− =∑
p−q=k U

p,q.
Finally we observe that the spaces W k

± have both even and odd forms, so one can 
refine this grading to a Z ×Z2-grading:

W k,0
± = W k

± ∩ (∧evV ∗ ⊗C), W k,1
± = W k

± ∩ (∧odV ∗ ⊗C). (1.8)

In what follows we will refer to both spaces W k
± and W k,l

± , with the understanding 
that if the Z2-grading is not particularly important, we will simply omit it.

2. Intrinsic torsion of generalized Hermitian structures

Except for a generalized metric, each of the structures introduced in Section 1 has an 
appropriate integrability condition. We let (M2n, H) be a manifold with a real closed 
3-form H and consider the Courant bracket on sections of TM = TM ⊕ T ∗M :

�X + ξ, Y + η�H = [X,Y ] + LXη − iY dξ − iY iXH.

We will omit the 3-form from the bracket if it is clear from the context.
The Courant bracket is the derived bracket associated to the operator dH = d +H∧, 

i.e., the following identity holds for all v1, v2 ∈ Γ(TM) and ϕ ∈ Ω•(M):

�v1, v2�H · ϕ = {{v1, d
H}, v2}ϕ

= dH(v1 · v2 · ϕ) + v1 · dH(v2 · ϕ) − v2 · dH(v1 · ϕ) − v2 · v1 · dHϕ,
(2.1)

where · denotes the Clifford action of Clif(TM) on ∧•T ∗M and {·, ·} denotes the graded 
commutator of operators.

The orthogonal action of a 2-form B ∈ Ω2(M) on TM relates different Courant 
brackets:

�eB∗ v1, e
B
∗ v2�H = eB∗ �v1, v2�H+dB.

Definition 2.1. For each of the structures introduced in Definitions 1.5 and 1.7, we refer 
to the smooth assignment of such structure to TxM for each x ∈ M by including the 
adjective almost in the name of the structure.

Definition 2.2 (Integrability conditions).

• A (integrable) generalized complex structure is a generalized almost complex structure 
J whose +i-eigenspace is involutive with respect to the Courant bracket.
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• A generalized Hermitian structure is a pair (G, J1) of generalized metric and com-
patible integrable generalized complex structure.

• A generalized Kähler structure is a generalized Hermitian structure (G, J1) for which 
J1 and J2 = J1G are integrable.

2.1. The Nijenhuis tensor

Let us spend some time to understand the Nijenhuis tensor of an almost generalized 
complex structure J . This tensor is defined in the usual way, namely if L is the +i-
eigenspace of J

Nij : Γ(L) × Γ(L) −→ Γ(L); Nij(X,Y ) = −�X,Y �L, (2.2)

where ·L indicates projection onto L. We can alternatively use the identification L = L
∗

from (1.4) to consider the operator

N : Γ(L) × Γ(L) × Γ(L) −→ Ω0(M ;C);

N(X,Y, Z) = −2〈�X,Y �, Z〉 = 2〈Nij(X,Y ), Z〉.
(2.3)

As usual, Nij is a tensor, indeed, for f ∈ C∞(M ; C) we have

Nij(X, fY ) = −�X, fY �L = −(f�X,Y � + (LπT (X)f)Y )L = −f�X,Y �L = fNij(X,Y ).

Further, the tensor N ∈ ∧2L ⊗L defined above actually lies in ∧3L. Indeed, for X, Y, Z ∈
Γ(L) we have

0 = LπT (X)〈Y,Z〉 = −(〈�X,Y �, Z〉 + 〈Y, �X,Z�〉) = 1
2 (N(X,Y, Z) + N(X,Z, Y )),

which shows that N is fully skew.
A different way to understand N arises by using the Uk decomposition of forms 

determined by J . Namely, letting Uk = Γ(Uk) (throughout the paper we denote the 
sheaf of sections of Uk by Uk and the sheaf of sections of Up,q by Up,q), one has:

Lemma 2.3. In an almost generalized complex manifold

dH : Uk −→ Uk−3 ⊕ Uk−1 ⊕ Uk+1 ⊕ Uk+3. (2.4)

Further the map πk+3 ◦ dH : Uk −→ Uk+3 corresponds to the Clifford action of N , the 
Nijenhuis tensor defined in (2.3).

Proof. We prove first that

dH : Uk −→
∑

U j (2.5)

j≥k−3
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and will do so by induction, starting at k = n + 1 and working our way down. For 
k = n + 1 we have that Un+1 = {0} and the claim follows trivially.

Next we assume the result to be true for all j > k and let ρ ∈ Uk. For v1, v2 ∈ Γ(L), 
using (2.1) we have

v2 · v1 · dHρ = −�v1, v2� · ρ + dH(v1 · v2 · ρ) + v1d
H(v2 · ρ) − v2d

H(v1 · ρ).

Since the Clifford action of vi sends Uj to U j+1, the inductive hypothesis implies that 
the last three terms lie in ⊕j≥k−1U j , while the first term, being the action of an element 
of L ⊕ L on ρ lies in Uk+1 ⊕ Uk−1. Therefore we conclude that

v2 · v1 · dHρ ∈ ⊕j≥k−1U j for all v1, v2 ∈ Γ(L)

and (2.5) follows.
As dH is a real operator and U−k = Uk conjugating (2.5) we have that

d : Uk −→
∑

j≤k−3

U j .

Furthermore, if Uk is made of even forms then Uk+1 is made of odd forms and vice versa, 
we have that

dH : Uk −→
∑

|j−k|≤3
j−k=1 mod 2

U j ,

therefore proving (2.4).
Now we prove that πk+3 ◦ dH corresponds to the Clifford action of N . Once again we 

use induction, this time starting at k = −n −1 and moving upwards. Since U−n−1 = {0}, 
the claim is trivial there. Assume now that for j < k we have proved that πj+3 ◦ dH is 
the Clifford action of N . Let ρ ∈ Uk and v1, v2 ∈ Γ(L). Then using (2.1) we have

v2v1πk+3 ◦ dHρ = πk+1(v2v1d
Hρ)

= πk+1(−�v1, v2�ρ + dHv1v2ρ + v1d
Hv2ρ− v2d

Hv1ρ)

= N(v1, v2)ρ + πk+1 ◦ dH(v1v2ρ) + v1πk+2 ◦ dHv2ρ− v2πk+2 ◦ dHv1ρ

= {v2, {v1, N}}ρ + Nv1v2ρ + v1Nv2ρ− v2Nv1ρ

= v2v1Nρ,

where in third equality we have used that the component of �v1, v2�ρ in Uk+1 is given 
by the Clifford action of the L component of �v1, v2�, that is ιv2ιv1N and in the fourth 
equality we used the inductive hypothesis as well as the fact that when acting on forms, 
the interior product of v ∈ Γ(L) with ϕ ∈ Γ(∧•L) is given by ϕ(v)ρ = {v, ϕ}ρ. The 
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last equality follows by expanding the graded commutator and canceling out similar 
terms. �

If we compose dH |Uk with projection onto Uk+1 and Uk−1 we get operators

∂J = πk+1 ◦ dH : Uk −→ Uk+1 and ∂J = πk−1 ◦ dH : Uk −→ Uk−1,

and if the generalized complex structure J is clear from the context, we denote these 
operators simply by ∂ and ∂. As proved by Gualtieri in [17], integrability is equivalent 
to the requirement

dH : Uk −→ Uk−1 ⊕ Uk+1; dH = ∂ + ∂,

so we can also see from this point of view how the vanishing of the Nijenhuis tensor 
implies integrability.

2.2. The intrinsic torsion and the road to integrability

With this understanding of the Nijenhuis tensor, we can give a pictorial description of 
the long road to integrability from almost generalized Hermitian to generalized Kähler. 
Indeed, given an almost generalized Hermitian structure, we get a splitting of forms into 
spaces Up,q. According to Lemma 2.3, dH can not change either the ‘p’ or the ‘q’ grading 
by more than three and it must switch parity. Hence dH decomposes as a sum of eight 
operators and their complex conjugates

dH = δ+ +δ+ +δ−+δ−+N+ +N+ +N−+N−+N1 +N1 +N2 +N2 +N3 +N3 +N4 +N4;

δ+ : Up,q −→ Up+1,q+1, δ− : Up,q −→ Up+1,q−1,

N+ : Up,q −→ Up+3,q+3, N− : Up,q −→ Up+3,q−3,

N1 : Up,q −→ Up−1,q+3, N2 : Up,q −→ Up+1,q+3,

N3 : Up,q −→ Up+3,q+1, N4 : Up,q −→ Up+3,q−1,

(2.6)

and we can draw in a diagram all the possible nontrivial components of dH|Up,q as arrows 
(see Fig. 2).

Once we require that J1 is integrable, i.e. we are dealing in fact with a generalized 
Hermitian structure, then dH only changes the ‘p’ degree by ±1 and several components 
of dH present in the nonintegrable case, now vanish and the diagram from Fig. 2 clears 
up to the one presented in Fig. 3.

Finally, if we require that J2 is also integrable, and hence we are in fact dealing with 
a generalized Kähler structure, the last two components of the Nijenhuis tensor, labeled 
N1 and N2 above, vanish and dH decomposes as a sum of four operators, as pictured in 
Fig. 4.
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Up−3,q+3 Up−1,q+3 Up+1,q+3 Up+3,q+3

Up−3,q+1 Up−1,q+1 Up+1,q+1 Up+3,q+1

Up,q

N−
N1

N4

δ−

N3

δ+

N+

N2 N1
N−

δ−

N4

δ+

N3

N2

N+

Up−3,q−1 Up−1,q−1 Up+1,q−1 Up+3,q−1

Up−3,q−3 Up−1,q−3 Up+1,q−3 Up+3,q−3

Fig. 2. Representation of the nontrivial components of dH when restricted to Up,q for an generalized almost 
Hermitian structure.

Up−1,q+3 Up+1,q+3

Up−1,q+1 Up+1,q+1

Up,q

N1

δ−

δ+

N2 N1

δ−

δ+

N2

Up−1,q−1 Up+1,q−1

Up−1,q−3 Up+1,q−3

Fig. 3. Representation of the nontrivial components of dH for a generalized Hermitian structure.

Up−1,q+1 Up+1,q+1

Up,q
δ−

δ+ δ−

δ+

Up−1,q−1 Up+1,q−1

Fig. 4. Representation of the nontrivial components of dH for a generalized Kähler structure.

This shows that the obstruction for a generalized almost Hermitian structure to be a 
generalized Kähler structure is given by the tensors Ni, i = 1, 2, 3, 4 and N±

Definition 2.4. The intrinsic torsion of a generalized Hermitian manifold are the tensors 
Ni, i = 1, 2, 3, 4 and N±.

In the next sections we will introduce geometric structures on M which are weaker 
than generalized Kähler structures and show how these structures can be phrased in 
terms of the vanishing of certain components of the intrinsic torsion.
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2.3. The operators δ± and δ±

Not requiring integrability, dH restricted to Up,q has sixteen components but only four 
are not tensorial, i.e., linear over C∞(M), namely δ± and δ±. Hence we have

dH ∼ δ+ + δ+ + δ− + δ−, (2.7)

where ∼ indicates that these operators agree up to lower order terms, i.e., they have the 
same symbol. Using the decomposition

TCM = V 1,0
+ ⊕ V 0,1

+ ⊕ V 1,0
− ⊕ V 0,1

− , (2.8)

one can easily see that the decomposition (2.7) in terms of symbols corresponds to the 
decomposition of a 1-form ξ ∈ TM into its four components according to (2.8) and one 
can also check that the symbol sequence for each of the operators δ± and δ± is exact, 
e.g., for δ+, the symbol sequence associated to sequence of operators

· · · δ+−→ Up−1,q−1 δ+−→ Up,q δ+−→ Up+1,q+1 δ+−→ · · ·

is an exact sequence. Adding over p + q = k and letting Wk
+ = ⊕p+q=kUp,q (i.e., Wk

+
is the sheaf of sections of the bundles W k

+ introduced in (1.7)) we have also that the 
symbol sequence associated to

· · · δ+−→ Wk−2
+

δ+−→ Wk
+

δ+−→ Wk+2
+

δ+−→ · · · (2.9)

is exact. And similarly, adding over q we get that the symbol sequence of

· · · δ+−→ Up−1 δ+−→ Up δ+−→ Up+1 δ+−→ · · · (2.10)

is exact.

3. Parallel Hermitian and bi-Hermitian structures

The first type of structures that we will relate to the intrinsic torsion are Hermitian 
structures which are parallel for a connection with closed skew torsion. The existence of a 
relationship between connections with closed, skew symmetric torsion and the Courant 
bracket was made evident by Hitchin in [19]. Precisely, given a generalized metric on 
TM , we let H be the 3-form corresponding to the metric splitting and g be the induced 
metric on M . Also, for X ∈ Γ(TM) we let X± ∈ Γ(V±) be unique lifts of X to V±, we 
let π± : TM −→ V± be the orthogonal projections onto V± and πT : TM −→ TM be 
the natural projection.
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Proposition 3.1 (Hitchin [19]). Let ∇̃± be the unique metric connection whose torsion is 
skew symmetric and equal to ∓H. Then

∇̃+
XY = πT ◦ π+�X−, Y+�,

∇̃−
XY = πT ◦ π−�X+, Y−�.

From this proposition, we see that the isomorphisms πT : V± −→ TM relate the 
connections with torsion ∓H to the operators

∇+ : Γ(V−) × Γ(V+) −→ Γ(V+); ∇+
v w = π+�v, w�, v ∈ Γ(V+), w ∈ Γ(V−), (3.1)

∇− : Γ(V+) × Γ(V−) −→ Γ(V−); ∇−
wv = π−�w, v�, v ∈ Γ(V+), w ∈ Γ(V−). (3.2)

As we will work with the spaces V± directly, we will use ∇± instead of the connections 
they induce on TM , with the understanding that these are equivalent operators. There-
fore, for example, if ∇̃+ has holonomy in U(n), then M has an almost Hermitian structure 
(g, I) which is parallel with respect to ∇̃+ and the isomorphism πT : V+ −→ TM , induces 
a positive almost Hermitian structure on V+ parallel for ∇+.

Definition 3.2. A parallel positive (resp. negative) Hermitian structure is a positive (resp. 
negative) almost Hermitian structure which is parallel with respect to ∇+, (resp. ∇−). A 
parallel bi-Hermitian structure or parallel U(n) ×U(n)-structure is a triple (g, I+, I−) such 
that (g, I+) is a parallel positive Hermitian structure and (g, I−) is a parallel negative 
Hermitian structure.

Proposition 3.3. If the connection ∇+ has holonomy in U(n), the corresponding almost 
Hermitian structure satisfies

�Γ(V 1,0
+ ),Γ(V 1,0

+ )� ⊂ Γ(V+ ⊗C). (3.3)

And conversely, a Hermitian structure satisfying (3.3) is parallel with respect to ∇+.
The same result holds exchanging ∇+ and V 1,0

+ by ∇− and V 1,0
− .

Proof. Let I+ be a complex structure on V+ orthogonal with respect to the natural 
pairing and let V 1,0

+ be its +i-eigenspace. Then, for v1, v2 ∈ Γ(V 1,0
+ ) and w ∈ Γ(V−), we 

have that 〈vi, w〉 = 0, as V+ and V− are orthogonal with respect to the natural pairing. 
Hence

0 = LπT v1〈w, v2〉
= 〈�v1, w�, v2〉 + 〈w, �v1, v2�〉
= −〈�w, v1�, v2〉 + 〈w, �v1, v2�〉
= −〈∇+v , v 〉 + 〈w, �v , v �〉,

(3.4)
w 1 2 1 2
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where in the third equality we used again that V+ and V− are orthogonal with respect to 
the natural pairing, and hence �v1, w� = −�w, v1� and in the fourth equality we used that 
v2 ∈ V+ and hence the V− component of �w, v1� is annihilated by the natural pairing.

If I+ is parallel with respect to ∇+, then 〈∇+
wv1, v2〉 vanishes for all v1, v2 ∈ Γ(V 1,0

+ )
and w ∈ Γ(V−) and hence, according to (3.4), so does 〈w, �v1, v2�〉, showing that �v1, v2�

must be orthogonal to V− and hence, a section of V+. Conversely, if , �v1, v2� ∈ Γ(V+), 
then for all w ∈ Γ(V−), 〈w, �v1, v2�〉 = 0 hence (3.4) implies that 〈∇+

wv1, v2〉 = 0 showing 
that ∇+

wv1 is orthogonal to V 1,0
+ . Since V 1,0

+ is a maximal isotropic of V+⊗C, we conclude 
that ∇+

wv1 ∈ Γ(V 1,0
+ ) for all w ∈ V− and v1 ∈ Γ(V 1,0

+ ), hence I+ is parallel with respect 
to ∇+. �

Next, and throughout these notes, we denote by Wk and Wk,l the sheaf of sections 
of the bundles W k and W k,l respectively.

Theorem 3.4. Let (M, H) be a manifold with 3-form, G be a generalized metric on M
and I+, I− be a positive and a negative almost Hermitian structure on M . The following 
hold:

• I+ is parallel with respect to ∇+ if and only if N2 = N3 = 0, i.e.,

dH : Wk
+ −→ Wk−6

+ ⊕Wk−2
+ ⊕Wk

+ ⊕Wk+2
+ ⊕Wk+6

+ ;

• I− is parallel with respect to ∇− if and only if N1 = N4 = 0, i.e.,

dH : Wk
− −→ Wk−6

− ⊕Wk−2
− ⊕Wk

− ⊕Wk+2
− ⊕Wk+6

− ;

• (G, I+, I−) is a parallel bi-Hermitian structure if and only if Ni = 0 for i = 1, 2, 3, 4.

Remark. In comparison with Lemma 2.3, the indices of the spaces W•
± might seem a 

little strange, but one should keep in mind that if W k
+ is nontrivial, then W k+l

+ is trivial 
if l is odd (cf. remark after (1.7)).

Proof. Since V− is the orthogonal complement of V+ with respect to the natural pairing, 
it is clear that (3.3) is equivalent to the following two conditions

〈�v1, v2�, w〉 = 0 for all v1, v2 ∈ Γ(V 1,0
+ ), w ∈ Γ(V 0,1

− ).

〈�v1, v2�, w〉 = 0 for all v1, v2 ∈ Γ(V 1,0
+ ), w ∈ Γ(V 1,0

− );

but the first condition is equivalent to the vanishing of N2 and the second, to the vanish-
ing of N3. Finally, since the component of dH mapping Wk to Wk+4 is given by the sum 
N2 + N3, we see that the vanishing of this component is also equivalent to the parallel 
condition.

The remaining claims are proved similarly. �
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Up−3,q+3 Up−1,q+3 Up+3,q+3

Up−3,q+1 Up−1,q+1 Up+1,q+1

Up,q
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Up−1,q−1 Up+1,q−1 Up+3,q−1
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Fig. 5. Representation of the nontrivial components of dH for an almost generalized Hermitian structure 
extending a parallel positive Hermitian structure.

Up−3,q+3 Up+3,q+3

Up−1,q+1 Up+1,q+1

Up,q

N−

δ−

δ+

N+ N−

δ−

δ+

N+

Up−1,q−1 Up+1,q−1

Up−3,q−3 Up+3,q−3

Fig. 6. Representation of the nontrivial components of dH for a parallel bi-Hermitian structure.

The decomposition of dH for an almost generalized Hermitian structure extending a 
parallel positive Hermitian structure is depicted in Fig. 5 and the decomposition of dH
for a parallel bi-Hermitian structure is depicted in Fig. 6.

4. SKT structures

Classically, an SKT structure is a Hermitian structure (M, g, I) for which ddcω = 0, 
where ω is the Hermitian 2-form. In this case, dcω = H is a closed 3-form and the complex 
structure is in fact parallel with respect to the metric connection with torsion −H, hence 
SKT structures are a particular case of positive parallel Hermitian structures, the only 
difference being that now one requires I to be integrable. In this section we phrase the 
SKT condition in terms of generalized geometry and relate it with the intrinsic torsion. 
We will see that an SKT structure lies precisely half way between a generalized Hermitian 
and a generalized Kähler structure.

Given an SKT structure (g, I) we let H be the background 3-form and consider the 
generalized metric G as in (1.2). Using the isomorphism V+ ∼= TM we use I to induce 
a complex structure I+ on V+ and hence split V+ into eigenspaces of I+: V+ ⊗ C =
V 1,0

+ ⊕ V 0,1
+ .



G.R. Cavalcanti / Advances in Mathematics 374 (2020) 107270 19
Proposition 4.1. (Cavalcanti [5]) For an SKT structure (g, I) on M with dcω = H, V 1,0
+

is involutive with respect to the H-Courant bracket.
Conversely, given a positive almost Hermitian structure (G, I+) on (M, H), where H

is the 3-form associated of the metric splitting of TM , if V 1,0
+ is involutive, then the 

induced Hermitian structure (g, I) on M is an SKT structure with dcω = H.

Remark. Here we obtain, in a new light, a well known contrast between connections 
with torsion and the Levi–Civita connection regarding integrability. Indeed, for the Levi–
Civita connection, reduction of the holonomy group to U(n) implies integrability of the 
complex structure, but that is known not to be the case for connections with torsion. 
From our point of view, this is the difference between the reduced holonomy condition

�Γ(V 1,0
+ ),Γ(V 1,0

+ )� ⊂ Γ(V+)

and the SKT condition

�Γ(V 1,0
+ ),Γ(V 1,0

+ )� ⊂ Γ(V 1,0
+ ).

Of course, if we have dcω = −H, we can lift the SKT data to V− to obtain a negative 
Hermitian structure and an analogous version of Proposition 4.1 holds.

This result motivates our formulation of the SKT condition.

Definition 4.2. A positive (resp. negative) SKT structure is a positive (resp. negative) 
almost U(n) structure (G, I) for which the +i-eigenspace of I is involutive. A generalized 
(almost) complex structure J extends an SKT structure if J is fiberwise an extension 
of I, in which case we say that J is a generalized (almost) complex/Hermitian extension
of the SKT structure.

Firstly, we observe that the SKT condition can also be phrased in terms of the van-
ishing of components of the intrinsic torsion. Indeed, in the presence of an extension of, 
say, a positive U(n) structure (G, I+) to a generalized almost complex structure J1 if we 
let V 1,0

+ be the +i-eigenspace of I+ then involutivity is equivalent to

〈�v1, v2�, w1〉 = 0 for all v1, v2 ∈ Γ(V 1,0
+ ), w ∈ Γ(V 1,0

+ ⊕ V−),

that is, the components N2, N3 and N+ of the intrinsic torsion vanish. A similar argument 
gives a characterization of negative SKT structures.

Proposition 4.3. Let G be a generalized metric on a manifold with 3-form (M, H) and 
let I± be a pair of positive and negative Hermitian structures compatible with G. If 
J1 = I+ + I− then (G, I+) is an SKT structure if and only if N2, N3 and N+ vanish 
and (G, I−) is a negative SKT structure if and only if N1, N4 and N− vanish.
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Corollary 4.4. Let (M, H) be a manifold with 3-form.

• A parallel positive (resp. negative) almost Hermitian structure is a positive (resp. 
negative) SKT structure if and only if N+ = 0 (resp. N− = 0);

• A parallel bi-Hermitian structure is a generalized Kähler structure if and only if 
N+ = N− = 0.

Corollary 4.5. Let M be a four dimensional manifold.

• A parallel positive/negative Hermitian structure is a positive/negative SKT structure;
• A parallel bi-Hermitian structure is a generalized Kähler structure.

Proof. Since M is four dimensional, V 1,0
± are two dimensional complex vector spaces, so 

∧3V 1,0
± = {0} and hence N± ∈ ∧3V 1,0

± are the trivial tensors. �
Corollary 4.6 (Gualtieri [16]). Let G be a generalized metric on a manifold with 3-form 
(M, H), I± be a pair of positive and negative SKT structures compatible with G and 
J1 = I+ + I−. Then (G, J1) is a generalized Kähler structure.

Proof. According to Proposition 4.3, under the hypothesis, all components of the intrin-
sic torsion vanish hence (G, J1) is a generalized Kähler structure. �

Next, we describe the integrability condition for an SKT structure in terms of the 
decomposition of forms into W k

± and Up,q (for a fixed generalized complex extension J1) 
described in the previous section.

Theorem 4.7. Let (G, I+) be a positive almost Hermitian structure on a manifold with 
3-form (M2n, H). Then the following are equivalent:

1. (G, I+) is a positive SKT structure;
2. dH : Wk

+ −→ Wk−2
+ ⊕Wk

+ ⊕Wk+2
+ for all k;

3. dH : Wn
+ −→ Wn−2

+ ⊕Wn
+.

Proof. We will first prove that 1) implies 2). Let I− be any complex structure on V−
orthogonal with respect to the natural pairing so that G and J1 = I+ + I− form a 
generalized almost Hermitian structure. Then according to Proposition 4.3, N2, N3 and 
N+ vanish and hence 2) holds.

Condition 2) clearly implies condition 3). Finally to prove that 3) implies 1) we once 
again choose a complex structure I− on V− and observe that since N2, N3 and N+ are 
tensors, it is enough to check that they vanish when applied to spaces where their action 
is effective. But for ϕ ∈ Un,0 ⊂ Wn

+, the components of dH landing on Wn−6
+ and Wn−4

+
are precisely N+ · ϕ and N3 · ϕ and the vanishing of these forms for ϕ 
= 0 implies that 
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Fig. 7. Representation of the nontrivial components of dH for a positive SKT structure.

N+ = N3 = 0. Similarly, if ψ ∈ U0,n, the Wn−4
+ component of dH is N2 · ψ, hence the 

vanishing of this component implies that N2 = 0 and Proposition 4.3 implies that I+ is 
integrable. �
Definition 4.8. Let (M, G, I+) be a positive SKT structure. We define

δN+ : Wk
+ −→ Wk+2

+ , δN+ : Wk
+ −→ Wk−2

+ and /δ− : Wk
+ −→ Wk

+

as the different components of dH according to the decomposition from Theorem 4.7 so

dH = δN+ + δN+ + /δ− (4.1)

While the different Up,q components of dH obtained in terms of the generalized almost 
Hermitian extension of the SKT structure depend on the particular extension chosen, the 
operators δN+ , δN+ and /δ− depend only on the SKT data, since they are the decomposition 
of dH obtained from the eigenspaces of I+ (Fig. 7). Since (dH)2 = 0 these operators 
satisfy some relations.

Corollary 4.9. The following hold

(δN+ )2 = (δN+ )2 = 0; {δN+ , /δ−} = 0; {δN+ , /δ−} = 0; {δN+ , δN+ } + (/δH− )2 = 0.

In the arguments up to now, given a positive SKT structure, we have chosen I− rather 
freely, but the complex structure I corresponding to the SKT data (see Proposition 4.1) 
is integrable and together with G forms a generalized Hermitian extension of (G, I+), 
that is, an SKT always has a generalized Hermitian extension.

Theorem 4.10. Let (M, H) be a manifold with 3-form and (G, J1) be an generalized almost 
Hermitian structure on M . Then the following are equivalent:
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Up−1,q+3

Up−1,q+1 Up+1,q+1

Up,q

N

δ+

δ−

δ−

δ+

N

Up−1,q−1 Up+1,q−1

Up+1,q−3

Fig. 8. Decomposition of dH for a generalized complex extension of a positive SKT structure.

1. (G, J1) is an integrable generalized complex extension of a positive SKT structure;
2. dH : Up,q −→ Up+1,q+1 ⊕Up+1,q−1 ⊕Up+1,q−3 ⊕Up−1,q+3 ⊕Up−1,q+1 ⊕Up−1,q−1 for 

all p, q ∈ Z;
3. dH : Up,n−p −→ Up+1,n−p−1 ⊕Up+1,n−p−3 ⊕Up−1,n−p+1 ⊕Up−1,n−p−1 for all p ∈ Z;

4. dH : U0,n −→ U−1,n−1 ⊕ U1,n−1 ⊕ U1,n−3 and dH : Un,0 −→ Un−1,1 ⊕ Un−1,−1.

Proof. The fact that 1) implies 2) follows from Proposition 4.3 and integrability of 
J1. The implications 2) ⇒ 3) ⇒ 4) are immediate. Finally, similarly to the proof of 
Theorem 4.7, the values of the different components of the intrinsic torsion are fully de-
termined by their action on Un,0 and U0,n and 4) implies the vanishing of all components 
of the intrinsic torsion except from N1. �

This theorem allows us to define six differential operators on a generalized complex 
extension of a positive SKT structure (Fig. 8):

dH = δ− + δ− + N + N + δ+ + δ+ (4.2)

δ− : Up,q −→ Up+1,q−1; δ+ : Up,q −→ Up+1,q+1; N : Up,q −→ Up−1,q+3.

We see that N = N1 is the Nijenhuis tensor of J2 and this theorem shows that if (G, J1)
is a generalized Hermitian extension of an SKT structure then half of the Nijenhuis tensor 
of J2 vanishes, namely the component N2 from (2.6). Also, this decomposition allows us 
to express the operators δN+ and /δ− from (4.1) in terms of δ+, δ−, N and their conjugates:

δN+ = δ+ + N ; /δ− = δ− + δ−. (4.3)

Since (dH)2 = 0 these operators satisfy a number of relations.

Corollary 4.11. The following relations and their complex conjugates hold:

δ2
+ = N2 = 0; {δ+, N} = 0;
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δ2
− = −{N, δ+}; {N, δ−} = 0; {δ−, δ+} = 0; {δ+, δ−} = −{δ−, N};

{δ+, δ+} + {δ−, δ−} + {N,N} = 0.

Corollary 4.12. Let (G, J1) be a generalized Hermitian structure on a manifold with 3-
form (M, H) and let J2 = GJ1 be the associated generalized almost complex structure. If 
the canonical bundle of J2 admits a ∂J1-closed trivialization, then (G, J ) is an extension 
of an SKT structure.

Proof. Since J1 is integrable, dH : Un,0 −→ Un−1,1 ⊕ Un−1,−1. Due to Lemma 2.3, we 
have that

dH : U0,n −→ U−1,n−3 ⊕ U−1,n−1 ⊕ U1,n−1 ⊕ U1,n−3.

But according to the hypothesis there is a trivialization ρ of U0,n such that ∂J1ρ = 0, 
so, in particular, N2 · ρ, the component of ∂J1ρ in U−1,n−3, must vanish and since it 
vanishes on ρ, N2 is the zero tensor. So we have in fact

dH : U0,n −→ U−1,n−1 ⊕ U1,n−1 ⊕ U1,n−3,

and the last condition of Theorem (4.10) holds. �
The same results hold for negative SKT structures. One should bear in mind, however 

that the relevant spaces for a negative structure are given by W k
− =

∑
p−q=k U

p,q, that 
is, each W k

− is an antidiagonal and integrability is equivalent to

dH : Wk
− −→ Wk+2

− ⊕Wk
− ⊕Wk−2

− ,

or, in terms of the Up,q decomposition obtained by choosing a generalized complex 
extension, the only nontrivial component the Nijenhuis tensor is N2.

So an SKT structure (positive or negative) corresponds to a generalized Hermitian 
structure in which half of the Nijenhuis tensor of J2 vanishes.

5. Hodge theory

In this section we develop Hodge theory for manifolds with parallel Hermitian, bi-
Hermitian and SKT structures. Our main result is that for a parallel positive Hermitian 
structure the Laplacian preserves the spaces Wk,l

+ and hence induces a decomposition of 
the dH -cohomology accordingly. This is in contrast with the fact that for usual manifolds 
the dH -cohomology has only a Z2-grading. For positive SKT manifolds, not only does 
the Laplacian preserve the spaces Wk,l

+ , but in fact there is an identity between the 

Laplacians for the operators dH , δN+ and δN+ . We start with real Hodge theory and some 
operators of interest.
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5.1. Differential operators, their adjoints and Laplacians

Given a generalized metric and orientation on a compact manifold Mm, we can form 
the Hodge star operator which gives us a positive definite inner product on forms:

G(ϕ,ψ) =
∫
M

(ϕ, 
ψ)Ch for all ϕ,ψ ∈ Ω•(M ;R). (5.1)

Two basic results about dH are:

Lemma 5.1. If Mm is compact
∫
M

(dHϕ,ψ)Ch = (−1)m
∫
M

(ϕ, dHψ)Ch. (Integration by parts)

G(dHϕ,ψ) = G(ϕ, (−1)m 
−1 dH 
 ψ) (Formal adjoint)

hence the formal adjoint of dH is given by dH∗ = (−1)
m(m+1)

2 
 dH
.

We will be mostly interested in the Dirac operators:

/D
H
+ = 1

2(dH − (−1)
m(m−1)

2 
 dH
) = 1
2 (dH + (−1)m+1dH∗)

/D
H
− = 1

2(dH + (−1)
m(m−1)

2 
 dH
) = 1
2 (dH + (−1)mdH∗).

The operators /DH
± relate to the projections of dH onto SD- and ASD-forms

dH± : Ω•(M) −→ Ω•
±(M),

dH±ϕ = 1
2(1 ∓ i−

m(m−1)
2 
)dHϕ.

Lemma 5.2. Given ϕ ∈ Ω•(M) let ϕ± be its SD and ASD components, then

/D
H
±ϕ = dH∓ϕ+ + dH±ϕ−.

In particular we see that /DH
− preserves the spaces Ω•

±(M) while /D
H
+ maps them to each 

other.

Proof.

/D
H
±ϕ = 1

2((dH ∓ (−1)
m(m−1)

2 
 dH
)(ϕ+ + ϕ−)

= 1
2((dH ± (−1)

m(m−1)
2 i

m(m−1)
2 
 dH)ϕ+ + 1

2 ((dH ∓ (−1)
m(m−1)

2 i
m(m−1)

2 
 dH)ϕ−

= 1 ((dH ± i3
m(m−1)

2 
 dH)ϕ+ + 1 ((dH ∓ i3
m(m−1)

2 
 dH)ϕ−
2 2
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= 1
2 ((dH ± i−

m(m−1)
2 
 dH)ϕ+ + 1

2 ((dH ∓ i−
m(m−1)

2 
 dH)ϕ−

= dH∓ϕ+ + dH±ϕ−. �
Lemma 5.3. Let �H = dHdH∗ + dH∗dH be the dH-Laplacian. Then

1. 
�H = �H
 and
2. (−1)m+1( /DH

+ )2 = (−1)m( /DH
− )2 = 1

4�H .

Therefore �H preserves the decomposition of forms into Ω•
±(M) and hence the dH-

cohomology of M splits as SD- and ASD-cohomology: HdH (M) = HH
+ (M) ⊕HH

− (M).

Not only does /DH
+ send even forms to odd and vice versa but, according to Lemma 5.2, 

it swaps Ω•
+(M) with Ω•

−(M) and hence it is a generalization of the signature operator. 
Since /D

H
+ has the same symbol as d +(−1)m+1d∗ the indices of /DH

+ : Ω•
+(M) −→ Ω•

−(M)
and /D

H
+ : Ωev(M) −→ Ωod(M) are just the usual signature and Euler characteristic, so 

we have

Lemma 5.4. The Euler characteristic, χ, and the signature, σ, of a compact manifold 
with closed 3-form (M, H) are given by

χ = dim(HH,ev(M)) − dim(HH,od(M)); σ = dim(HH
+ (M)) − dim(HH

− (M)).

5.2. Signature and Euler characteristic of almost Hermitian manifolds

In a compact generalized almost Hermitian manifold we have sixteen operators in-
duced by the Up,q decomposition of forms. It turns out that for these operators taking 
complex conjugates or adjoints are nearly the same thing. Firstly, we extend the real 
inner product on forms (5.1) to complex valued forms by requiring it to be Hermitian. 
If we let 
 denote the operator given by 
ϕ = 
ϕ, we have

G(ϕ,ψ) = (ϕ, 
ψ) for all ϕ,ψ ∈ Ω•(M ;C).

Proposition 5.5. Let M2n be a compact generalized almost Hermitian manifold and let 
δ denote any of the operators δ+, δ+, δ−, δ−, Nα or Nα, where α = 1, 2, 3, 4, ±. For 
ϕ, ψ ∈ Ω•(M ; C) we have

∫
M

(δϕ, ψ)Ch =
∫
M

(ϕ, δψ)Ch (Integration by parts)

δ∗ = ±δ, (Formal adjoint)

where the sign for the adjoint is positive if δ : Ω±(M ; C) −→ Ω±(M ; C) and negative if 
δ : Ω±(M ; C) −→ Ω∓(M ; C).
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Proof. The proof that integration by parts holds is the same for all of these operators, 
so we consider only δ+. It is enough to consider the case when ϕ ∈ Up,q and hence 
δ+ϕ ∈ Up+1,q+1 and it pairs trivially with Uk,l, unless k = −p −1 and l = −q−1. Hence 
we may assume that ψ ∈ U−p−1,−q−1 and compute

∫
M

(δ+ϕ,ψ)Ch =
∫
M

(dHϕ,ψ)Ch =
∫
M

(ϕ, dHψ)Ch =
∫
M

(ϕ, δ+ψ)Ch,

where in the first equality we have used that the remaining components of dHϕ do not 
lie in Up+1,q+1, hence they pair trivially with ψ, in the second equality we integrated by 
parts and then reversed the argument.

For the formal adjoint, again taking δ = δ+, ϕ ∈ Up,q and ψ ∈ Up+1,q+1 we compute:

G(δ+ϕ,ψ) =
∫
M

(δ+ϕ, 
ψ)Ch = i−p−q−2
∫
M

(ϕ, δ+ψ)Ch

= i−p−q−2
∫
M

(ϕ, (−1)n
 
δ+ψ)Ch = i−p−q−2(−1)n
∫
M

(ϕ, 
 
 δ+ψ)Ch

= i−2p−2q−2(−1)n
∫
M

(ϕ, 
δ+ψ)Ch = −G(ϕ, δ+ψ),

where we have used several times that on Up,q 
 is multiplication by ip+q and in the last 
equality we used that p + q = n mod 2. �

Therefore we can form the Dirac operator corresponding to, say, δ+:

/δ+ = δ+ − δ∗+ = δ+ + δ+;

Since the symbol sequence of δ+ is exact, we get elliptic operators for the sequences 
(2.9) and (2.10):

/δ+ : Ωev(M) −→ Ωod(M);
/δ+ : Ω+(M) −→ Ω−(M);

The indices of these operators are just the Euler characteristic and the signature of 
M :

Theorem 5.6. Let (M, H) be a compact manifold with a 3-form H and let (G, J1) be an 
almost generalized Hermitian structure on M . Let

hev/od = dim(ker(/δ+ : Ωev/od −→ Ωod/ev)),

w± = dim(ker(/δ+ : Ω±(M) −→ Ω∓(M)));
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Then

χ(M) = hev − hod and σ(M) = w+ − w−.

Proof. To prove the claim about the Euler characteristic we only have to show that the 
symbols of /δ+ and /D

H
+ : Ωev −→ Ωod since due to Lemma 5.4 the index of /DH

+ is the 
Euler characteristic. To compare the symbols we have

/D
H
+ = dH − (dH)∗ ∼ δ+ + δ+ + δ− + δ− − (−δ+ − δ+ + δ− + δ−) = 2δ+ + 2δ+ = 2/δ+,

where ∼ means that the operators have the same symbol and in the second passage we 
used Proposition 5.5.

The proof of the claim regarding the signature is done along the same lines. �
5.3. Hodge theory on parallel Hermitian manifolds

Theorem 5.7. Let (M, H) be a compact manifold with 3-form, let (G, I+, I−) be a gener-
alized metric with a pair of almost Hermitian structures and J1 = I+ + I−. Then

1. If I+ (resp. I−) is a parallel positive (resp. negative) Hermitian structure, the dH-
Laplacian preserves the spaces Wk,l

+ (resp. Wk,l
− ) and hence the dH-cohomology of 

M inherits a corresponding Z ×Z2-grading;
2. If (G, J1) is a parallel bi-Hermitian structure, the dH-Laplacian preserves the spaces 

Up,q and hence the dH-cohomology of M inherits a corresponding Z2-grading;

Proof. The claim for positive and negative structures are analogous and together they 
imply the last claim, so it is enough to prove the first claim.

If (M, H) has a generalized Hermitian structure (G, J1), then, since each diagonal of 
the Up,q decomposition lies in either Ω•

+(M ; C) or in Ω•
−(M ; C), so Lemma 5.2 implies 

that /DH
+ and /D

H
− are decomposed into a sum of operators:

/D
H
+ = δ+ + N1 + N4 + N+ + δ+ + N1 + N4 + N+;

/D
H
− = δ− + N2 + N3 + N− + δ− + N2 + N3 + N−.

(5.2)

If I+ is parallel, then, according to Theorem 3.4, N2 = N3 = 0 and from (5.2) we have 
that /DH

− = δ−+δ−+N−+N−, which clearly preserves the Wk
+ decomposition, therefore 

�H = 4( /DH
− )2 also preserves the Wk decomposition of forms. Since the Laplacian has 

even parity, it also preserves Ωev(M) and Ωod(M), hence the Laplacian preserves the 
spaces Wk,l

+ . �
Corollary 5.8. Let M be a manifold with 3-form.
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• An SKT structure on M induces a Z × Z2-grading on the dH-cohomology;
• (Gualtieri [15]) A generalized Kähler structure induces a Z2-grading on the dH-

cohomology.

For each of the cases covered in the previous theorem, we denote by H•,•
dH (M) the 

corresponding decomposition of the dH-cohomology.

Corollary 5.9. (Riemann bilinear relations) In a compact parallel positive Hermitian 
manifold

i−k(a, a)Ch > 0 for all a ∈ Hk,l
dH (M)\{0}.

Proof. Indeed, let α be the harmonic representative for the class a ∈ Hk,l
dH (M)\{0}. Since 

α ∈ Wk,l
+ , 
α = ikα and hence 
α = i−kα and

i−k(α, α)Ch = (α, 
α)Ch > 0. �
Finally in this context we get a clearer version of Theorem 5.6:

Corollary 5.10. Letting wk,l be the dimension of the space of harmonic sections of Wk,l
+

in a parallel Hermitian manifold we have

χ(M) =
∑

(−1)lwk,l and σ(M) =
∑

(−1)
n−k

2 wk,l.

While for parallel Hermitian manifolds we could prove that the Laplacian preserves 
the spaces Wk,l

+ , in and SKT manifold we can go further and show that there is an 
identity of Laplacians:

Theorem 5.11. In a positive SKT manifold,

�δN+
= �

δN+
= 1

4�
H .

Proof. From /D
H
+ = δN+ + δN+ , Lemma 5.3 and Proposition 5.5 we have

1
4�

H = −( /DH
+ )2 = −(δN+ + δN+ )2 = −(δN+ − δN∗

+ )2 = �δN+
�

5.4. Relation to Dolbeault cohomology

As we saw in Proposition 4.1, given a positive SKT structure (G, I) on M one can 
extend I+ to a generalized complex structure J1 of complex type. In this case, in the 
metric splitting of TM , the structures J1 and J2 = GJ1 are given by

J1 =
(
I 0
0 −I∗

)
, J2 =

(
0 −ω−1

ω 0

)
,
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where ω = g ◦ I and for such generalized Hermitian structure Proposition 1.8 gives an 
automorphism of the space of forms which relates the Up,q decomposition of forms with 
the usual ∧p,qT ∗M decomposition of forms determined by the complex structure I.

In this section we relate these two decompositions of forms and corresponding coho-
mologies. Precisely, the effect of applying the automorphism Ψ from Proposition 1.8 to 
∧•T ∗

CM on dH is simply to conjugate it by Ψ, so we get a new operator

d̂H = Ψ−1 ◦ dH ◦ Ψ.

Since dH splits according to the Up,q into six operators, the same is true for d̂H and we 
can define

δ̂+ : Ωp,q −→ Ωp−1,q; δ̂+ : Ωp,q −→ Ωp+1,q;

δ̂− : Ωp,q −→ Ωp,q+1; δ̂− : Ωp,q −→ Ωp,q+1;

N̂ : Ωp,q −→ Ωp−1,q−2 N̂ : Ωp,q −→ Ωp+1,q+2;

d̂H = δ̂+ + δ̂+ + δ̂− + δ̂− + N̂ + N̂ .

Proposition 5.12. Let (G, I+) be a positive SKT structure on a manifold with 3-form 
(M, H), let J be the generalized complex extension of I+ given by Proposition 4.1. Let

∂ω−1
= {∂, ω−1} and ∂

ω−1

= {∂, ω−1},

let ζi be the component of e
i
2ω

−1

∗ ∂ω lying in ∧iT ⊗ ∧3−iT ∗ and let χ be the (1, 2)-
component of [ω−1, ω−1]SN , where [·, ·]SN is the Schouten–Nijenhuis bracket. Then the 
following hold

δ̂+ = i
2∂

ω−1

+ 2iζ2 δ̂+ = ∂

δ̂− = ∂ + 2iζ1 δ̂− = i
2∂

ω−1

N̂ = 1
8χ N̂ = 2i∂ω.

(5.3)

Proof. The proof is a direct computation of the operator d̂H :

d̂H = e−
i
2ω

−1
e−iω(d + H∧)eiωe i

2ω
−1

= e−
i
2ω

−1
e−iωeiω(d + (H + idω)∧)e i

2ω
−1

= e−
i
2ω

−1
de

i
2ω

−1
+ 2ie− i

2ω
−1

(∂ω∧)e i
2ω

−1

(5.4)

We compute separately each of the two operators above making up d̂H :

e−
i
2ω−1

de
i
2ω−1

= d + [d, iω−1] + 1 [[d, iω−1], iω−1] + 1 [[[d, iω−1], iω−1], iω−1] + · · ·
2 2! 2 2 3! 2 2 2
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The first term is just d = ∂ + ∂, while the second term is a version of the symplectic 
adjoint of d now obtained in a nonintegrable setting, δω−1 = d ◦ ω−1 − ω−1 ◦ d. Since ω
is not closed, δω−1 does not square to zero. Integrability of the complex structure gives 
d = ∂ + ∂ and recalling that ω−1 is of type (1, 1) we have

δω
−1

= ∂ω−1
+ ∂

ω−1

; ∂ω−1
: Ωp,q −→ Ωp,q−1; ∂

ω−1

: Ωp,q −→ Ωp−1,q.

Since ω−1 is even, the third term in the series coincides with a multiple of the expression 
for the derived bracket of ω−1 with itself, that is, the Schouten–Nijenhuis bracket:

[[d, i
2ω

−1], i
2ω

−1] = −{{ i
2ω

−1, d}, i
2ω

−1} = 1
4 [ω−1, ω−1]SN .

Since ω−1 is of type (1, 1), integrability of the complex structure implies that this term 
this is a 3-vector lies in ∧2,1T ⊕ ∧1,2T , so this term decomposes as

[ω−1, ω−1]SN = χ + χ, χ ∈ ∧1,2TM.

The fourth term is the commutator [[ω−1, ω−1]SN , ω−1] which vanishes since ω−1 is a 
bivector and hence so do the remaining terms in the series. So we have established that

e−
i
2ω

−1
de

i
2ω

−1
= ∂ + ∂ + i

2∂
ω−1

+ i
2∂

ω−1

+ 1
8 (χ + χ) (5.5)

Next we compute the second summand in (5.4):

2ie− i
2ω

−1 ◦ ∂ω ◦ e i
2ω

−1
= 2ie− i

2ω
−1 ◦ (e

i
2ω

−1

∗ e
− i

2ω
−1

∗ ∂ω) ◦ e i
2ω

−1

= 2ie− i
2ω

−1 ◦ e i
2ω

−1 ◦ (e−
i
2ω

−1

∗ ∂ω)

= 2ie−
i
2ω

−1

∗ ∂ω,

where we have used (1.1) in the second equality. The element e−
i
2ω

−1

∗ ∂ω ∈ ∧3TCM has 
six components:

e
− i

2ω
−1

∗ ∂ω ∈ (∧1,2T ∗) ⊕ (T 1,0 ⊗ ∧1,1T ∗) ⊕ (T 0,1 ⊗ ∧0,2T ∗) ⊕ (∧2,0T ⊗ T ∗1,0)

⊕ (∧1,1T ⊗ T ∗0,1) ⊕ (∧2,1T )

Since, for a 1-form ξ, e−
i
2ω

−1

∗ ξ = i
2ω

−1(ξ) +ξ, we see that the 3-form component is ∂ω
and that the 3-vector component is − i

8ω
−1∂ω. We let ζ1 be the component of e−

i
2ω

−1

∗ ∂ω

in T ⊗ ∧2T ∗ and ζ2 be the component in ∧2T ⊗ T ∗, so that ζ1 : ∧p,q −→ ∧p,q+1, 
ζ2 : ∧p,q −→ ∧p−1,q, and

2ie− i
2ω

−1 ◦ ∂ω ◦ e i
2ω

−1
= 2i∂ω + 2iζ1 + 2iζ2 + 1

ω−1(∂ω)
4
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Putting this together with (5.5) and the fact that d̂H does not have a component map-
ping Ωp,q(M) to Ωp−2,q−1(M) we conclude that χ = −2ω−1(∂ω) and obtain (5.3). �

Next, we let ∂i∂ω be the operator ∂ + i∂ω∧. Then we observe that even though ∂i∂ω

does not preserve the degree of a form, it preserves the holomorphic degree and the 
parity of the anti-holomorphic degree, i.e.,

∂i∂ω : Ωp,q(M) −→ Ωp+1,q(M), p ∈ Z, q ∈ Z2. (5.6)

Therefore its cohomology has a natural Z × Z2-grading. For an operator δ with δ2 = 0
we denote its cohomology by Hδ(M).

Corollary 5.13. Let (G, I+) be a positive SKT structure on a compact manifold, let J be 
the generalized complex extension from Proposition 4.1 and let (g, I) be the corresponding 
Hermitian structure with Hermitian form ω = g ◦ I. Then for p, q ∈ Z

Hp,q
∂ (M) ∼= Hq−p,n−p−q

δ+
(M),

and

Hp

∂i∂ω
(M) ∼= Hn−2p

δN+
(M) ∼= Hn−2p

dH (M).

Proof. Indeed, Ψ puts Ωp,q(M) in correspondence with Uq−p,n−p−q and Ωp,•(M) with 
Wn−2p and according to Proposition 5.12, Ψ ◦∂ = δ+◦Ψ and Ψ ◦∂2iω = δN+ ◦Ψ. Therefore 
Hp,q

∂ (M) ∼= Hq−p,n−p−q

δ+
(M) and Hp

∂2i∂ω
(M) ∼= Hn−2p

δN+
(M). Of course the cohomology of 

∂2i∂ω is the same as the cohomology if ∂i∂ω, as the automorphism

m : ∧•,•T ∗M −→ m : ∧•,•T ∗M m(α) = 2
q
2α for all α ∈ ∧p,qT ∗M,

relates them. �
The isomorphism Ψ used to prove Proposition 5.12 can be used even in the noninte-

grable case to give us information about the Euler characteristic and signature of almost 
Hermitian manifolds. Indeed, according to Proposition 1.8 we have

Ψ : ⊕q ∧p,q T ∗M ∩ Ωev(M) −→ W k,0
+ ; Ψ : ⊕q ∧p,q T ∗M ∩ Ωod(M) −→ W k,1

+ .

And hence conjugating δ+ by Ψ we get an operator

δ̂+ = Ψ ◦ δ+ ◦ Ψ−1 : Ωp,q −→ Ωp+1,q.

Since the isomorphism Ψ from Proposition 1.8 identifies T ∗1,0M with V 1,0
+ , one can 

readily check that ∂ and δ̂+ have the same symbol and hence the same index. Of course 
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complex conjugation swaps ∂ and ∂, allowing us to translate Theorem 5.6 to Dolbeault 
cohomology terms:

Corollary 5.14. Let (M, I, g) be a compact almost Hermitian manifold, /∂ = ∂ − ∂
∗ and, 

for q, k ∈ Z2,

wq = dim(ker /∂ : ⊕pΩp,q(M) −→ ⊕pΩp,q+1(M))

hk = dim(ker /∂ : Ωk(M) −→ Ωk+1(M))

Then

χ(M) = hev − hod and σ(M) = wev − wod.

In particular in a compact complex manifold if hp,q = dim(Hp,q

∂
(M)), then

χ =
∑

(−1)p+qhp,q and σ =
∑
p,q

(−1)qhp,q(M). (5.7)

Remark. Using Frölicher’s spectral sequence, Frölicher proved the identity for the Euler 
characteristic assuming integrability of the complex structure [11]. The identity regarding 
the signature is an extension of the Hodge Index Theorem, which, in its modern version 
(see, e.g., [25], Theorem 6.33), states that (5.7) holds on a compact Kähler manifold and 
is obtained as a consequence of the development of Hodge theory of Kähler manifolds. 
The main point of Corollary 5.14 is that these identities do not depend on existence of 
Kähler structures or on the integrability of the complex structure, so, in effect, they do 
not represent an obstruction to the existence of any of the structures studied here. This 
is to be compared with Corollary 5.13 which provide a nontrivial differential–topological 
obstruction to the existence of SKT structures on complex manifolds.

Quite separate from the theory developed so far, one can get other obstructions to 
the existence of SKT structures using only classical tools. For example:

Theorem 5.15. A compact SKT manifold (M, I, g) for which

H2,1
∂

(M) = H3,0
∂

(M) = {0}, (5.8)

admits a symplectic structure.

Proof. Indeed, if there was such an SKT manifold, (M, g, I), letting H = dcω we have 
that ∂ω represents a class in H2,1

∂
(M) which is trivial, and hence there is σ ∈ Ω2,0(M)

such that ∂ω = ∂σ. Therefore, we have

∂∂σ = −∂∂σ = −∂2ω = 0,
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showing that ∂σ represents a class in H3,0
∂

(M) = {0}, hence ∂σ = 0 and

ω̃ = ω − σ − σ

is a closed form. Further, for any X ∈ TpM\{0},

ω̃(X, IX) = ω(X, IX) − iσ(X,X) + iσ(X,X) = g(X,X) 
= 0,

showing that ω̃ is also nondegenerate, i.e., is a symplectic structure. �
Example 5.16 (Calabi–Eckman manifolds). Among the Calabi-Eckman manifolds, S1 ×
S1, S1×S3 and S3×S3 are known to admit SKT structures, by virtue of being compact 
Lie groups. In this example we show that all the remaining Calabi–Eckman manifolds 
Mu,v

∼= S2u+1 ×S2v+1 do not admit SKT structures and we give two arguments for this 
fact.

For the first argument, we observe that the claim can be proved directly using Theo-
rem 5.15: the Dolbeault cohomology of these manifolds was computed by Borel [18] and, 
assuming v ≥ u, it is given by

H•,•
∂

(Mu,v) = ∧span{x0,1, zv+1,v} ⊗C[y1,1]/yu+1, (5.9)

where ap,q is a generator of bidegree (p, q). Hence, for all Mu,v, with exception of the 
three cases known to admit SKT structures, the hypothesis of Theorem 5.15 hold but 
H2(Mu,v) = {0}, hence these manifolds can not be symplectic.

The second argument works for u 
= 0 and amounts to proving that in this case, the dH-
cohomology of Mu,v is not isomorphic to the ∂

i∂ω-cohomology, and hence Corollary 5.13
fails. To prove this claim, we start considering the case v ≥ u > 1. If such a manifold 
had an SKT structure, then [dcω] = 0 and the dH -cohomology would be isomorphic to 
the de Rham cohomology. From (5.9), one sees that H2,1

∂
(Mu,v) = {0} and hence ∂ω

would be the trivial Dolbeault class and the ∂
i∂ω-cohomology would be isomorphic to 

the usual Dolbeault cohomology. Since the Dolbeault cohomology of the Calabi-Eckman 
manifolds is not isomorphic to the de Rham cohomology, Mu,v can not be SKT.

The same argument holds for v > u = 1, except that now H3(Mv,1) = R and there are 
two possibilities for [H]: it is either zero or not. In the former case, the dH-cohomology 
is isomorphic to the de Rham cohomology and in the latter it vanishes completely. On 
the other hand, the Dolbeault cohomology is still described by (5.9) and, as before, 
H2,1

∂
(M) vanishes so the ∂

i∂ω-cohomology is isomorphic to the ∂-cohomology which is 
not isomorphic to either the de Rham cohomology or the trivial one.

�
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5.5. Hermitian symplectic structures

A particular type of SKT structure for which Corollary 5.13 is particularly relevant 
are the so called Hermitian symplectic structures [8,23]. These consist of a pair (I, ω) of 
integrable complex structure and symplectic structure such that ω(X, IX) is positive for 
every nonzero vector X. The difference between these structures and Kähler structures 
is that here we do not require ω to be of type (1,1).

Theorem 5.17. In a compact Hermitian symplectic manifold the Dolbeault and the de 
Rham cohomologies are isomorphic as graded vector spaces, i.e., the Frölicher spectral 
sequence degenerates at the second page.

Proof. Given a Hermitian symplectic manifold, we can decompose ω into its (p, q) com-
ponents with respect to the complex structure and then one readily obtains that

dcω1,1 = id(ω2,0 − ω0,2).

Therefore (I, ω1,1) is an SKT structure and H = id(ω2,0 − ω0,2) is exact hence the 
dH -cohomology is isomorphic to the de Rham cohomology. Further, the same identity 
shows that H1,2 = −i∂ω0,2 is ∂-exact hence the ∂−i∂ω1,1 -cohomology is isomorphic to 
the ∂-cohomology. Therefore the result follows from Corollary 5.13. �
6. Hodge theory beyond U(n)

The decomposition of harmonics into their (p, q)-components in a Kähler manifold is 
a phenomenon that repeats itself for any other special holonomy group and, as such, is a 
result on Riemannian geometry. This approach is quite different from what we have done 
so far as, just like in the original Kähler identities, we relied on the underlying complex 
structures heavily to develop our theory. This section we show that with the appropriate 
setup, our results can also be extended to any other holonomy groups. Throughout this 
section we let {e1, · · · , em} ∈ Γ(TM) be an orthonormal frame and {e1, · · · , em} ∈
Γ(T ∗M) be its dual frame.

As before, given an oriented Riemannian manifold with closed 3-form, (M, g, H) we 
consider the metric connection ∇̂± whose torsion is ∓H and let ∇ denote the Levi-
Civita connection. Using the orthonormal frame, we can write explicit expressions for 
∇±. Indeed, if we define hijk = H(ei, ej , ek), then, using Einstein summation convention 
and omitting the symbol for the wedge product, H is given by

H = 1
3!hijke

iejek,

and we have

∇± = ∇∓ 1hijke
iejek. (6.1)
4



G.R. Cavalcanti / Advances in Mathematics 374 (2020) 107270 35
If the holonomy of ∇+ is the Lie group G+, then using the isomorphism TM ∼= V+, 
we realize its Lie algebra, g+, as a sub Lie algebra of so(V+) = ∧2V+. Mutatis mutandis, 
the same holds for ∇− and we get g− ⊂ ∧2V−. Next we notice that g+ ⊕ g− ⊂ ∧2TM =
spin(TM) and hence the elements of g+⊕g− act on forms, thought of as spinors. Further, 
since V+ is orthogonal to V− and g± ⊂ ∧2V±, the Lie algebra action of g+ and g− on 
forms commute and we get an action of g+⊕g− on forms as a direct sum of the individual 
actions of the Lie algebras. Now we are in condition to state the main theorem of this 
section, which extends Theorem 5.7 to general holonomy groups.

Theorem 6.1. Let (M, g, H) be a compact Riemannian manifold endowed with a closed 
3-form. If ∇±, the metric connections with torsion ∓H, have holonomy in G±, then 
the dH-cohomology of M splits according to the decomposition of forms into irreducible 
representations of the action of g+ ⊕ g− ⊂ ∧2V+ ⊕ ∧2V− on forms.

Lemma 6.2. The connections ∇± preserve the irreducible representations of g±, respec-
tively.

Proof. Indeed, if we denote by g̃+ ⊂ spin(TM) ∼= ∧2T ∗M the bundle of endomorphisms 
of TM defined by the connection ∇+, the condition that ∇+ has reduced holonomy 
implies that this bundle is preserved by parallel transport. Now g+ is simply the image 
of g̃+ by the parallel isomorphism Id + g : T ∗M −→ V+, hence the bundle g+ ⊂ ∧2V+ is 
also parallel and its irreducible representations are preserved by the connection. �

Next we define

εi± = ei ± ei ∈ Γ(V±)

and

H± = 1
3!hijkε

i
±ε

j
±ε

k
± ∈ Clif3(V±) ⊂ Clif3(TM).

To prove the theorem we need to extend to the torsion case the formulas relating the 
Levi–Civita connection with the exterior derivative and its adjoint:

d = ei ∧∇ei ; d∗ = −ιei∇ei . (6.2)

To avoid considering separate cases according to whether the dimension of the mani-
fold is even or odd, we let

/D+ = dH − dH∗ and /D− = dH + dH∗.

Lemma 6.3. With the definitions above

/DH
+ = εi+∇+

e + H+; 2/DH
− = εi−∇−

e + H−. (6.3)

i i
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Proof. Since the statements are similar, we will only prove the first identity. The left 
hand side of (6.3) is

/DH
+ = d + H − d∗ −H∗

= d− d∗ + 1
3!hijke

iejek + 1
3!hijkeiejek.

(6.4)

Next, we use relation (6.1) to re-write the right hand side as

εi+∇+
ei + H+ = ei ∧∇ei + ιei∇ei − 1

2hijke
iejek − 1

2hijkeie
jek + H+.

Due to (6.2), the first two terms are d − d∗. Expanding H+ we get

εi+∇+
ei + H+ = d− d∗ − 1

2hijke
iejek − 1

2hijkeie
jek + 1

3!hijke
iejek + 1

2!hijke
iejek

+ 1
2!hijke

iejek + 1
3!hijkeiejek,

which equals (6.4). �
Proof of Theorem 6.1. Since ∇+ preserves the irreducible representations of g+, Lem-
ma 6.3 implies that /DH

+ preserves the irreducible representations of g+ ⊕ Clif(V−) and 

hence so does the dH -Laplacian. Similarly, /DH
− preserves the irreducible representations 

of Clif(V+) ⊕ g− and hence ΔdH preserves the intersections of these representations, 
which are just the irreducible representations of g+ ⊕ g−. �
6.1. Integrability

A simple consequence of (6.2) is that if W ⊂ ∧kT ∗M is a representation of the holon-
omy group of the Levi–Civita connection, then the exterior derivative restricted to sec-
tions of W can only land in representations present in T ∗M ∧W . This is the Riemannian 
version of the claim that in a complex manifold d : Ωp,q(M) −→ Ωp+1,q(M) ⊕Ωp,q+1(M). 
Lemma 6.3 has similar implications.

Proposition 6.4. Let (M, g, H) be a compact oriented Riemannian manifold with a closed 
3-form and let g± ⊂ ∧2V± be the Lie algebras of the holonomy groups of the connections 
∇±. Let W be a representation of g+ ⊕ g−, then dH sends sections of W into sections 
of representations that appear in (Clif3(V+) ⊕ Clif3(V−)) ·W .

Proof. It follows from Lemmata 6.2 and 6.3 that

/DH
± : Γ(W ) −→ Γ(Clif3(V∓) ·W ),

hence, dH = 1 (/DH
+ + /DH

− ) has the stated property. �
2
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It follows from the material in Sections 3 and 4 that the difference between an SKT or 
generalized Kähler structure and parallel (almost) Hermitian or (almost) bi-Hermitian 
structure, respectively, is that in the former two cases if W is a representation of g+⊕g−
then dH : Γ(W ) −→ Γ(TCM ·W ), while in the latter two cases Proposition 6.4 is the best 
one can say. This suggests that in general there is a subclass of the space of manifolds 
(M, g, H) with reduced holonomy which may be of further interest:

Definition 6.5. We say that (∇+, ∇−) induces an integrable G+ × G− structure if the 
holonomy of ∇± is G± and

dH : Γ(W ) −→ Γ(TCM ·W ) (6.5)

for every representation W ⊂ ∧•T ∗
CM of g+ ⊕ g−.

7. Instantons over complex surfaces

Next we use the techniques developed in this section to provide an alternative descrip-
tion of the SKT structure on the moduli space of instantons of a bundle over a complex 
surface. The tool used to describe this structure are extended actions as introduced in 
[2] and the SKT reduction theorem as presented in [5]. The argument presented here 
follows closely the one from [3], so we will spare details and refer to that paper for further 
reading.

Let (M, [g], I) be a compact complex surface with a conformal Hermitian structure. 
By a result of Gauduchon [13], there is a representative g of the conformal class which 
makes (M, g, I) into an SKT manifold, i.e., the corresponding Hermitian form ω satisfies 
ddcω = 0. We let H = dcω and consider TM endowed with the H-Courant bracket, so 
that the metric

G =
(

0 g−1

g 0

)

and the complex structure on V+ induced by I via the isomorphism π : V+ −→ TM are 
a positive SKT structure on TM .

Given a bundle E over M with a compact Lie group G as structure group and Lie 
algebra g we let A be the space of all g-connections on E endowed with the trivial 3-
form, so that A is an affine space isomorphic to space of 1-forms on M with values in the 
adjoint bundle gE, Ω1(M ; gE). Hence at any connection A we have TAA = Ω1(M ; gE)
and, letting κ be a bi-invariant metric on G, we can use κ to identify T ∗

AA = Ω3(M ; gE). 
Indeed, for X ∈ Ω1(M ; gE) and ξ ∈ Ω3(M ; gE) we define the natural pairing as

ξ(X) = 2
∫

κ(X, ξ).

M
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Then for X, Y ∈ Ω1(M ; gE) and ξ, η ∈ Ω3(M ; gE) we have

〈X + ξ, Y + η〉 =
∫
M

κ(X, η) + κ(Y, ξ) =
∫
M

κ(X, η) − κ(ξ, Y ) =
∫
M

κ(X + ξ, Y + η)Ch

where κ(·, ·)Ch indicates that one uses κ to pair elements in gE and the Chevalley pairing 
on forms to obtain a top degree form.

We denote by G the gauge group of E and by g̃ = Ω0(M ; gE) its Lie algebra. The 
infinitesimal generator corresponding to γ ∈ Ω0(M ; gE) at a point A ∈ A is just the 
vector dAγ ∈ Ω1(M ; gE) and we can extend this action to form a lifted action as in [5]:

Ψ̃ : Ω0(M ; gE) −→ TA Ψ̃(γ)|A = dHA γ = dAγ + H ∧ γ,

as long as there are no infinitesimal symmetries, i.e., as long as dA : Ω0(M ; gE) −→
Ω1(M ; gE) has trivial kernel. Therefore, from this point onwards we only consider con-
nections for which dA : Ω0(M ; gE) −→ Ω1(M ; gE) has trivial kernel. If E is a simple 
SU(n)-bundle then that is the case for all ASD connections.

Next we add a moment map to this action. Our (equivariant) moment map takes 
values on the G -module h∗ = Ω2

+(M ; gE), the space of self-dual 2-forms:

μ : A −→ Ω2
+(M ; gE) μ(A) = (FA)+,

where FA is the curvature of the connection A and (·)+ indicates projection onto the 
space of self dual forms, Ω•

+(M ; gE), which, for 2-forms in 4 dimensions, agrees with the 
usual self dual 2-forms. If we let a be the sum g̃⊕ h, a becomes a Courant algebra if we 
endow it with the hemisemidirect product:

�(γ1, λ1), (γ2, λ2)� = ([γ1, γ2], γ1 · λ2).

Then the maps Ψ̃ and μ together give rise to an extended action given infinitesimally by 
map of Courant algebras:

Ψ : a −→ Γ(TA) Ψ(γ, λ)|A = dHA γ + d〈μ, λ〉.

We notice that Ω0(M ; gE) + Ω2
+(M ; gE) is isomorphic to Ωev

+ (M ; gE) via the map

γ + λ �→ γ + λ + 
γ, γ ∈ Ω0(M ; gE), λ ∈ Ω2
+(M ; gE),

so we can use a = Ωev
+ (M ; gE) and then the extended action is given simply by

Ψ : Ωev
+ (M ; gE) −→ Ωod(M ; gE) Ψ(α)|A = dHAα.

Following the reduction procedure, the reduced manifold, M, is obtained by taking 
the quotient of μ−1(0) by the action of the gauge group. In this case, μ−1(0) consists 
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of the space of anti self-dual connections and hence M is simply the moduli space of 
instantons.

The reduction procedure also produces a specific Courant algebroid over the reduced 
manifold. Namely, if we let K be the bundle generated by Ψ(a) and K⊥ its orthog-
onal complement with respect to the natural pairing, then the space of G -invariant 
sections of K⊥/K over μ−1(0) inherits a bracket and a nondegenerate pairing which 
make the quotient bundle (K⊥/K)/G into a Courant algebroid over M. Notice that at 
a specific anti self-dual connection A, K is the image of Ωev

+ (M ; gE) by dHA . If we let 
dHA+ : Ωod(M ; gE) −→ Ωev

+ (M ; gE) be the composition of dHA with projection onto the 
SD-forms, then a simple integration by parts shows that K⊥|A is the space of dHA+-closed 
forms and hence the reduced Courant algebroid is the degree one cohomology of the 
following elliptic complex:

{0} −→ Ωev
+ (M ; gE) dH

A−→ Ωod(M ; gE)
dH
A+−→ Ωev

+ (M ; gE) −→ {0}. (7.1)

In a way, this is the double of the usual elliptic complex describing the tangent space 
to M :

{0} −→ Ω0(M ; gE) dA−→ Ω1(M ; gE) dA+−→ Ω2
+(M ; gE) −→ {0}. (7.2)

Earlier we added the assumption that (7.2) above has no cohomology in degree zero. 
From now on we also add the assumption that this complex has no cohomology in 
degree two, so that A corresponds to a smooth point in M and hence the dimension of 
M is given by the index of dA, which is a topological invariant due to the Atiyah-Singer 
index theorem. Further, in this case, the cohomology of (7.1) also concentrates in the 
middle term:

Hod
dH
A

(M ; gE) =
ker(dHA+ : Ωod(M ; gE) −→ Ωev

+ (M ; gE)
Im (dHA : Ωev

+ (M ; gE) −→ Ωod(M ; gE)
.

Since M has an SKT structure, we can also endow A with an SKT structure. Firstly 
we let 
 be the generalized metric: Indeed, in four dimensions 
2 = Id, spin invariance 
of the Chevalley pairing means that 
 is orthogonal (in even dimensions) and by design 
we have (cf. (5.1))

〈ϕ, 
ϕ〉 =
∫
M

κ(ϕ, 
ϕ)Ch > 0, for ϕ ∈ Ωod(M ; gE)\{0},

so 
 is a generalized metric and for this metric V+ is the space of SD odd forms, 
Ωod

+ (M ; gE) = (W2 + W−2) ∩ Ωod(M ; gE), and V− is the space of ASD odd forms, 
Ωod

− (M ; gE) = W0 ∩ Ωod(M; gE).
For complex structure, we let I = e

πI
2 as in Lemma 1.9. Then that same lemma 

implies that I2|V+ = −
 = −Id. Since this structure is independent of the point A ∈ A, 
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it is constant and hence integrable. The spaces V 1,0
+ and V 0,1

+ can be easily described: 
since I = I on W±2 we have V 1,0

+ = W2 ∩ Ωod(M ; gE) and V 0,1
+ = W−2 ∩ Ωod(M ; gE).

Further, it is immediate that this SKT structure is invariant by the action of the 
gauge group. Now, we are in position to use the SKT reduction theorem:

Theorem 7.1 (SKT Reduction Theorem [5]). Let Ψ : a −→ Γ(TA) be an extended action 
with moment map μ preserving an SKT structure (G, I) on A as above and let P =
μ−1(0). If the underlying group action on P is free and proper and 0 is a regular value 
of the moment map, then Mred = P/G is smooth and the SKT structure on A reduces 
to an SKT structure on Mred if and only if K⊥ ∩ V+|P is invariant under I.

As we observed earlier, at a point A ∈ A, K⊥ corresponds to the dHA+-closed odd forms 
and hence K⊥ ∩ V+ corresponds to the dHA+-closed SD odd forms, that is the SD, dHA -
harmonic odd forms and hence according to the theorem to prove that the moduli space 
of instantons inherits an SKT from M , we must prove that the space of SD, dHA -harmonic 
odd forms is invariant under I. To achieve this, one must develop Hodge theory for forms 
with coefficients. In this case, the condition that the connection is anti self-dual, allows 
us to achieve the result.

Indeed, similarly to the flat case, we can split dHA as a sum of three operators:

dHA = δN+ + δN+ + /d
H
A−,

δN+ : Wk −→ Wk+2 δN+ : Wk −→ Wk−2 /d
H
A− : Wk −→ Wk.

Indeed, locally dHA = dH + A, for some A ∈ Ω1(M ; gE) and hence the splitting of dH
together with the splitting of A into its V 1,0

+ , V 0,1
+ and V− components gives the desired 

decomposition of dHA . Just as in Section 5.2, integration by parts gives that (δN+ )∗ = −δN+

and /d
H∗
A− = /d

H
A−.

Now, let ϕ ∈ (W2 ⊕W−2) ∩ Ωod(M ; gE). Then the dHA -Laplacian computed on ϕ is 
given by

�Hϕ = (dH∗
A dHA+ + dHA dH∗

A+)ϕ

= (−δN+ − δN+ + /d
H
A−)/dHA− + (δN+ + δN+ + /d

H
A−)/dHA−ϕ

= 2(/dHA−)2ϕ.

Hence the Laplacian leaves the spaces W2 ∩Ωod and W−2 ∩Ωod invariant. Therefore we 
can decompose the space of harmonic SD odd forms into two spaces H±2 = ker(�H) ∩
W±2 and I acts as multiplication by i on W2 and by −i on W−2, so either way it preserves 
the intersection ker(�H) ∩ W±2 and hence it preserves the space of SD harmonic odd 
forms. According to Theorem 7.1, this means that the SKT structure from A reduces to 
an SKT structure on M so we have re-obtained the following result, originally due to 
Lübke and Teleman [21]:
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Theorem 7.2. Let (M, I, [g]) be a compact conformal Hermitian 4-manifold, let E be a 
bundle over M whose structure group is compact with Lie algebra g and let gE be the 
adjoint bundle over M . Let Ms be the quotient of the space

P̃ = {A ∈ A : (FA)+ = 0; H0
dA

(M ; gE) = H2
dA

(M ; gE) = {0}},

by the action of the gauge group, i.e., Ms is the smooth locus of the moduli space of 
instantons on E. Then Ms has an SKT structure induced by the unique SKT structure 
on M in the conformal class [g].
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