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Let C ⊂ Pg−1 be a canonically embedded nonsingular nonhyperelliptic curve of genus g

and let X ⊂ Pg−1 be a quadric containing C. Our main result states among other things

that the Hilbert scheme of X is at [C ⊂ X] a local complete intersection of dimension

g2 − 1 and is smooth when X is. It also includes the assertion that the minimal

obstruction space for this deformation problem is in fact the full associated Ext1-group

and that in particular the deformations of C in X are obstructed in case C meets the

singular locus of X. Applications will be given in a forthcoming paper.

1. Statement of the Main Result

Throughout this paper we work over an algebraically closed field k of characteristic

�= 2. Let C be a smooth nonhyperelliptic projective curve of genus g (so that g > 2) and

regard C as embedded in P := P̌
(
H0(C, ΩC)

)
. It is well known that the Hilbert scheme of

P is smooth at C ⊂ P of dimension 3g − 3 + g2 − 1
(
= dim Mg + dim PGLg

)
and that the

canonical embedding is unique modulo the action of the projective linear group Aut(P)

of P. It is also known that when g ≥ 4 C is contained in a quadric hypersurface. Let

X ⊂ P be one such quadric. Our main theorem helps us to understand what conditions

are imposed on the deformation theory of the C in P by requiring that C stays inside X.

In order to state it we use the following notions and notation. For a variety Z,

TZ stands for its Zariski tangent sheaf, that is, the OZ-dual of ΩZ. If Y ⊆ Z is a closed
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368 M. Boggi and E. Looijenga

subscheme defined by the OZ-ideal IY ⊆ OZ, then CY/Z := IY/I 2
Y (regarded as an OZ-

module) is the conormal sheaf of Y in Z, and its OZ-dual, denoted NY/Z, is the normal

sheaf of Y in Z.

It is well known that the space Ext0
C(CC/X , OC) naturally identifies with the

tangent space of the Hilbert scheme Hilb(X) at the point [C ⊂ X]. An obstruction theory

for the embedding C ⊂ X is instead provided by the vector space Ext1
C(CC/X , OC) (cf.

Proposition I.2.14 in [3]), but it is not always true that this space consists entirely of

obstructions, that is, is a minimal obstruction space in the sense of Definition 5.5 in [6].

Our main theorem states, in particular, that, in our situation, this is so:

Theorem 1.1. Let C ⊂ X ⊂ P be as above (so C is nonhyperelliptic of genus g ≥ 4). Then

(i) the Hilbert scheme Hilb(X) is a local complete intersection at [C ⊂ X] of

dimension g2 − 1 with embedding dimension g2 − 1 + dim Ext1
C(CC/X , OC),

(ii) Ext1
C(CC/X , OC) is a minimal obstruction space for deformations of C in X,

and

(iii) when X is either nonsingular or has an isolated singularity disjoint from C,

then Ext1
C(CC/X , OC) = 0 and Hilb(X) is smooth at [C ⊂ X].

We shall also show (Corollary 2.9) that when the quadric X is singular and C

meets its singular locus the obstruction space Ext1
C(CC/X , OC) is nonzero.

In a forthcoming paper, we will apply the above result to prove that, for a very

general complex smooth projective curve C with automorphism group G such that the

quotient curve C/G has genus at least three, the algebra of rational endomorphisms of

the Jacobian EndQ(J(C)) is naturally isomorphic to the group algebra QG. In its turn,

this result has applications to the theory of virtual linear representations of mapping

class groups.

In a different direction, Theorem 1.1 may be useful in the study of the so-called

Petri divisor on the moduli space Mg of stable curves of genus g. This divisor is defined

to be the closure in Mg of the locus in the moduli space Mg of smooth projective curves

of genus g, which parameterizes curves whose canonical model lies on a rank 3 quadric

(cf. Section 6 of [2]).

2. Proof of the Theorem

Let us write aut(P) for the Lie algebra of the projective linear group Aut(P) of P, in other

words, the Lie algebra of vector fields on P. We first observe the following:
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Deforming a Canonical Curve Inside a Quadric 369

Lemma 2.1. The natural map aut(P) → H0(C, OC ⊗ TP) is an isomorphism, and the

cohomology spaces H1(C, OC ⊗ TP), Ext1
C(CC/P, OC) = H1(C,NC/P) all vanish (so that the

1st-order deformations of C in P are unobstructed). Furthermore, the sequence

0 → aut(P) → H0(C,NC/P) → H1(C, TC) → 0

is exact, where the middle term can be regarded as the tangent space of Hilb(P) at [C]

(and has dimension
(
g2 − 1

) + (3g − 3)).

Proof. The Euler sequence, which describes the tangent sheaf TP of the projective

space P = P̌
(
H0(C, ΩC)

)
, tensored with OC is

0 → OC → ΩC ⊗ H0(C, ΩC)∗ → OC ⊗ TP → 0.

Consider its cohomology exact sequence:

0 → H0(C, OC) → End
(
H0(C, ΩC)

)
→ H0(C, OC ⊗ TP) →

→ H1(C, OC) → Hom
(
H0(C, ΩC), H1(C, ΩC)

)
→ H1(C, OC ⊗ TP) → 0.

The 1st nonzero map of the 1st line is just the inclusion of the scalars in End
(
H0(C, ΩC)

)

(whose cokernel is aut(P)) and the 1st map of the 2nd line is readily verified to be the

isomorphism provided by (Serre) duality. So aut(P) → H0(C, OC ⊗ TP) is an isomorphism

and H1(C, OC ⊗TP) = 0. If we use the last observation as input for the exact cohomology

sequence of the short exact sequence

0 → TC → OC ⊗ TP → NC/P → 0,

we obtain the stated exact sequence (where we use that H0(C, TC) = 0). �

Lemma 2.2. We have a natural isomorphism OC ⊗ NX/P
∼= Ω⊗2

C and an exact sequence

0 → H0(C,NC/X) → H0(C,NC/P)
φX−→ H0(C, Ω⊗2

C ) → Ext1
C(CC/X , OC) → 0.

Proof. Consider the standard exact sequence of conormal sheaves associated to the

chain of embeddings C ⊂ X ⊂ P:

OC ⊗ CX/P → CC/P

q→ CC/X → 0.
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370 M. Boggi and E. Looijenga

Since X is a hypersurface in P of degree 2, the embedding X ⊂ P is regular with conormal

sheaf CX/P isomorphic to OX(−2). Recalling that OC(1) = ΩC, this yields an isomorphism

OC ⊗ CX/P
∼=

(
Ω⊗2

C

)∨
. Now CC/P is the conormal sheaf of a regular embedding and so

locally free. It follows that ker q is torsion free and (hence) locally free of rank 1. So

OC ⊗ CX/P
∼=

(
Ω⊗2

C

)∨ → ker q, being a surjective morphism of invertible sheaves, must

be an isomorphism. We thus obtain a locally free resolution of CC/X :

0 →
(
Ω⊗2

C

)∨ → CC/P

q→ CC/X → 0. (1)

Applying HomC(−, OC) to this resolution gives the exact sequence

0 → H0(C,NC/X) → H0(C,NC/P) → H0(C, Ω⊗2
C ) → Ext1

C(CC/X , OC) → H1(C,NC/P).

The exact sequence of the lemma now follows from the vanishing of H1(C,NC/P). �

Corollary 2.3. Assume that either X is nonsingular or g ≥ 5 and X has an isolated sin-

gularity disjoint from C. Then the cohomology spaces H1(C, OC ⊗ TX) and Ext1
C(CC/X , OC)

vanish. In particular, the deformations of C in X are unobstructed and Hilb(X) is

nonsingular of dimension dim H0(C,NC/P)−dim H0
(
C, Ω⊗2

C

) = g2 −1 at the point [C ⊂ X].

Proof. We prove that the restriction of φX to the subspace aut(P) ⊂ H0(C,NC/P) is

surjective; this will clearly imply that Ext1
C(CC/X , OC) = 0. This map is defined as follows:

regard A ∈ aut(P) as a vector field on P, restrict it to X so that we get a normal vector

field to X in P, and then restrict this normal vector field to C and take its image in

H0(C, OC ⊗NX/P) ∼= H0
(
C, Ω⊗2

C

)
. This map factors through Sym2 H0(C, ΩC) → H0

(
C, Ω⊗2

C

)
:

if we identify a ut(P) with sl
(
H0(C, ΩC)

) ⊂ End
(
H0(C, ΩC)

)
, then the lift in question is

given by

A ∈ End
(
H0(C, ΩC)

)
�→ (A ⊗ 1 + 1 ⊗ A)(Q) ∈ Sym2 H0(C, ΩC).

It is easy to verify that the image of this map consists precisely of the space of quadrics

containing the singular locus of X. Thus, when X is nonsingular, the map is surjective

and, when X has an isolated singularity P ∈ X \ C, its image has codimension one.

Since, following Max Noether, the map Sym2 H0(C, ΩC) → H0(C, Ω⊗2
C ) is surjective, with

kernel the space of quadrics containing the curve C, and, under our hypothesis, there

is a quadric containing C but not P, it follows that, in both cases, the composition

End
(
H0(C, ΩC)

) → H0
(
C, Ω⊗2

C

)
is surjective. Now End

(
H0(C, ΩC)

)
is the direct sum of

sl
(
H0(C, ΩC)

)
and the scalars. But the scalars map under the above map to the multiples
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Deforming a Canonical Curve Inside a Quadric 371

of Q and hence vanish when restricted to C. It follows that φX | aut(P) is surjective as

asserted.

Let us then show that H1(C, OC ⊗ TX) = 0. The normal sheaf to the quadric X in

P is described by the short exact sequence

0 → TX → OX ⊗ TP → OX(2) → 0,

which on C restricts to the short exact sequence

0 → OC ⊗ TX → OC ⊗ TP → Ω⊗2
C → 0.

By Lemma 2.1, there is then a long exact sequence

0 → H0(C, OC ⊗ TX) → aut(P) → H0(C, Ω⊗2
C ) → H1(C, OC ⊗ TX) → 0,

which, by the previous part of the proof, implies the claim. �

Remark 2.4. In the above proof, we have shown that H1(C, TX ⊗ OC) = 0. This implies

that, in the hypotheses of Theorem 1.1, the forgetful map H0(C,NC/X) → H1(C, TC),

which sends an embedded deformation of C in X to the deformation of C obtained

disregarding the embedding, is surjective. In other words, deformations of the curve

C in X have general moduli. But this also shows that the argument of the proof of

Corollary 2.3 cannot be extended to quadrics of rank 3. In fact, the locus of smooth

projective curves of genus g whose canonical model lies on a rank-3 quadric defines a

divisor of Mg (cf. Proposition 6.1 in [2]). On the other hand, (cf. Exercise F in Ch. VI of

[1]) the quadrics containing a nontrigonal curve of genus 5 have no singularities in the

points of the curve. Therefore, for an embedding C ⊂ X of a genus-5 nontrigonal curve

in a rank-3 quadric, we have that H1(C, TX ⊗OC) �= 0, providing a counterexample to the

conclusion (and then to the proof) of Corollary 2.3 for quadrics of corank ≥ 2.

In order to complete the proof of part (iii) of Theorem 1.1, we have to deal with

the case when g = 4 and X has an isolated singularity (which is always disjoint from C).

From the short exact sequence (1) and the exact sequence (3.16) in Example 3.2.5 of [5],

it follows that CC/X = TC(−2) and then that Ext1
C(CC/X , OC) = H1(C, ΩC(2)) = 0.

In order to prove parts (i) and (ii) of Theorem 1.1, we need some preliminary

results on Hilbert schemes of canonical curves in quadrics. The Hilbert scheme of
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372 M. Boggi and E. Looijenga

quadrics in P is naturally identified with P
(
Sym2 H0(C, ΩC)

)
. It comes with a universal

family of quadrics:

U ⊂ P × P
(
Sym2 H0(C, ΩC)

)

↘ ↓
P

(
Sym2 H0(C, ΩC)

)
.

Let S ⊂ P
(
Sym2 H0(C, ΩC)

)
be the open subscheme parameterizing quadrics of rank

≥ 3 and US → S the restriction of the universal family over S. Denote by Hilb◦(US/S) the

subscheme of the relative Hilbert scheme Hilb(US/S) whose closed points parameterize

the pairs consisting of a nonsingular canonically embedded genus g curve in P and

a quadric of rank ≥ 3 in P containing that curve. Note that Hilb◦(US/S) is an open

subscheme of Hilb(US/S), which comes with a surjective morphism:

p : Hilb◦(US/S) → S.

Lemma 2.5. The scheme Hilb◦(US/S) is irreducible. Moreover, p : Hilb◦(US/S) → S is a

syntomic (i.e., a flat local complete intersection) morphism of relative dimension g2 − 1

that is generically smooth. In particular, Hilb◦(US/S) is of dimension dim(S) + g2 − 1.

Proof. Let Hilb◦(P) be the subscheme of Hilb(P) parameterizing nonsingular canon-

ically embedded projective genus g curves in P. It is well known that Hilb◦(P) is a

smooth open subscheme of an irreducible component of Hilb(P). Since Hilb(P × S/S) ∼=
Hilb(P) × S, the product Hilb◦(P) × S is identified with a smooth open subscheme of an

irreducible component of Hilb(P × S/S).

The S-embedding US ⊂ P × S induces a morphism

Hilb◦(US/S) → Hilb◦(P) × S ⊂ Hilb(P × S/S).

The morphism π : Hilb◦(US/S) → Hilb◦(P) obtained by composition with the projection

on Hilb◦(P) is a surjection, the fiber of π over a closed point [C ⊂ P] ∈ Hilb◦(P) being

naturally identified with the linear system of quadrics in P containing C (which consists

of quadrics of rank ≥ 3). Therefore, it is irreducible and hence Hilb◦(US/S) is irreducible

as well.

We claim that a general nonsingular nonhyperelliptic canonically embedded

curve C ⊂ P of genus ≥ 4 is contained in a nonsingular quadric. For g = 4, this follows

from the description of canonical curves in P3 as complete intersections of a quadric
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Deforming a Canonical Curve Inside a Quadric 373

with an irreducible cubic surface, for g ≥ 5, we need the following lemma that, for

char k = 0, is just a particular case of Bertini’s theorem: �

Lemma 2.6. For an algebraically closed field k of characteristic �= 2, a linear system of

quadrics in Pn
k

has the property that a general member has its singular locus contained

in the base locus of the system.

Proof. First, observe that, by a standard argument, it suffices to treat the case of a

pencil. Let us then suppose that we are given a pencil X of which each member is

singular. For n = 0, the claim is empty and, for n = 1, is an easy exercise, so we proceed

by induction and assume n ≥ 2 and that the claim is verified for lower values of n.

The singular locus of each X ∈ X is a linear subspace. If for a general X this

linear subspace has positive dimension, then the restriction of a general X to a general

hyperplane H ⊂ Pn is still singular, hence, by the induction hypothesis, is contained

in the fixed point set of X |H. The claim then follows. Let us therefore assume that a

general member of X has a unique singular point.

Let X0, X∞ be distinct members of X , defined by linearly independent quadratic

forms Q0, Q∞ of rank n. After a linear transformation, we may assume that P∞ := [1 :

0 : . . . : 0] is the unique singular point of X∞, so that we have Q∞ = Q∞(x1, . . . , xn).

Now write Q0 = x0f (x0, . . ., xn) + R(x1, . . ., xn) with f linear. If f is identically zero, then

P∞ is also a singular point of X0 and hence of any member of X and we are done. If

a := f (1, 0, . . ., 0) �= 0, then after modifying x0 by adding to it a linear combination of

the other variables, we can arrange that Q0 has the form ax2
0 + R(x1, . . . , xn). But then

Q∞ + tQ0 is nonsingular for general t and so this cannot happen. After an appropriate

linear transformation that leaves P∞ invariant, we may then assume that Q0 has the

form x0x1 + R(x2, . . . , xn).

Thus, we have Q0 +tQ∞ = x0x1 +R(x2, . . . , xn)+ tQ∞(x1, . . . , xn). Hence, if H ⊂ Pn

is the hyperplane defined by x1 = 0, then for every t ∈ k, the quadric Xt defined by

Q0 + tQ∞ has its singular locus contained in the singular locus of Xt ∩ H. For generic t,

the latter is, by our induction hypothesis, contained in the base locus of the pencil X |H
and so Xt has its singular point in the base locus of X . �

Let now C be a nonsingular projective curve of genus ≥ 5, which is neither

trigonal nor isomorphic to a plane quintic, then the general member of the linear system

of quadrics of P containing C is nonsingular. Indeed, by Petri’s Theorem, the linear

system of quadrics containing C has for base locus the curve C and, by Lemma 2.6, a
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374 M. Boggi and E. Looijenga

general member of this linear system has no singularities outside of C. In particular,

it has at most corank 1. By Petri’s Theorem, quadrics generate the canonical ideal, and

so, by the Jacobian criterion for projective varieties, there are two quadrics Q0 and

Q1 of corank ≤ 1 containing C with disjoint singular sets. Then either a general fiber

of the pencil of quadrics λ0Q0 + λ1Q1 is nonsingular or the horizontal component of its

singular locus is a (possibly singular) rational curve. Since, of course, C does not contain

any rational curve, in the latter case, a general member of this pencil is a quadric of

corank 1 containing C with singular point disjoint from C. But then a general quadric

containing C has singular locus disjoint from C. Thus a general quadric containing C is

nonsingular.

By Corollary 2.3 and Proposition 4.4.7 in [5], the restriction of the morphism p

over the locus of S parameterizing nonsingular quadrics is therefore smooth of relative

dimension h0(C,NC/X) = g2 − 1.

In order to complete the proof of the lemma, it is enough to show that, given

a closed point [X] ∈ S and a closed point [C ⊂ X] ∈ Hilb◦(US/S) over it, the morphism

p : Hilb◦(US/S) → S is syntomic at [C ⊂ X]. Since Hilb◦(US/S) is an open subscheme of

Hilb(US/S), we have

dim[C⊂X] Hilb(US/S) = g2 − 1 + dim S. (2)

By (ii) of Theorem I.2.15 in [3], there is an inequality:

dim[C⊂X] Hilb(US/S) ≥ h0(C,NC/X) + dim S − dim Ext1
C(CC/X , OC). (3)

The exact sequence in Lemma 2.2 gives the identity:

h0(C,NC/X) = h0(C,NC/P) − h0(C, Ω⊗2
C ) + dim Ext1

C(CC/X , OC) = (4)

= g2 − 1 + dim Ext1
C(CC/X , OC).

Combining the identities (1) and (3), we get that the inequality (2) is actually an identity.

By (iv) of Theorem I.2.15 in [3], this implies that p : Hilb◦(US/S) → S is a syntomic

morphism at [C ⊂ X].

Proof of Theorem 1.1. It remains to prove parts (i) and (ii). An open neighborhood of

the point [C ⊂ X] in the Hilbert scheme Hilb(X) is naturally isomorphic to the fiber of

the morphism p : Hilb◦(US/S) → S over the point [X] ∈ S. Since the fibers of a syntomic
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Deforming a Canonical Curve Inside a Quadric 375

morphism are local complete intersections, Lemma 2.5 implies that Hilb(X) is a local

complete intersection at the point [C ⊂ X] of dimension g2 − 1.

Let us denote by Obs(C/X) the minimal obstruction space in Ext1
C(CC/X , OC) for

deformations of C in X. By (iv) of Theorem I.2.8 in [3] and the identity (3), there is an

inequality

dim[C⊂X] Hilb(X) = g2 − 1 ≥ h0(C,NC/X) − dim Obs(C/X) =
= g2 − 1 + dim Ext1

C(CC/X , OC) − dim Obs(C/X),

which shows that dim Ext1
C(CC/X , OC) − dim Obs(C/X) = 0. Thus the theorem follows. �

Remark 2.7. Let ObsS(C/US) be the minimal obstruction space in Ext1
C(CC/X , OC) for

deformations of C in US/S. A corollary of the proof of Lemma 2.5 is that ObsS(C/US) =
Ext1

C(CC/X , OC). Since Ext1
C(CC/X , OC) is also the obstruction space of an obstruction

theory for the embedding C ⊂ X, it follows that there is a natural injective linear

map i : Obs(C/X) ↪→ ObsS(C/US). By the functorial property of obstruction theories,

the map i has a natural (not necessarily linear) section s : ObsS(C/US) → Obs(C/X)

induced by specializing to [X] ∈ S the tiny extensions from which the elements of the

minimal obstruction space ObsS(C/US) arise. We have just proved that i is actually

an isomorphism. However, this was not clear a priori. In fact, ObsS(C/US) could

have contained obstructions coming from tiny extensions that became trivial when

specialized to the point [X] ∈ S.

By the local–global spectral sequence for Ext and the vanishing of E2,0
2 =

H2(C,NC/X), there is a short exact sequence:

0 → H1(C,NC/X) → Ext1
C(CC/X , OC) → H0(C, Ext1(CC/X , OC)) → 0.

Lemma 2.8. Let D be the (effective) divisor on C defined by the ideal defining the

singular locus of X. Then there is a short exact sequence

0 → NC/X → NC/P → Ω⊗2
C (−D) → 0

and the sheaf Ext1
C(CC/X , OC) can be canonically identified with the direct image on C of

the skyscraper sheaf OD ⊗ Ω⊗2
C . In particular, dim H0

(
C, Ext1(CC/X , OC)

)
= deg D.
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376 M. Boggi and E. Looijenga

Proof. In the proof of Lemma 2.2, we obtained the locally free resolution of CC/X :

0 →
(
Ω⊗2

C

)∨ → CC/P

p→ CC/X → 0.

The map OC ⊗ CX/P
∼=

(
Ω⊗2

C

)∨ → CC/P is best understood in terms of affine local

coordinates. Let U be a standard affine open subset of P and q a generator of the ideal

of the affine variety U ∩ X. Then q is a local generator for the sheaf OC ⊗ CX/P on U ∩ C

and dq is a differential on U whose restriction to U ∩ C vanishes on the tangent fields to

U ∩ C and then defines an element of the conormal sheaf IC/I 2
C = CC/X . The restriction

of dq to C is just the image of q under the map OC ⊗ CX/P → CC/P.

Since the partial derivatives of q, with respect to a system of affine coordinates

in U, define the ideal of the singular locus of X, the OC-dual NC/P → Ω⊗2
C of the

above map has Ω⊗2
C (−D) as image and hence OD ⊗ Ω⊗2

C as cokernel. This proves all

the statements of the lemma. �

An immediate consequence of Theorem 1.1 and Lemma 2.8 is then:

Corollary 2.9. Under the hypotheses of Theorem 1.1, dim Obs(C/X) ≥ deg D. So if the

deformations of C in X are unobstructed, then C does not meet the singular locus of X.

In (iii) of Theorem 1.1, we proved that, if X has corank 1 and C does not contain

the singular point of X, then H1(C,NC/X) = 0 and the deformations of C in X are

unobstructed. A natural question is whether this is true in general:

Question 2.10. Are the deformations of C in X unobstructed if and only if the curve C

does not meet the singular locus of the quadric X? In other words, does the last property

imply the vanishing of H1(C,NC/X)?

An interesting case of the above question is when the quadric X has rank 4. By

a result of M. Green (see [4]), the degree 2 component of the canonical homogeneous

ideal of a smooth projective curve of genus ≥ 4 is generated by quadrics of rank ≤ 4

and, for a general curve, it is generated by quadrics of rank 4. A Bertini’s argument,

similar to the one in the proof of Lemma 2.5, then implies that a general curve C of genus

g ≥ 5 is contained in a quadric X of rank 4 and is disjoint from its singular locus. For

g = 5, we know, by (iii) of Theorem 1.1, that H1(C,NC/X) = 0 but the question is open

for g > 5.
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