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Abstract In this work, we obtain existence of nontrivial solutions to a minimization prob-
lem involving a fractional Hardy–Sobolev type inequality in the case of inner singularity.
Precisely, for �> 0, we analyze the attainability of the optimal constant

�˛;�.�/ WD inf
°
Œu�2s;�C�

Z
�

juj2 dxWu2H s.�/;

Z
�

ju.x/j2s;˛

jxj˛
dxD 1

±
;

where 0< s < 1, n> 4s, 0� ˛ < 2s, 2s;˛ D
2.n�˛/

n�2s
, and��R

n is a bounded domain
such that 0 2�.

1. Introduction

Let 0 < s < 1, n > 4s, 0� ˛ < 2s, and ��R
n be a bounded domain such that 0 2�.

We introduce the fractional Sobolev space; see for instance [6]:

(1.1) H s.�/ WD
°
u 2L2.�/W

ju.x/� u.y/j

jx � yj
n
2
Cs
2L2.���/

±
;

endowed with the norm

(1.2) kuks;� WD
�Z
�

juj2 dxC

Z
���

ju.x/� u.y/j2

jx � yjnC2s
dx dy

� 1
2
:

Let � > 0 and 2s;˛ D
2.n�˛/
n�2s

. This paper is devoted to analyzing the attainability of the
optimal constant C > 0 for the following fractional Hardy–Sobolev inequality:

C
�Z
�

ju.x/j2s;˛

jxj˛
dx
� 2
2s;˛ �

Z
���

ju.x/� u.y/j2

jx � yjnC2s
dx dy C �

Z
�

ˇ̌
u.x/

ˇ̌2
dx;

for every u 2H s.�/. For the related Dirichlet problem, see the recent work [14].
In [18], Marano and Mosconi proved the existence of an extremal function u0,

solution to

(1.3) �˛ WD inf
°
Œu�2s Wu measurable, vanishing at infinity;

Z
RN

ju.x/j2s;˛

jxj˛
dx D 1

±
;
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where 2s;˛ D
2.n�˛/
n�2s

and

Œu�2s D

Z
Rn�Rn

ju.x/� u.y/j2

jx � yjnC2s
dx dy:

See also [19]. Here, u vanishing at infinity means j¹juj > aºj <1 for every a > 0.
Observe that 2s;2s D 2 and 2s;0 D 2�s D

2n
n�2s

, the latter being related to the noncompact
but continuous embedding H s.Rn/ ,! L2

�
s .Rn/. The constant �2s was calculated by

Herbst [16]. In [18], for p > 1, the existence of extremal functions u 2 PW s;p.Rn/ for
the Hardy–Sobolev inequality was established through concentration-compactness. The

authors also showed the asymptotic behavior of extremal functions: u.x/� jxj�
n�ps

p�1 ,
as jxj !1, and the summability information u 2 PW s;� .Rn/, for every n.p�1/

n�s
< � <

p. Such properties turn out to be optimal when s! 1�, in which case optimizers are
explicitly known. See [6] for the definitions of PW s;p.Rn/ and PW s;� .Rn/.

In [10], the sharp constant in the Hardy inequality for fractional Sobolev spaces is
calculated by using a nonlinear and nonlocal version of the ground state representation.

For unbounded domains, different from R
n, in [8], it was proved a variant of the

fractional Hardy–Sobolev–Maz’ya inequality for half spaces, applying a new version
of the fractional Hardy–Sobolev inequality for general unbounded John domains. Frank
and Seiringer gave an expression for the best constant in the half space in [11]; see also
[1]. Concerning bounded domains, see [7, 17]. In [9], the authors considered domains
with a uniformly fat complement.

In the local setting, in [12], the authors showed that the value and the attainability
of the best Hardy–Sobolev constant on a smooth domain ��R

n,

�˛.�/ WD
°Z
�

jruj2 dxWu 2H 1
0 .�/;

Z
�

ju.x/j2˛

jxj˛
dx D 1

±

are closely related to the properties of the curvature of @� at 0, where 2˛ D
2.n�˛/
n�2

,
n � 3, 0 < ˛ < 2, when 0 2 @�. For the nonsingular context with either ˛ D 0 or 0
belonging in the interior of the domain �, it is well-known that �˛.�/D �0.Rn/ for
any domain �.

In [15], a minimization problem involving a Hardy–Sobolev type inequality was
solved, where the author analyzed both inner and boundary singularity. For further
references in the local setting, see [3, 4] and the expository paper [13].

Our goal is analyzing the existence of solution to

(1.4) �˛;�.�/ WD inf
°
Œu�2s;�C �

Z
�

juj2 dxWu 2H s.�/;

Z
�

ju.x/j2s;˛

jxj˛
dx D 1

±
:

THEOREM 1.1
Let � > 0, 0 < s < 1, n > 4s, 0 � ˛ < 2s, 2s;˛ D

2.n�˛/
n�2s

, and � � R
n be a bounded

domain with 0 2�. Then, there exists �� 2 .0;1� such that the constant �˛;�.�/ is
attained for every 0 < � < ��. Moreover, if �� <1, �˛;�.�/ is not attained for every
� > ��.
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The rest of the paper is organized as follows. In Section 2, we gather some prelim-
inaries and features of the constant �˛;�.�/. Section 3 is dedicated to the proof of
Theorem 1.1. The crucial ingredients are the properties of �˛;�.�/ seen as a function
in � and a fractional Hardy–Sobolev type inequality.

2. Preliminaries

From now on, we fix 0 < s < 1, n > 4s, 0� ˛ < 2s, and ��R
n is a bounded domain

such that 0 2�.
The relation between the global constant �˛ and �˛;�.�/, defined in (1.3) and

(1.4), respectively, will be a key element for the nonexistence result in Theorem 1.1.
As mentioned, some features of �˛;�.�/ seen as a function in the parameter � play an
important role as well. We start with the following basic lemma.

We denote PH s.Rn/ the space of measurable functions uWRn!R such that Œu�s is
finite.

LEMMA 2.1
Let � 2 C1c .�/ and u 2 PH s.Rn/ be such that kuks;˛ <1. Then, �u 2H s.�/.

Proof
It is clear that �u 2L2.�/ since the embedding L2s;˛ .�; jxj�˛ dx/ ,!L2.�/ is con-
tinuous, as a consequence of Hölder’s inequality with p D 2s;˛

2
, p0 D n�˛

2s�˛
and the

boundedness of �.
To see Œ�u�s;� <1, observe that

(2.1)
ˇ̌
�.x/u.x/� �.y/u.y/

ˇ̌
�
ˇ̌
u.x/

ˇ̌ˇ̌
�.x/� �.y/

ˇ̌
C
ˇ̌
�.y/

ˇ̌ˇ̌
u.x/� u.y/

ˇ̌
:

Therefore, by Minkowski’s inequality, we get

Œ�u�s;� �
�Z
�

ˇ̌
u.x/

ˇ̌2 Z
�

j�.x/� �.y/j2

jx � yjnC2s
dy dx

� 1
2

C
�Z
�

ˇ̌
�.x/

ˇ̌2 Z
�

ju.x/� u.y/j2

jx � yjnC2s
dy dx

� 1
2

DW I CC.�/Œu�s;�;

where we have used j�.x/j2 � k�k21 in the second term. For I , we proceed as in [18,
Lemma 2.3] to get

(2.2)
Z
Rn

j�.x/� �.y/j2

jx � yjnC2s
dy � C.�;n; s/

uniformly in x 2Rn. Therefore,

Œ�u�2s;� � C.�;n; s/
�
kukL2.�/C Œu�s;�

�
<1

since kuks;˛;� � kuks;˛ < 1, Œu�s;� � Œu�s < 1, and the embedding L2s;˛ .�;

jxj�˛ dx/ ,!L2.�/ is continuous. �
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Now, we are able to establish the main result of this section, which gives useful proper-
ties of �˛;�.�/ seen as a function in the parameter � > 0. Part of the next lemma relies
on the existence of an extremal function for the global constant �˛ , and its behavior for
jxj � 1, given in [18].

LEMMA 2.2
Let � > 0 and ��R

n be an open bounded domain such that 0 2�. Then,

(1) �˛;�.�/��˛ , for every � > 0.
(2) �˛;�.�/ is continuous and nondecreasing with respect to �.
(3) lim�!0�˛;�.�/D 0,

where �˛;�.�/ and �˛ are defined in (1.4), and (1.3), respectively.

Proof
(1) Let " > 0, R > 0 and � 2 C1c .�/ be such that 0 � � � 1, � D 1 in BR.0/ ��,
� D 0 in � nB2R.0/.

Let u0 be a positive minimizer of �˛ ; see [18] for the existence of u0. Consider

u".x/ WD "
�n�2s

2 u0

�x
"

�
�.x/; v".x/ WD

1

ku"ks;˛;�
u".x/:

Then, v" 2H s.�/, by Lemma 2.1. Moreover, kv"ks;˛;� D 1. Thus,

(2.3) �˛;�.�/� Œv"�
2
s;�C �

Z
�

v2" .x/dx:

Observe that, after a change of variables,
Z
�

u
2s;˛
" .x/

jxj˛
dx D

Z
"�1�

�2s;˛ ."y/
u
2s;˛
0 .y/

jyj˛
dy:

Since � D 1 in BR.0/��, 0� � � 1 and supp� �B2R.0/, we get
Z
BR
"

.0/

u
2s;˛
0 .y/

jyj˛
dy �

Z
�

u
2s;˛
" .x/

jxj˛
dx �

Z
B 2R
"

.0/

u
2s;˛
0 .y/

jyj˛
dyI

therefore,

(2.4) lim
"!0

Z
�

u
2s;˛
" .x/

jxj˛
dx D

Z
Rn

u
2s;˛
0 .y/

jyj˛
dy D 1:

Moreover, Z
�

v2" .x/dx D
"2s

ku"k
2
s;˛;�

Z
B 2R
"
.0/

�2."y/u0.y/
2 dy DO."2s/:

The last identity is due to (2.4), and the fact that

(2.5)
Z
B 2R
"
.0/

�2."y/u0.y/
2 dy � C:
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Indeed, by [18, Theorem 1.1], we know that for

(2.6)
ˇ̌
u0.y/

ˇ̌
�

C

jyjn�2s
; for every jyj � 1:

Then, there exist "0 > 0 such that for every 0 < " < "0, we have 2R
"
> 1. Therefore, for

every 0 < " < "0,Z
B 2R
"
.0/

�2."y/u0.y/
2 dy D

�Z
¹jyj<1º

C

Z
¹1�jyj� 2R" º

�
�2."y/u0.y/

2 dy

DW I C II:

To manage I , recall 0� � � 1 and that u0 2L2loc.R
n/ by Lemma 2.1. To control II, we

use 0� � � 1, (2.6), and the fact that n > 4s, to find

II � C
Z
jyj�1

1

jyj2.n�2s/
dy D C

Z 1
1

r�n�1C4s dr D C:

Now, we have to estimate Œv"�2s;� D ku"k
�2
s;˛;�Œu"�

2
s;�. Thanks to (2.4), it will be

enough to analyze Œu"�2s;�. Similar to what we have done in Lemma 2.1 (Equation
(2.1), Minkowski’s inequality), but changing variables and recalling 0� � � 1, we get

Œu"�s;� � Œu0�s C
�Z
"�1��"�1�

u0.x/
2j�."x/� �."y/j2

jx � yjnC2s
dx dy

� 1
2
:

Since u0 is an extremal function for the constant �˛ , we obtain

(2.7) Œu"�s;� ��
1
2
˛ C

�Z
"�1��"�1�

u0.x/
2j�."x/� �."y/j2

jx � yjnC2s
dx dy

� 1
2
:

We will show that

(2.8) lim
"!0

Z
"�1��"�1�

u0.x/
2j�."x/� �."y/j2

jx � yjnC2s
dx dy D 0:

That will be a consequence of the Lebesgue dominated convergence theorem. Clearly,

lim
"!0

	"�1��"�1�.x; y/
u0.x/

2j�."x/� �."y/j2

jx � yjnC2s
D 0 a.e. in R

n �Rn:

To find the dominating function in L1.Rn � R
n/, we split the domain and use (2.6).

Indeed, for every 0 < " < 1,

u0.x/
2j�."x/� �."y/j2

jx � yjnC2s
� C .x;y/

�
	¹jxj<1ºu0.x/

2C 	¹jxj�1º
1

jxj2.n�2s/

�

DW‰.x;y/;

where  .x;y/ D 1

jx�yjnC2s�2
	¹jx�yj<1º C

1

jx�yjnC2s
	¹jx�yj�1º. For the previous

inequality, we used

j�."x/� �."y/j2

jx � yjnC2s
�

8<
:

C"2

jx�yjnC2s�2
if jx � yj< 1;

C

jx�yjnC2s
if jx � yj � 1:
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Let us see that ‰ 2L1.Rn �Rn/:Z
Rn�Rn

‰.x;y/dx dy � C

Z
jxj<1

u0.x/
2

Z
Rn

 .x;y/dy dx

CC

Z
jxj�1

1

jxj2.n�2s/

Z
Rn

 .x;y/dy dx

� C

Z
jxj<1

u0.x/
2 dxCC

Z
jxj�1

1

jxj2.n�2s/
dx � C:

In the last step, we use that u0 2L2loc.R
n/ by Lemma 2.1 and that n > 4s in the second

term. Hence, (2.8) holds. Consequently, from (2.7),

lim sup
"!0

Œu"�
2
s;� ��˛:

Then, (2.3) becomes

�˛;�.�/�
1

ku"k
2
s;˛;�

Œu"�
2
s;�CO."

2s/:

Taking the limit "! 0, we conclude �˛;�.�/��˛ .
(2) The decreasing property of �˛;�.�/ is clear from the definition (1.4). To see the

continuity of �˛;�.�/, let ¹�kºk2N � .0;1/ be such that �k! � 2 .0;1/ as k!1.
Then, for every u 2H s.�/ verifying kuks;˛;� D 1,

�˛;�k .�/� Œu�
2
s;�C �k

Z
�

juj2 dx:

By taking the limit k!1 in the previous inequality, we get

lim sup
k!1

�˛;�k .�/� Œu�
2
s;�C �

Z
�

juj2 dx

for every u 2H s.�/ such that kuks;˛;� D 1, implying

(2.9) lim sup
k!1

�˛;�k .�/� �˛;�.�/:

On the other hand, for every u 2H s.�/ such that kuks;˛;� D 1, we have

�˛;�.�/� Œu�
2
s;�C �k

Z
�

juj2 dxC .�� �k/

Z
�

juj2 dx

� Œu�2s;�C �k

Z
�

juj2 dxC .�� �k/C;

where C > 0 is independent of u since L2s;˛ .�; jxj�˛ dx/ ,! L2.�/ is continuous
and kuks;˛;� D 1. By taking first the infimum in u 2H s.�/ such that kuks;˛;� D 1,
we get

�˛;�.�/��˛;�k .�/C .�� �k/C:

By taking the limit k!1, we obtain

(2.10) �˛;�.�/� lim inf
k!1

�˛;�k .�/:

Combining (2.9) and (2.10), we get the continuity of �˛;�.�/.



On the solvability of a minimization problem 311

(3) Consider c WD .
R
�

1
jxj˛

dx/
� 1
2s;˛ 2H s.�/. Then,

�˛;�.�/� Œc�
2
s;�C �

Z
�

c2 dx D �c2j�j:

Now, take the limit �! 0 to conclude (3). �

3. Existence of extremal function

We start this section with the second ingredient to prove Theorem 1.1, which is a frac-
tional Hardy–Sobolev type inequality. We follow ideas from [15], where the local ver-
sion was studied.

LEMMA 3.1
Let��R

n be a bounded domain such that 0 2�. Then, there exists a positive constant
C1 D C1.�;n; s/ such that

(3.1) �˛

�Z
�

ju.x/j2s;˛

jxj˛
dx
� 2
2s;˛ � Œu�2s;�CC1

Z
�

juj2 dx

for every u 2H s.�/.

Proof
Let�1 ��2 �� be bounded sets to be determined, such that 0 2�1. Let � 2 C1c .�/
be such that 0� � � 1 in �, � D 1 in �1, � D 0 in � n�2. Consider


1 D
�2

�2C .1� �/2
; 
2 D

.1� �/2

�2C .1� �/2
:

Then, 

1
2

1 2 C
1
c .�/, 


1
2

2 2 C
1.�/, 
1 C 
2 D 1, supp
1 � �2 � �, supp
2 � R

n n

�1. Let u 2 H s.�/. We consider 

1
2

2 uW�! R, by [6, Lemma 5.3], 

1
2

2 u 2 H
s.�/

since u 2H s.�/ and 

1
2

2 2 C
0;1.�/. Moreover, k


1
2

2 ukH s.�/ � C.n; s;�/kukH s.�/.
By using the auxiliary functions 
1, 
2, we can write

juj2s;˛ D
�

1juj

2C 
2juj
2
� 2s;˛

2

and, by Minkowski’s inequality in L
2s;˛

2 .�; jxj�˛ dx/, split the main integral into two
pieces and analyze them separately, as follows:

�˛

�Z
�

ju.x/j2s;˛

jxj˛
dx
� 2
2s;˛ ��˛

� 2X
iD1

�Z
�

j

1
2

i uj
2s;˛

jxj˛
dx
� 2
2s;˛

�
DW I1C I2:

To estimate I1, notice that we can use the fractional Hardy–Sobolev inequality given

by �˛ for 

1
2

1 u; see (1.3). Thus,

(3.2) I1 D �˛

�Z
�

j

1
2

1 uj
2s;˛

jxj˛
dx
� 2
2s;˛ D �˛

�Z
Rn

j

1
2

1 uj
2s;˛

jxj˛
dx
� 2
2s;˛ � Œ


1
2

1 u�
2
s :
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Notice that supp
1 ��. Similarly to (2.7), we obtain

Œ

1
2

1 u�
2
s �

Z
���

j

1
2

1 .x/u.x/� 

1
2

1 .y/u.y/j
2

jx � yjnC2s
dx dy

C 2

Z
.Rnn�/��


1.x/ju.x/j
2

jx � yjnC2s
dx dy:

For the first term, we use (2.1) for 

1
2

1 u and Minkowski’s inequality. For the second
term, we proceed similar to Lemma 2.1 (2.2), to get

Œ

1
2

1 u�
2
s �

Z
���


1.y/ju.x/� u.y/j
2

jx � yjnC2s
dx dy CC.�;n; s/

Z
�

juj2 dx:

Therefore,

(3.3) I1 �

Z
���


1.y/ju.x/� u.y/j
2

jx � yjnC2s
dx dy CC.�;n; s/

Z
�

ˇ̌
u.x/

ˇ̌2
dx:

To analyze I2, notice that 
2 D 0 in �1, so that

I2 D �˛

�Z
�

j

1
2

2 uj
2s;˛

jxj˛
dx
� 2
2s;˛ D �˛

�Z
�n�1

j

1
2

2 uj
2s;˛

jxj˛
dx
� 2
2s;˛

:

Observe that 0 … supp
2. Denote by d1 WD dist.0; @�1/. Thus, by Hölder’s inequality
with pD n

n�˛
, p0 D n

˛
,

I2 � �˛d
� 2˛
2s;˛

1

�Z
�n�1

j

1
2

2 uj
2s;˛ dx

� 2
2s;˛

� �˛d
� 2˛

2�s;˛

1 j� n�1j
2˛
n2s;˛

�Z
�n�1

j

1
2

2 uj
2�s dx

� 2

2�s

� �˛d
� 2˛
2s;˛

1 j� n�1j
2˛
n2s;˛ ��1�1 Œ


1
2

2 u�
2
s;�;

where ��1 is given by

��1 WD inf
°
Œv�2s;�Wv 2H

s.�/; vD 0 in �1;
Z
�

jvj2
�
s dx D 1

±
:

It will be enough to prove that

(3.4) �˛d
� 2˛
2s;˛

1 j� n�1j
2˛
n2s;˛ ��1�1 � 1:

Indeed, given ı > 0, choose�1 �� such that 0 2�1 and j�n�1j< ı. Let�0 �� be
an open bounded set such that 0 2�0 ��1. Then, d1 � d0 WD dist.0; @�0/. Moreover,
��0 � ��1 . Therefore,

�˛d
� 2˛
2s;˛

1 j� n�1j
2˛
n2s;˛ ��1�1 � �˛d

� 2˛
2s;˛

0 j� n�1j
2˛
n2s;˛ ��1�0

� C.�0/j� n�1j
2˛
n2s;˛ � C.�0/ı

2˛
n2s;˛ :
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Let ı > 0 be such that C.�0/ı
2˛
n2s;˛ < 1. Consequently, proceeding as for the estimate

of Œ

1
2

1 u�s , we obtain

(3.5) I2 � Œ

1
2

2 u�
2
s;� �

Z
���


2.y/ju.x/� u.y/j
2

jx � yjnC2s
dx dyCC.�;n; s/

Z
�

ˇ̌
u.x/

ˇ̌2
dx:

By (3.3), (3.5), and the fact that 
1C 
2 D 1, we conclude (3.1). �

The next corollary will be one of the main tools for proving Theorem 1.1.

COROLLARY 3.2
Let ��R

n be a bounded domain such that 0 2�. Then,

(3.6) lim
�!1

�˛;�.�/D �˛:

and one of the following statements holds:

(1) For every � > 0, we have the strict inequality �˛;�.�/ < �˛ .
(2) There exists N� > 0 such that �˛;�.�/D �˛ for every �� N�.

Proof
The statements (1) and (2) follow trivially from Lemma 2.2 (1). To see (3.6), again by
Lemma 2.2 (1), we know that for every � > 0, it holds that �˛;�.�/� �˛ . Therefore,

lim sup
�!1

�˛;�.�/� �˛:

By Lemma 3.1, there exists a positive constant C1 D C1.�;n; s/ such that

�˛ � Œu�
2
s;�CC1

Z
�

juj2 dx � Œu�2s;�C �

Z
�

juj2 dx

for every u 2H s.�/ verifying kuks;˛;� D 1 and �� C1. By taking the limit �!1,
we get

�˛ � lim inf
�!1

�˛;�.�/;

which finishes the proof of (3.6). �

Combining Lemmas 2.2 and 3.1, we get the next proposition which gives (non)existence
of an extremal function for �˛;�.�/, depending on the relation with the global constant
in R

n (i.e., �˛).

PROPOSITION 3.3
Let � > 0 and ��R

n be a bounded domain such that 0 2�.

(1) If �˛;�.�/ < �˛ , then �˛;�.�/ is attained.
(2) If there exists a N� > 0 such that �˛; N�.�/D �˛ , then for every � > N�,

�˛;�.�/ is not attained.
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Proof
(i) Let ¹ukºk2N �H s.�/ be a minimizing sequence for �˛;�.�/; that is,

Z
�

juk j
2s;˛

jxj˛
dx D 1 for every k 2N;

and

lim
k!1

�
Œuk �

2
s;�C �

Z
�

juk j
2 dx

�
D �˛;�.�/:

Then, ¹ukºk2N is bounded in H s.�/. Therefore, up to a subsequence, we can assume
that

uk*u weakly in H s.�/,
uk! u strongly in Lp.�/ for 1� p < 2�s D

2n
n�2s

; see [5, Theorem 4.54],
uk! u a.e. in �.

Let us prove that u 6� 0. We proceed by contradiction. Assume u� 0 a.e. in �. By
(3.1), we get

�˛ D �˛

�Z
�

jukj
2s;˛

jxj˛
dx
� 2
2s;˛ � Œuk �

2
s;�CC

Z
�

jukj
2 dx;

which implies

(3.7) �˛ � �˛;�.�/C o.1/C .C � �/

Z
�

jukj
2 dx:

By taking the limit in k, we obtain �˛ � �˛;�.�/ which is a contradiction. Therefore,
u 6� 0 in �. By the Brézis–Lieb theorem [2], we know thatZ

�

juk j
2s;˛

jxj˛
dx D

Z
�

juj2s;˛

jxj˛
dxC

Z
�

juk � uj
2s;˛

jxj˛
dxC o.1/I

therefore,

1D
�Z
�

jukj
2s;˛

jxj˛
dx
� 2
2s;˛ D

�Z
�

juj2s;˛

jxj˛
dxC

Z
�

juk � uj
2s;˛

jxj˛
dxC o.1/

� 2
2s;˛

�
�Z
�

juj2s;˛

jxj˛
dx
� 2
2s;˛ C

�Z
�

juk � uj
2s;˛

jxj˛
dx
� 2
2s;˛ C o.1/

�
1

�˛;�.�/

�
Œu�2s;�C �

Z
�

juj2 dx
�

C
1

�˛;�.�/

�
Œuk � u�

2
s;�C �

Z
�

juk � uj
2 dx

�
C o.1/

D
1

�˛;�.�/

�
Œuk �

2
s;�C �

Z
�

juk j
2 dx

�
C o.1/

D 1C o.1/:
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Notice that we have used thatˇ̌
.uk � u/.x/� .uk � u/.y/

ˇ̌2
D
ˇ̌
uk.x/� uk.y/

ˇ̌2
C
ˇ̌
u.x/� u.y/

ˇ̌2
� 2

�
uk.x/� uk.y/

��
u.x/� u.y/

�
;

implying

Œu�2s;�C Œuk � u�
2
s;� � Œuk�

2
s;�C Œu�

2
s;�

� 2

Z
���

.uk.x/� uk.y//.u.x/� u.y//

jx � yjnC2s
dx dy

D Œuk �
2
s;�C o.1/;

due to the weak convergence uk * u in H s.�/. As a consequence, there exists the
following limit:

1D lim
k!1

�Z
�

juj2s;˛

jxj˛
dxC

Z
�

juk � uj
2s;˛

jxj˛
dx
� 2
2s;˛

D lim
k!1

h�Z
�

juj2s;˛

jxj˛
dx
� 2
2s;˛ C

�Z
�

juk � uj
2s;˛

jxj˛
dx
� 2
2s;˛

i
:

Since u 6� 0, we conclude that uk ! u strongly in L2s;˛ .�; jxj�˛ dx/, and, by the

strict subadditivity of t 7! t
2

2s;˛ , Z
�

juj2s;˛

jxj˛
dx D 1;

which implies that �˛;�.�/ is attained by u.
(ii) Let � > N�. Assume that there exists a function u 2H s.�/which is a minimizer

for �˛;�.�/. Then,

�˛;�.�/D Œu�
2
s;�C �

Z
�

juj2 dx > Œu�2s;�C
N�

Z
�

juj2 dx

��˛; N�.�/D �˛ ��˛;�.�/;

where we have used (1) from Lemma 2.2 in the last inequality. This contradiction fin-
ishes the proof. �

Now, we are ready to prove Theorem 1.1.

Proof of Theorem 1.1
We define �� D inf¹� > 0W�˛;�.�/ D �˛º 2 Œ0;1�. By Lemma 2.2 (3), we deduce
�� > 0. The proof follows from Corollary 3.2 and Proposition 3.3. �
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