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a b s t r a c t 

We present co-skeletons, a new method that computes consistent curve skeletons for 3D shapes from 

a given family. We compute co-skeletons in terms of sampling density and semantic relevance, while 

preserving the desired characteristics of traditional, per-shape curve skeletonization approaches. We take 

the curve skeletons extracted by traditional approaches for all shapes from a family as input, and compute 

semantic correlation information of individual skeleton branches to guide an edge-pruning process via 

skeleton-based descriptors, clustering, and a voting algorithm. Our approach achieves more concise and 

family-consistent skeletons when compared to traditional per-shape methods. We show the utility of our 

method by using co-skeletons for shape segmentation and shape blending on real-world data. 

© 2020 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Skeletons are thin and locally centered structures which de-

scribe the geometry, topology, and symmetry properties of shapes

compactly and intuitively. This makes skeletons powerful tools for

applications such as shape segmentation [1] , manipulation [2,3] ,

and blending [4] . Existing skeletonization methods can be classi-

fied in methods that compute surface skeletons [5,6] and methods

that compute curve skeletons [7,8] . Surface skeletons capture shape

geometry better, but curve skeletons are much simpler (and faster)

to compute, represent, and analyze, and are the dominant skeleton

type currently used in applications [9] . 

Among the many existing curve skeletonization, important dif-

ferences exist regarding the quality of the produced skeletons,

which is measured by criteria including thinness, centeredness,

compactness, robustness to noise, homotopy equivalence to the in-

put shape, and computational complexity [12] . Quality issues cre-

ate problems when using skeletons in certain applications such as

mesh rigging. Fig. 1 shows the curve skeletons (CSs) extracted by

two such methods. The extracted skeletons exhibit problems such

as shrinkage of end branches with respect to the corresponding

shape parts or even exiting the shape at places. Other skeletoniza-

tion methods exhibit different problems with respect to the men-

tioned quality criteria. Given such problems, most of the skeleton-

based mesh rigging approaches require that skeletons are manually
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pecified for the input shape, a process which is time-consuming

nd error-prone. 

Obtaining high quality curve skeletons — important for applica-

ions like rigging [13] and shape segmentation [1] — has been done

o far by proposing increasingly improved skeletonization methods.

et, new methods may introduce new problems, more user param-

ters, or have a more complex implementation [9] ; and must be

horoughly tested on large shape collections [12,14] . Another prob-

em of all skeletonization methods is that they cannot guarantee

hat they preserve the same level-of-detail on similar parts of any

nput shape. Given an actual shape and parameter settings, details

ay be kept in the skeleton or simplified away. This creates incon-

istent skeletons from the viewpoint of applications that use them

urther to manipulate shapes. 

We propose a different approach: Inspired by recent approaches

n co-analysis of 3D shape collections, rather than aiming to com-

ute a high-quality skeleton from a single shape , we use a col-

ection of shapes (of the same kind) to compute their skeletons.

he intuition behind this is that a given skeletonization method

ill be able to extract good-quality skeletons from most parts of

ost shapes, and will not fail consistently on the same parts of all

hapes. By combining information from all extracted skeletons, we

btain co-skeletons which represent well all shapes in a given fam-

ly with controlled and consistent sampling density and presence

f significant details in all skeletons, even when large variations

xist between individual shapes. 

Our method works as follows: Given a 3D shape collection,

e extract the curve skeletons from all shapes, using any exist-

ng good-quality CS method chosen by the user. Next, we use

https://doi.org/10.1016/j.cag.2020.05.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2020.05.006&domain=pdf
mailto:wuzizhao@hdu.edu.cn
https://doi.org/10.1016/j.cag.2020.05.006
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Fig. 1. Curve skeletons extracted by Le et al. [10] and Liu et al. [2] for mesh rigging. 

As visible, the produced skeletons are not always locally centered and, at places, 

even exit the shape. 
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everal descriptors to characterize these skeletons, and use them

o cluster similar branches from different skeletons. Finally, we

nfer the semantic correlation among corresponding edges and

se this information to jointly prune all skeletons to achieve

onciseness (representing CSs with few sampling points and edges)

nd consistency (the same type of shape detail creates the same

ype of skeleton branch) over an entire shape family. We show

ur automatic co-skeleton extraction framework by applications of

hape co-segmentation and shape blending. 

Our main contributions are as follows: 

1. We present an approach to induce semantic correlations for

curve skeletons of 3D shapes; 

2. We propose a semantic-based skeleton pruning approach; 

3. We show the usability of our pruned skeletons by applications

of shape co-segmentation and shape blending. 

We organize this paper as follows. Section 2 reviews related

ork in curve skeletonization. Section 3 outlines our framework.

ection 4 details our pruning algorithm for skeleton consistency.

ection 5 presents results and applications. Section 6 discusses our

roposal and outlines future work directions. 

. Related work 

.1. Skeleton extraction 

Skeletons, or medial axes, were introduced by Blum [15] based

n the medial axis transform (MAT) which computes the cen-

ers and radii of maximal balls lying within a shape. Skeletons

ave been used in many applications, including shape segmenta-

ion [1,7] , manipulation [2,3] , matching [16] , and modeling [4] . For

dditional details, we refer to recent surveys of 3D skeletonization

ethods and their applications [9,17] . 

3D shapes admit two main skeleton types: Surface skeletons,

efined following Blum’s MAT; and curve skeletons, defined more

oosely as curvilinear (1D) structures locally centered in the

hape [12,18] . Curve skeletons are much more popular, since they

re considerably simpler and faster to compute, represent, and

anipulate than surface skeletons. Yet, they lack a universally

ccepted definition [9] . This has led to many curve skeletonization

ethods, each emphasizing different desirable properties up to

ifferent extents, e.g. , homotopy equivalence to the input shape,

obustness to noise, smoothness, centeredness, and invariance

o isometric shape transformations [12,14] . For example, Biasotti

t al. [19] proposed Reeb graphs that formalize a concise topo-

ogical encoding of shapes and can be embedded geometrically

o define compact curve skeletons. Hassouna et al. [20] ex-

ract well-centered curve skeletons by tracing curves seeded at

igh-divergence points in a gradient vector field. Li et al. [21] pi-

neered mesh decimation methods to compute curve skeletons.
arini et al. [22] suggest shape-prototypes which summarize the

ost relevant features of a shape class to help with 3D shape

etrieval. 

Contraction methods are arguably the most widely used tech-

iques for curve skeletonization [7,23–25] as they are relatively

imple to implement, fast, and can handle large and densely-

ampled meshes [12] . Within this class, Au et al. [7] contract

 mesh into a zero-volume skeletal shape by implicit Laplacian

moothing with global positional constraints. This mesh is con-

erted into a 1D curve-skeleton through a connectivity-surgery

rocess to remove collapsed faces while preserving its shape and

he original topology. Tagliasacchi et al. [8] compute the Voronoi

iagram of a 3D shape’s vertices and its medial poles and next it-

ratively use an implicit constrained Laplacian solver to optimize

riangulation by local remeshing until the shape’s volume vanishes.

pon convergence, the method produces a medially-centered curve

keleton. In our work, we use both Au et al. [7] and Tagliasacchi

t al. [8] to extract initial curve skeletons that we further refine

nto our co-skeletons. Fig. 2 (top and mid rows) shows skeletons

omputed by both these methods for various shapes. As visible

here, these two methods compute globally similar, but locally dif-

erent, curve skeletons. However, we will show that this does not

nfluence the results obtained by our co-skeletons. 

Sensitivity of the computed skeletons to shape changes, due

o sampling density or small-scale noise, is arguably the key

hallenge of all existing skeletonization methods [9] . Sensitivity,

lso called instability, is handled in two main ways: First, one

an smooth the input shape prior to skeletonization to remove

oise [26,27] . Secondly, one can prune the extracted skeletons to

emove so-called spurious branches, based on various importance

etrics [28,29] . Rather than relying upon automatic importance

etrics, Giachetti et al. [30] guide skeleton pruning manually. Jiang

t al. [25] propose a curve skeleton extraction approach by cou-

led graph contraction and surface clustering. Baran and Popovi ́c

13] present a skeleton extraction method to automatically rig an

nfamiliar character for skeletal animation. Skeletal importance is

ypically defined based on the area of the input shape that con-

racts to a given skeleton point [29,31–33] . However, no such ap-

roach can ensure that the same pruning level occurs for the same

etails present in different input shapes having possibly different

ampling densities. In contrast, we perform skeleton pruning based

n high-level semantic information extracted from an entire shape

ollection. This ensures skeletons that have the same level of de-

ail for all shapes in such a collection. Fig. 2 (bottom row) is an

xample that illustrates this property of our results. 

Collections of shapes have been studied in the context of

keletonization: Schaefer and Yuksel [34] introduced an example-

ased skeleton-extraction approach for mesh deformation. Zheng

t al. [35] proposed a consensus skeleton pruning approach. Yet,

uch approaches only deal with mesh sequences (dynamic meshes

ith fixed connectivity), used e.g. to capture different poses of

he same shape. In contrast, our method handles shape collections

howing large variations, including topological changes and differ-

nt shapes — see e.g. the different animals in the fourleg collec-

ion in Fig. 2 . Also, note that, technically, the method in [35] is

riven by pairwise skeleton correspondences. In our case, we do

ot use pairwise correspondences, but treat an entire family at a

ime. 

Skeleton extraction from natural images is another related

hallenging topic [17] , with no single method able to consis-

ently create good skeletons in all cases. To address this, Jer-

ipothula et al. [36] suggested a joint co-skeletonization and

o-segmentation framework, exploiting inherent interdependen- 

ies of skeletons and segments to assist each other. We are in-

pired by this work, but our proposed solution uses a different

echnique. 
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Fig. 2. Top and mid rows: Skeletons extracted from the fourleg subset of the Princeton Shape Benchmark (PSB) [11] using the Mean Curvature Flow [8] and Mesh Con- 

traction [7] methods, respectively. These skeletons have a variable sampling density and preserve (or not) similar details across different shapes. Bottom row: Co-skeletons 

extracted by our approach are more concise and consistent in preserving similar details across different shapes. 

Fig. 3. Our method has six steps. Curve skeletons are extracted from 3D input shapes using existing skeletonization methods. These skeletons are next reduced to five per- 

face descriptors. The descriptors of all skeletons from a shape family are next clustered. Finally, we prune (simplify) the clustered data to remove semantic noise (semantic 

pruning) and obtain skeletons with a small sample count (skeleton pruning). We use co-skeletons for shape co-segmentation and blending applications. Section 3 details all 

the pipeline steps. 
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2.2. Shape co-analysis 

There has been recent increasing interest in the co-analysis of

shape collections. The premise is that more information can be ex-

tracted by analyzing a collection than when analyzing individual

shapes. An example hereof is co-segmentation — the simultaneous

segmentation of all shapes in a set in a consistent manner. This

has been shown to be of great utility for modeling and textur-

ing [37–39] . Golovinskiy and Funkhouser [40] pioneered consistent

co-segmentation by aligning all shapes and then clustering their

primitives. Following this work, many co-segmentation approaches

have been proposed, using unsupervised learning [38,41,42] or

semi-supervised learning [43,44] . Deep learning has shown excel-

lent performance in this direction, with several methods proposed

for shape segmentation [45,46] . Yet, such methods heavily rely on

large training datasets. 

Besides co-segmentation, other approaches exist for the co-

analysis of a shape-set. Laga et al. [47] presented an effective al-

gorithm to obtain semantic correspondences between 3D shapes

that finds part-wise correspondences. Kaick et al. [48] constructed

a unified shape co-hierarchy from a shape set, providing a richer

characterization of the shape-set beyond coarse template-based

or part-level correspondence. Yumer and Kara [49] propose a co-

abstraction method where shapes in a set are abstracted as much

as possible while still preserving the unique geometric character-

istics distinguishing them from each other. Xu et al. [50] synthe-

size new shapes by analyzing a given shape-set using genetic algo-

rithms. Kim et al. [51] construct cuboid model templates of large

shape sets. Fish et al. [52] learn the configurations of a shape-set

as geometric distributions. Yumer and Kara [53] use co-constrained

handles to deform shape-sets to find and respect the geometric

and spatial constraints among different shape parts. Our work is

inspired by these techniques: We compute family-consistent skele-

tons in terms of sampling density and semantic relevance. Hence,
 F  
ven if the underlying curve-skeletonization method that we use

s imperfect, the problems that it creates on individual shapes are

lleviated or removed by considering all shapes in the family. 

. Proposed method 

Fig. 3 shows the pipeline of our method. Our input is a collec-

ion of N shapes I = { I 1 , . . . , I N } , I i ⊂ R 

3 , of one shape family. By a

amily, we mean a set of shapes that belong to the same semantic

lass, e.g. , four-legged animals or chairs. Shapes are represented as

oundary meshes [9] . The goal of our method is to obtain family-

onsistent curve skeletons S = { S 1 , . . . , S N } , one for each shape in

he input collection. For each shape I i , we consider its curve skele-

on S i , modeled as a set of 3D sample points P i connected by edges

 i , i.e. , S i = (P i , E i ) , P i ⊂ R 

3 , E i = { e i, 1 , e i, 2 , . . . , e i,n i } ⊂ P i × P i . For a

ollection I, we first extract the initial skeletons S i for each shape

 i individually, using existing state-of-the-art methods [7,8] . We

hen extract features for all skeleton edges e i , j and cluster edges in

 joint descriptor space to infer their semantic correlation. To ob-

ain concise and family-consistent skeletons, we propose and apply

wo pruning algorithms, which lead to co-skeletons S i suitable for

hape co-segmentation and shape blending. We next describe each

tep of our pipeline in turn. 

Initial skeleton extraction: We extract shape skeletons S i using

he mean curvature flow (MCF) method [8] or, alternatively, the

esh contraction (MC) method [7] . Any other curve skeletoniza-

ion method can be used directly, if desired. For selecting alter-

atives to MCF and MC, one can study the survey of Sobiecki

t al. [14] to pick the method of choice based on various desir-

ble properties, such as speed, ease of use, type of input (mesh

r voxel volume), or robustness. For brevity, we next show results

ased on the MCF method [8] , which we found slightly easier to

se than MC and producing smoother curve skeletons (see also

ig. 2 ). However, using MC yields very similar co-skeletons to MCF,



Z. Wu, X. Chen and L. Yu et al. / Computers & Graphics 90 (2020) 62–72 65 

Fig. 4. Feature extraction in our pipeline. Left column: Two examples of input shapes with their initial curve skeletons (red) and the shape faces (blue) associated with a 

selected skeleton edge. The other columns show our five feature descriptors computed on the two models (feature names are detailed in Section 3 ). These descriptors are 

aggregated, via their histogram distributions, to form the skeleton-edge descriptors. (For interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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a  
o the choice between the two is largely left to the user’s pref-

rence. Regardless of the skeletonization method choice, we com-

ute skeletons for each shape with approximately | E i | = 100 skele-

on edges each. 

Skeleton description: No matter which skeletonization technique

ne uses, every skeleton edge can be mapped to a set of shape

aces [9] . This mapping [54] , known as the feature transform

 T : S → P (I) , with P denoting the power set, maps FT ( e ∈ S ) to

he set of faces in I that correspond to a skeleton edge e . The

T complements topological shape information, captured by the

urve-skeleton’s branching structure, with geometric information

hat encodes which skeleton fragments capture which shape-

urface details. Both information types are essential for semantic

r functional prediction. 

We use five shape descriptors to characterize surface details,

imilar to previous co-analysis approaches [38,41,55] : Shape Di-

meter Function (SDF) [56] , Conformal Factor (CF) [57] , Shape

ontexts (SC) [58] , Average Geodesic Distance (AGD) [59] , and

eodesic distance to the Base of the shape (GB) [38] . These de-

criptors are defined on mesh faces. Taking the computation of SC

s an example, given a mesh face, we compute the distribution of

ll other faces (weighted by their area) in logarithmic geodesic-

istance bins and uniform-angle bins, where angles are measured

elative to the normal of each face. Hence, each shape face is de-

cribed by five scalar values that correspond to the five above men-

ioned descriptors. 

Given a skeleton edge e i , j ∈ S i with its associated faces FT ( e i , j ) ∈ I i 
nd their face descriptors, we use normalized histograms with a

pecified bin value to measure the feature distribution of e i , j . Using

istograms ensures that the number of faces | FT ( e i , j )| belonging to

 skeleton edge e i , j is normalized over all skeleton edges. We next

ompute a so-called descriptor space over all shapes I i in a family.

ig. 4 shows two examples. The leftmost column shows the faces

blue) associated to a skeleton edge (red). The other columns show

he five feature descriptors we compute, color-coded on a rainbow

olormap. As explained, these descriptors are ultimately recorded

n the skeleton edges via their feature histograms. 

Skeleton clustering: As already explained, there is no unani-

ously accepted formal definition of 3D curve skeletons, let alone

f co-skeletons for a shape family . This implies that it is difficult

o define consistency. Hence, we proceed by processing all skele-

on edges in a shape family in a unified and global manner. As we

o not have explicit semantic information, we resort to clustering,

hich is the approach of choice in many related co-analysis tech-

iques. We therefore simplify (cluster) all edges of all skeletons of
 t  
 shape family, together with their computed descriptor values, in

he per-family descriptor space. To simplify notation, let e a and e b 
e two skeleton edges in the whole family. For each descriptor, let

p a = F T (e a ) be the set of faces corresponding to an edge e a . Let

 a , k be the histogram over p a of the k th descriptor (1 ≤ k ≤ 5). We

efine the dissimilarity between two edges e a and e b with respect

o the k th descriptor as 

 k (e a , e b ) = EMD (h a,k , h b,k ) , 

here EMD (h, ̄h ) is the Earth Mover’s Distance [60] between his-

ograms h and h̄ . EMD is a typical method for evaluating dissimilar-

ty between two multidimensional distributions in a feature space.

e next apply a Gaussian kernel to the distances d k to build an

ffinity matrix W k = (w a,b,k ) for each descriptor k , with entries 

 a,b,k = exp 

(
−d k (e a , e b ) 

2 σ 2 

)
, (1) 

here w a,b,k is the dissimilarity between e a and e b for the k -th

escriptor. We set the number of bins to 50 for each histogram,

nd σ to the mean of all dissimilarities, respectively. 

We now seek a way to combine the five affinity matrices

 k into a single matrix, to be next used to perform the co-

keleton computation. We note that our five descriptors character-

ze partially-related shape aspects. For instance, the AGD and CF

escriptors take typically large values on a shape’s center and low

alues on its extremities; see Fig. 4 . Hence, simply merging the five

ffinity matrices W k into a single matrix would result in redun-

ant information. To avoid this, we use affinity-aggregation spec-

ral clustering [41] to jointly perform feature selection and clus-

ering — that is, reduce the amount of redundant information and

lso decompose the resulting information into self-similar subsets.

or this, we proceed as follows: Let α = [ α1 , . . . , α5 ] be weights

ssociated to the affinity matrices W 1 , . . . , W 5 that indicate how

uch each matrix contributes to describing similarity over the

hape family. We formulate the affinity-aggregation spectral clus-

ering as 

in 

α,F 

5 ∑ 

k =1 

∑ 

a,b 

αk w a,b,k ‖ f a − f b ‖ 

2 , (2)

here F = [ f 1 , · · · , f m 

] is the indicator vector in joint feature space

aving a total of m samples. 

The minimization in Eq. (2) involves two unknown vectors, α
nd F . To solve for them, we use a two-step minimization approach

hat alternatively fixes one unknown vector and varies the other.
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Fig. 5. Skeleton edge clustering in joint feature space. Family-consistent semantic 

correlation can be deduced from the clusters. 
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During optimization, two additional constraints must be satisfied:

The first one comes from normalized spectral clustering, i.e., the

final diagonal matrix D must satisfy 

1 = F ′ DF = F ′ (α1 D 1 + · · · + α5 D 5 ) F = 

5 ∑ 

k =1 

αk s k , (3)

where 

s k = F ′ D k F 

and D k is a diagonal matrix whose i th diagonal element is the sum

of the elements in the i th row of W k . Using this constraint, spec-

tral clustering typically converges to a result [61] . The second con-

straint comes from the Cauchy-Schwartz inequality, which leads to

constraining the sum of the weighted matrices in a normalized

condition, i.e. , 

5 ∑ 

k =1 

√ 

αk = 1 . (4)

By applying the Lagrange multiplier method to the constraints in

Eqs. (3) and ( 4 ), the problem of finding α can be reduced to a one-

dimensional line-search problem, which is easy to solve. For more

details, we refer the interested reader to [62] . 

After obtaining F , we run k -means in feature space to cluster

the data into C classes, where C is assigned according to the num-

ber of parts of each shape in the input family I, under human su-

pervision. That is, for a given shape family, the user has to decide

what is a suitable number of parts that typical shapes in that fam-

ily have — or, putting it differently, by how many parts the user

wants to model shapes in that family. Fig. 5 shows our cluster-

ing result on the fourleg dataset, visualized using t-SNE [63] with

different clusters colored differently. Points that are close in the

embedding (2D) space have thus similar feature vectors. Skeleton

edges that belong to the same cluster are assumed to be semanti-

cally similar. Note that this assumption is reasonable as many co-

analysis algorithms operate under it (see Section 2 ). As the figure

shows, four large clusters appear, which correspond to four parts

of shapes in the fourleg dataset. 

Semantic pruning: We next use semantic pruning to remove so-

called semantic noise , which occurs in our clustering due to three

reasons: (1) Shape meshes may contain noise, which propagates

into the five descriptors. (2) The descriptors themselves contain a

certain amount of fuzziness, as they only measure geometric prop-

erties rather than the ‘true’ semantic ones. (3) Our feature selec-

tion and clustering steps may introduce artifacts. To remedy these

issues, we introduce a semantic pruning step. This step uses the
onnectivity of skeleton edges, based on the idea that two con-

ected skeleton edges have a high probability of carrying the same

emantic information. Importantly, semantic pruning only ‘merges’

he semantic information extracted from different skeletons in the

ame family; it does not actually remove skeleton nodes, a task

hich is done next by the skeleton pruning. We describe semantic

runing in detail in Section 4.1 . 

Skeleton pruning: A final concern is to compute compact co-

keletons, i.e. , having a small number of points. This assists, speed-

ise, all operations that next use co-skeletons. To obtain compact

o-skeletons, we carry out skeleton pruning to reduce potential

keleton over-sampling . Since existing skeleton-pruning algorithms

o not take into account semantic part information over a family

f shapes [9] , we propose a new pruning procedure that considers

nd respects such semantic properties. We describe skeleton prun-

ng in detail in Section 4.2 . 

. Skeleton pruning details 

We next describe the semantic and skeleton pruning algorithms

hich aim to reduce semantic noise, respectively oversampling, in

ur produced co-skeletons. 

.1. Semantic pruning 

As stated in Section 3 , our semantic pruning exploits the obser-

ation that two connected skeleton edges usually hold the same

emantic information. Hence, this connectivity information can add

xtra information to the initial clustering results. 

Our semantic pruning algorithm exploits four properties of a

keleton edge to measure the confidence that two skeleton edges

all within the same semantic part. These are the length of the

dge, the angles between the edge and the two edges connected

o it, and the semantic information of the connected edges them-

elves. 

Edge length: Given a skeleton edge e i , we compute its normal-

zed length l i (with respect to the longest edge in I , so l i ∈ [0, 1])

nd its angles β i , j to edges N i = { e j } to which e i is connected in

he skeleton graph E . Let the cluster index of e i , as computed by

 -means ( Section 3 ), be denoted by c i ∈ [1 , . . . , C] . Given our clus-

ering, c i thus encodes semantic similarity of the edges. With the

bove, we define the confidence score K i of e i as 

 i = λl i + 

∑ 

e j ∈ N i 
b i, j l j γ (i, j) , (5)

here γ (i, j) = 1 when c i = c j and γ (i, j) = −1 otherwise. The hy-

erparameter λ (default: 1.5) defines the relative weight given to

dge lengths vs edge angles in the confidence score. 

Edge angles: The angles β i , j are first normalized into [0,1] by

omputing 

ˆ 
 i, j = (1 + cos βi, j ) / 2 (6)

nd then mapped by a Gaussian kernel to yield the weights 

 i, j = exp 

( 

−
ˆ b 2 

i, j 

2 

) 

. 

his way, the smaller the angle β i , j , the smaller the final weight

 i , j . When βi, j = π, we obtain the highest value of b i, j = 1 . 

Eq. (5) assigns a low confidence to an edge e i when its con-

ected edges e j have different semantic definition, i.e. , come from

ifferent clusters than e i . Conversely, a high confidence score tells

hat e j has the same semantic information as e i . 

We next sort all skeleton edges e i of a shape collection ascend-

ngly on their scores K i and process them in this order as follows.

or each e , we refine its confidence score K to equal the one of its
i i 
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Fig. 6. Semantic pruning for leaf skeleton edge (top) and a joint skeleton edge (bot- 

tom). Colors show class. The role of semantic pruning is to clean up class labels, not 

to remove edges; skeleton pruning does the latter. 

Fig. 7. Illustration of our skeleton pruning process. A skeleton node is removed de- 

pending on its associated angle and the lengths of its incident edges. 

h  

c  

n  

p  

e

4

 

t  

s  

c  

s

 

(  

t  

o  

n  

c  

i  

s  

a  

t

 

c  

s  

m  

e  

l  

n  

p

V  

w  

a  

C  

h  

d  

a  

p  

r  

n  

o  

r  

t

5

 

s  

Fig. 8. A correct case (left) and a wrong case (right) of semantic pruning in one 

example. Our approach may fail to deal with the case of successive semantic noise 

in skeleton edges. 
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f  
ighest-confidence edge-neighbor, i.e. , K i = max e j ∈ N i K j . After pro-

essing an edge, we refresh its confidence score and that of its

eighbours. We repeat the process until we have processed ap-

roximately 10% of all edges (see Fig. 6 ). This value has been set

mpirically based on tests comprising many shape categories. 

.2. Skeleton pruning 

From the initial skeletons with their pruned semantic at-

ributes, we now perform skeleton pruning to reduce over-

ampling and to remove spurious branches. This way, we achieve

ompact co-skeletons that describe the respective shapes with a

mall number of sampling points and edges. 

In contrast to semantic pruning, we now focus on the nodes

vertices) x i ∈ P of the curve skeletons. We categorize all nodes into

hree groups: leaf, joint, and branch. A leaf node is incident with

nly one skeleton edge; a joint node with two edges; and a branch

ode with at least three edges. As most nodes are joint nodes in

urve skeletons, we focus on pruning those only. Also, not prun-

ng leaf or branch nodes ensures that the topology of the pruned

keletons stays identical to the initial ones. Node positions are not

ltered by pruning, so the pruned skeletons maintain their cen-

eredness with respect to the original shapes. 

We exclude from pruning joint nodes whose incident edges

arry different semantic information (cluster labels c i ). Pruning

uch nodes would be difficult, as we would need to somehow

erge different cluster labels into newly created edges. Let e i and

 j be the two incident edges for a node candidate for pruning, and

et β i , j be the angle spanned by these edges. We use β i , j and the

ormalized edge lengths l i and l j , defined as in Section 4 , to com-

ute a node confidence score as 

 i, j = (l i + l j ) ̂ b i, j (7)

ith 

ˆ b i, j defined by Eq. (6) . Following Eq. ( 7 ), nodes with large

ngles and with short incident edges have low confidence values.

onversely, nodes with small angles and long incident edges get

igh confidence values. This models the fact that we want to prune

ensely-sampled and relatively-straight skeleton branches. We sort

ll skeleton nodes ascendingly on their confidence values V i , j and

rune (remove) nodes in this order, one at a time. After each node

emoval, we recompute the confidence scores V i , j of the node’s two

eighbors in the skeleton graph. We prune until approximately 75%

f the joint nodes are pruned. Different thresholds yield a more,

espectively less, aggressive skeleton simplification, as desired by

he application at hand (see Fig. 7 ). 

. Results and applications 

We tested our method on a PC with an Intel 4GHz i7 proces-

or and 8GB RAM. Our time complexity mainly depends on the
escriptor computation. Clustering takes under 1 minute with 20

terations for 2K skeleton edges. Semantic pruning and skeleton

runing computations are linear in skeleton size, taking one sec-

nd for 2K skeleton edges. Overall, our end-to-end pipeline takes

bout 8 minutes for small datasets (20 shapes with around 2K

keleton edges/shape), and scales linearly for larger data. 

We demonstrate the utility of our co-skeletons by comparing

ur results with the raw curve skeletons (extracted as explained in

ection 5.1 ). We also show co-skeletons in action in two applica-

ions: shape segmentation and shape blending ( Section 5.2 ). 

.1. Co-skeleton results 

We compare our co-skeletons with the initial MCF and MC

urve skeletons [7,8] . As test data, we used the Princeton Shape

enchmark (PSB) dataset [11] , which contains sets of shapes of

ultiple types, e.g. , animals, chairs, human models, furniture, and

ehicles. Fig. 2 shows that our co-skeletons are significantly more

oncise (have fewer nodes) than the original curve skeletons, while

reserving overall desirable characteristics such as centeredness

nd topology. Moreover, each edge of our co-skeletons is anno-

ated with semantic information (color-coded in Fig. 2 ). For in-

tance, all edges pertaining to the animals’ heads, legs, or rump,

ave the same color. Such semantic information can next be used

n a wide range of applications, such as shape matching, retrieval,

r segmentation. 

Fig. 8 shows an additional result of our pruning: In most

ases, even in the presence of semantic noise, our approach suc-

eeds. Yet, in cases with significant semantic noise, our approach

ay fail. This is due to the fact that our method uses a voting

echanism that takes into account the semantic information of

onnected skeleton edges. One potential remedy is the use of

 better, more robust, initial skeletonization method, than [7,8] .

ny (existing or future) skeletonization method that accepts 3D

eshes as input, and produces a polyline representation of the

urve skeleton, together with the feature transform of its points,

s directly applicable. 

.2. Co-skeleton applications 

We next aim to show the potential of co-skeletons by pre-

enting two applications that may benefit from them: shape co-

egmentation and shape blending. 

Co-segmentation: Since skeleton edges are inherently linked to

ollections of faces of the input shape(s), we can use the semantic

nformation our algorithm produces to segment shapes. Like state-

f-the-art co-segmentation approaches [38,41,42] , we also use the

raph cut algorithm [64] to optimize the boundaries of different

egments. Fig. 9 shows several segmentation results based on our

o-skeletons for the fourleg ( Fig. 9 a) and human datasets ( Fig. 9 b).

s visible, the produced segmentations are consistent, in the sense

hat different shapes (from the same family) get segmented at ap-

roximately the same level of detail — four limbs, rump, and head,

or the fourleg shapes, and rump, head, legs (thigh, calf, foot), and
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Fig. 9. Segmentation results based on our co-skeletons. Different colors depict different semantic parts. The pruned (co-)skeletons inherently encode co-segmentation results. 

Further results can be found in Fig. 13 in the Appendix. 

Table 1 

Comparison of the average accuracy ( Eq. 8 ) of our co-segmentation results vs exist- 

ing techniques [38,41,42,45,46] . We separate unsupervised techniques [38,41,42] and 

supervised ones [45,46] for fair comparison [45,46] use only 6 training shapes in 

their experiments. 

Shape Average accuracy per category 

category Ours [38] [42] [41] [45] [46] 

Human 83.2 - 70.4 78.0 - - 

Glasses 95.8 - 98.3 92.4 96.78 97.15 

Airplane 80.2 - 83.3 79.6 95.56 93.90 

Ant 88.1 - 92.9 90.1 - - 

Chair 93.8 85.0 89.6 87.6 97.93 97.05 

Octopus 92.4 - 97.5 96.8 98.61 98.67 

Table 98.6 - 99.0 98.4 99.11 99.25 

Teddy 89.8 - 97.1 94.9 98.00 98.04 

Hand 83.4 - 91.9 90.3 - - 

Plier 80.9 - 86.0 83.4 95.01 95.71 

Fish 80.3 - 85.6 82.4 96.22 95.63 

Bird 76.9 - 71.5 72.0 87.51 89.03 

Armadillo 67.6 - 87.3 78.5 - - 

Fourleg 92.1 77.3 88.7 87.7 - - 

Candelabra 82.5 84.8 93.9 97.2 - - 

Lamp 91.1 94.1 90.7 98.4 - - 

 

 

 

 

 

 

 

 

 

 

 

 

 

H  

h  

s  

s  

a  

f  

m  

S

 

c  

(  

t  

m  

c  

t  

i  

t  

t  

t  

p  

m  

c  

m  

p  

t  

o  

m  

b  

t

 

p  

e  

o  

c  

f  

f  

t

 

t  

p  
hands (forearm, arm), respectively. However, details such as ears

or horns for the fourleg shapes, are sometimes not separately seg-

mented, for the shapes in which they are very small. 

We next compare our co-segmentation results to five state-

of-the-art methods [38,41,42,45,46] . Note that these are also co-

segmentation methods which consider shape families rather than

individual shapes. Similar to these methods, we measure the

amount of area of a shape that is labeled correctly as 

acc (I) = 

∑ 

i a i δ(c i , t i ) ∑ 

i a i 
, (8)

where a i , c i , and t i are the area, label computed by our co-

segmentation, and respectively ground-truth label of face i of a

given shape I , and δ is Kronecker’s delta. 

Table 1 lists the accuracy values averaged per shape family for

the PSB benchmark, with unsupervised and supervised methods

reported separately. It shows that our co-segmentation achieves

comparable results for this benchmark in the unsupervised group.
owever, we gain better performance for some shape families, e.g. ,

uman and fourlegs, due to the semantic pruning step. Our re-

ults are driven by skeletons, so they contain both skeleton and

egmentation information, in contrast to other pure segmentation

pproaches. We also see that supervised learning methods per-

orm overall better than unsupervised ones. Yet, as said, supervised

ethods require significant training data, which we do not need.

ee also Fig. 11 for additional insights. 

Finally, we compare our segmentation results with nine classi-

al segmentation methods, which do not consider shape families

that is, which are not of the co-segmentation type). Fig. 10 shows

he results for the hand and horse shapes from the PSB bench-

ark. The rightmost two columns show our results obtained with

o-skeletons constructed from Mesh Contraction (MC) [7] , respec-

ively Mean Curvature Flow (MCF) [8] base skeletons. We consider

n the comparison both skeleton-based and surface-based segmen-

ation methods, as follows. In the first class, Reniers et al. [65] de-

ect curve skeleton junctions and use these to trace geodesic cuts

o segment the parts of a shape. The method was further im-

roved in [66] to reduce oversegmentation. Tierny et al. [67] seg-

ent shapes by analyzing their Reeb graphs, which are related to

urve skeletons. Lien et al. [68] formulate (and solve) shape seg-

entation and curve-skeleton computation as a joint optimization

roblem. Feng et al. [69] extend the geodesic-cut-based segmenta-

ion in [65,66] to surface skeletons, which encode both shape ge-

metry and topology, thus provide more information for the seg-

entation. Finally, Li et al. [21] use mesh decimation methods for

oth shape segmentation but also their curve-skeleton computa-

ion. 

In the second class, we have methods that segment shapes

urely based on the information encoded by their surface. Lee

t al. [70,71] segment surface meshes using snake cuts which are

ptimized based on local mesh features such as curvature and ex-

entricity. Attene et al. [72] segment shapes by fitting primitives

rom a given set (library). Liu and Zhang [73] encode the shape’s

aces into a similarity matrix which they then decompose by spec-

ral clustering. 

Overall, we see that our segmentation results ( Fig. 10 rightmost

wo columns) compare very favorably with existing methods. In

articular, our segment borders are smooth and wrap naturally
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Fig. 10. Comparison of our co-skeleton segmentation using MC and MCF skeletons with nine other segmentation methods. 

Fig. 11. Segmentation results using existing methods can lead to wrong part pre- 

diction. Our method improves on these results (see Fig. 9 ). 
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round the shape, while this is not always the case for the other

ethods (see Fig. 10 c, h, i). Also, our co-skeletons ensure that

here is no oversegmentation present, a phenomenon that can be

bserved for some of the other methods ( Fig. 10 b, d, i). From these

nd other tested examples, we noticed that our segmentation

ethod produces results most similar to the skeleton-cut method

f Feng et al. (see Fig. 10 f, k). This can be explained by the fact

hat both methods optimize for smooth cuts, though with differ-

nt mechanisms (Feng et al. use geodesic tracing; we use graph

uts). Also, both methods use skeletons to drive the segmentation.

owever, while we use curve skeletons which, as explained in

ection 2 are simple and fast to compute, in particular by the

C and MCF methods that we use here, Feng et al. use surface

keletons, which are considerably slower and more complex to

ompute and analyze. 

Fig. 10 shows an additional insight: We see that our segmen-

ations obtained by skeletons computed with two quite different

ethods (MC and MCF) are very similar. This is due to the fact

hat we do not use the raw skeletons for segmentation, but the

o-skeletons which, as explained, stabilize skeletons over an entire

amily by removing outlier details. Further, this suggests that our

egmentation approach based on co-skeletons does not strongly

epend on the underlying skeletonization method. Hence, one can

btain similar segmentation results by substituting MC or MCF
ith other, better ( e.g. , faster and/or easier to use) skeletonization

ethods. 

Shape blending: Besides shape segmentation, other applications

lso benefit from co-skeletons, including shape blending. Raw

keletons extracted using even state-of-the-art algorithms are typ-

cally inadequate for shape blending, due to the lack of semantic

nformation on skeleton edges and/or over-sampling. To use skele-

ons, manual post-processing for cleaning and/or annotation is typ-

cally needed. In contrast, our co-skeletons can be directly used for

hape blending. 

We show this by using our co-skeletons to perform shape

lending by the technique of Alhashim et al. [4] . We first use skele-

on edges to reconstruct the spatio-structural graph, and augment

his graph by constructing morphing paths between semantically-

orrelated parts/edges of different shapes of a family. This allows

s to keep track of evolving states of the shapes and maintain the

opological constraints needed for blending. Next, we select from

he obtained results those which show plausible blends and com-

inations (this selection is done by the user based on what one

ctually deems to be plausible for a given application context). Fi-

ally, we reconstruct shapes based on the structure graphs through

he feature transform (FT) mapping from skeleton edges to the

hape faces. This yields new blended shapes within the input fam-

ly. Fig. 12 shows several examples of blended shapes, demonstrat-

ng the effectiveness of our co-skeletons for family-based shape

lending. 

. Discussion and conclusion 

We have presented a novel approach to extracting co-skeletons

f a given set of related shapes. In contrast to per-shape skeletons,

ur co-skeletons have similar quality, measured in terms of sim-

lification level, centeredness, and preservation of details across

ll considered shapes in a family. Our method has two main use

ases. First, we reduce the dependence on the availability of a

igh-quality skeletonization method, which may not be easy to set

p for any set of shapes. Secondly, we maximize the likelihood

hat the user obtains consistent skeletons over similar-type shapes

ith no additional parameter tweaking effort. We show the added

alue of co-skeletons on two applications: shape co-segmentation

nd shape blending. 

While effective, easy to use, fast, and generic, our method has

ome limitations. First, we use multiple surface-based descriptors

o infer the semantic relationships between skeleton edges by

mapping’ such edges to similar surface parts. Yet, the exact re-

ation between specific types of skeleton fragments ( e.g. , branch

nds, junctions, or high-curvature zones) and specific surface de-

ails ( e.g. edges, dents, tubular structures, or other detail types) is

ot yet fully clear. We aim to study this relationship in more detail.
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Fig. 12. Evolution results on the fourleg dataset. Using our co-skeletons, we can easily generate new shapes by evolving different combinations across each family. See 

Fig. 2 for the initial shapes in the family. 
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Secondly, we used two curve-skeletonization methods [7,8] to ex-

tract initial skeletons. It is important to study how our co-skeleton

proposal behaves when using other curve-skeletonization meth-

ods (for a candidate set, see [9,14] ), so as to increase the confi-

dence that our co-skeleton quality does not (strongly) depend on

the choice of the underlying skeletonization method. In the long

run, we aim to remove this dependency on a specific skeletoniza-

tion method by extracting co-skeletons directly from a shape set.

Thirdly, we used here a set of 5 shape descriptors ( Section 3 )

which are well-known for related tasks in shape analysis literature.

Whether other descriptors would perform better for our task, is an

open question. 

Finally, concerning the comparison with unsupervised shape

segmentation methods, we should say that our co-segmentation

benefits from additional information, present in the number of

shape parts which is set by the user, which the aforementioned

methods do not have. This shows, on the one hand, that adding

such semantic information (which is available once we consider an

entire shape family ) benefits segmentation. On the other hand, this

should not be seen as a limitation of unsupervised methods since

these methods do not utilize such extra information. 

Our co-skeleton validation is currently based on only two ap-

plications: shape co-segmentation and blending. While the initial

results presented here are encouraging, it is of high added value

to examine how co-skeletons work for other applications such as
hape animation and morphing, and to evaluate our co-skeletons

n other benchmark datasets, such as [74] . 
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ppendix A 

Here we showcase our method on further results. Fig. 13

resents (co-)segmentation results based on our co-skeletons

uilding on the per-shape input skeletons computed using Mean

urvature Flow [8] and Mesh Contraction [7] . 

https://doi.org/10.13039/501100001809
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Fig. 13. Co-skeletonization and co-segmentation results of our method based on Mean Curvature Flow [8] (top half) and Mesh Contraction [7] (bottom half). 
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