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A comparison between obstructions to local-global principles
over semi-global fields
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Abstract. We consider local-global principles for rational points on varieties,
in particular torsors, over one-variable function fields over complete discretely
valued fields. There are several notions of such principles, arising either from
the valuation theory of the function field, or from the geometry of a regular
model of the function field. Our results compare the corresponding obstruc-
tions, proving in particular that a local-global principle with respect to valua-
tions implies a local-global principle with respect to a sufficiently fine regular
model.

Introduction

Classical local-global principles originated in the study of algebraic structures
over the rational numbers, and asserted that such a structure has a specified prop-
erty over Q if and only if it has that property over Qp for all p and also for R. Later
such results were generalized to arbitrary global fields. Typically a local-global
principle can be rephrased as asserting that a variety Z has a rational point over
a global field F if it has a rational point over each completion Fv of F . In many
cases, Z is a homogeneous space under some algebraic group. When Z is a princi-
pal homogeneous space (i.e., a torsor) under an algebraic group G, the local-global
principle can also be rephrased as asserting the vanishing of the Tate-Shafarevich
set X(F,G) := ker(H1(F,G) →

∏
v H

1(Fv, G)). More generally, the set X(F,G)
is the obstruction to a local-global principle holding.

In the classical case of global fields, local-global principles have been proven in
a number of contexts; e.g., for quadratic forms (Hasse-Minkowski), Brauer groups
(Albert-Brauer-Hasse-Noether), and torsors under connected rational linear alge-
braic groups ([22, Corollary 9.7], [6]). Motivated by that classical case, analogs of
the above results have in recent years been proven in the case of semi-global fields;
i.e., function fields of transcendence degree one over a complete discretely valued
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136 D. HARBATER ET AL.

field K such as Qp. (For example, see [7–9,14,16,17,20].) In this situation, the ge-
ometry is richer, and there are various possible sets of overfields of F with respect
to which local-global principles and the corresponding Tate-Shafarevich sets can
be studied. The current manuscript aims to clarify the relationships among those
obstruction sets, and among the corresponding local-global principles for rational
points on smooth varieties.

In the global field case, the completions of F are taken with respect to isomor-
phism classes of non-trivial absolute values on F . For F of equal characteristic (the
global function field case), this is equivalent to taking the completions of F with
respect to the non-trivial valuations on F . All of these valuations have rank one,
and they are all discrete. Moreover, they are in bijection with the closed points on
the unique regular projective model C of F , which is a curve over the finite base
field of F . Here the completion FP corresponding to a point P ∈ C is the fraction

field of the complete local ring ÔC,P .
By contrast, the valuations on a semi-global field F are not all of rank one,

and those of rank one are not all discrete. This leads to several choices for the set
of completions, and therefore for the local-global principle being considered. More
precisely, write T for the valuation ring of the complete discretely valued field K
over which F is a function field. Let ΩF be the set of all non-trivial T -valuations on
F (i.e., those whose valuation ring contains T ); let Ω1

F be the set of all non-trivial
rank one T -valuations on F ; and let Ωdvr

F be the set of all discrete valuations on
F (whose valuation ring automatically contains T , by [17, Corollary 7.2]). Thus
Ωdvr

F ⊆ Ω1
F ⊆ ΩF . Each of these sets then gives rise to a set of completions, and

therefore to a local-global principle. If one focuses on torsors over F under an
algebraic group G, then one correspondingly obtains several versions of X, which
will be denoted by XΩF

(F,G), XΩ1
F
(F,G), and Xdvr(F,G).

In addition, there are many choices for a regular projective model X of F
over the valuation ring T = OK of the ground field K, each with a closed fiber

X ⊂ X ; for each such model and point P ∈ X, the fraction field FP of ÔX ,P will
not in general be the completion of F with respect to a valuation. (In fact, it will
be such if and only if P is the generic point of an irreducible component of X.)
Taking the set of overfields {FP }P∈X for a given model X leads to yet another
choice of local-global principle. For a torsor over F under an algebraic group G,
the corresponding obstruction will be denoted by XX(F,G).

In this paper, we prove the following (see Theorem 3.4):

Theorem. Let G be a linear algebraic group over a semi-global field F . Then
for any regular projective model X of F with closed fiber X,

XX(F,G) ⊆ XΩF
(F,G) ⊆ XΩ1

F
(F,G) ⊆ Xdvr(F,G).

Moreover, taking the direct limit over all such models X , we have

lim−→
X

XX(F,G) = XΩF
(F,G) = XΩ1

F
(F,G).

More generally, we prove the corresponding result concerning local-global prin-
ciples for the existence of rational points on smooth varieties over a semi-global
field; see Theorem 3.1.

The significance of these results is that one is usually interested in local-global
principles with respect to valuations (of a suitable type), but these can be hard
to study over semi-global fields. On the other hand, by using patching methods
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A COMPARISON BETWEEN OBSTRUCTIONS 137

(as in [14] and [17]), one can understand the obstruction to local-global principles
with respect to the points on the closed fiber of a regular projective model quite
explicitly, prove that local-global principles hold under certain hypotheses, and
thereby obtain results about field invariants. The results in this manuscript relate
local-global principles with respect to points (or patches) to those with respect
to rank one valuations (the natural notion in the context of Berkovich spaces; in
particular see [19] for a Berkovich analog of the results in [14]). We should note,
however, that it remains open whether local-global principles with respect to the
set of discrete valuations are equivalent to the other types of local-global principles.

1. Completions and henselizations of semi-global fields

Let K be a complete discretely valued field with ring of integers T = OK and
residue field k. Let F be a semi-global field over K, i.e., a finitely generated field
extension of transcendence degree one over K in which K is algebraically closed.
(We do not assume that F/K is separable.) The aim of this section is to introduce
certain overfields of F , defined via completions or henselizations, and to study their
relationship. This discussion will be important when we study rational points and
local-global principles in the later sections.

We will consider two types of completions in this paper, associated to prime
ideals (or points) and to valuations that need not be discrete. In general, for any
commutative ring A, let I = {ai}i∈I be a set of ideals of A such that for all i′, i′′ ∈ I
there exists i ∈ I with ai ⊂ ai′ai′′ . The I -completion of A is the projective limit

Â of the system of projections A/ai′ → A/ai, ai′ ⊂ ai. Here the completion map

ı̂ : A → Â has ker(ı̂) = ∩iai.
In particular, if p is a prime ideal of A and we take ai = pi for i ≥ 1, then we get

the usual p-adic completion of A. On the other hand, suppose we are given a field L
and a valuation w : L → Γ∪{∞}, with Γ an ordered abelian group (the value group
of w), having valuation ring Ow and maximal ideal mw. In this situation, consider
a set I = {ai}i∈I of non-zero ideals of Ow as above with ∩iai = (0). (For example,

we may take ai = {a ∈ A |w(a) ≥ i} for all i > 0 in Γ.) The I -completion Ôw

of Ow is independent of the choice of such a set I; and Ôw is a valuation ring of

its fraction field Lw, with valuation ideal m̂w = mwÔw. One calls Ôw and Lw the
w-adic completions of Ow and L, respectively. Note that Ow is a local ring with
maximal ideal mw; however, the w-adic completion of Ow is not in general the same
as the mw-adic completion of Ow (in fact, they are the same if and only if w is a
discrete valuation; otherwise ∩im

i
w is a non-zero prime ideal). See [4, Chapter VI]

and [10] for more about valuations and their completions.
Throughout this paper, for a semi-global field F we will restrict attention to

valuations that lie in ΩF , the set of non-trivial T -valuations on F (i.e., those whose
valuation ring contains T ). By [17, Corollary 7.2], all discrete valuations lie in that
set. For each valuation v ∈ ΩF , we let Fv denote the v-adic completion of F , as in
the general discussion above. This gives a first collection of overfields of F .

We next define overfields that are obtained from the geometry of curves with
function field F . A normal model of F is a normal integral T -scheme X with
function field F that is flat and projective over T of relative dimension one. If in
addition the scheme X is regular we say that it is a regular model. The closed fiber

of X is X := (X ×T k)red.
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138 D. HARBATER ET AL.

Let X be a regular model of F with closed fiber X. The points of X consist
of the closed points of X and the generic points of the irreducible components of
X. For each point P in X, let OX ,P be the local ring of X at P with maximal

ideal mP , let ÔX ,P be its mP -adic completion, and let FP be the fraction field of

ÔX ,P . These give the second set of overfields of F .
An essential first step in understanding the relationship between the various

local-global principles (or their obstructions) is to study the relationship between
the overfields Fv and FP of F introduced above. In order to do so, we need to recall
a few basic facts about henselian local rings and henselization.

Recall that a local ring O with maximal ideal m and residue field κ is henselian
if Hensel’s lemma holds in O. That is, given a monic polynomial f ∈ O[x] with
image f̄ ∈ κ[x], any simple root ā ∈ κ of f̄ lifts to a simple root a ∈ O of f . A
henselization of a local ring O with maximal ideal m is a henselian local ring Oh

with the following properties: Oh is a direct limit of étale O-algebras, mOh is the
maximal ideal of Oh, and O/m = Oh/mOh. A henselization exists for any local
ring and it is unique up to isomorphism (see, for example, [25, Theorems 32.28 and
32.29]). If O is an integrally closed local domain with fraction field L, then the
fraction field of Oh is correspondingly a direct limit of finite separable extensions
of L; see also [5, p. 48]. In particular, for X and P as above, we may consider the
henselization Oh

X ,P of the local ring OX ,P of X at P . We may also consider the

henselization Oh
w of a valuation ring Ow associated to a valuation w on some field

L.
If w is a valuation on a field L, then w and L are said to be henselian if the

valuation ring Ow is henselian. Equivalently, w is henselian if it has a unique exten-
sion to each algebraic field extension of L [24, Definition A.13]. Other equivalent
formulations of the henselian property for valuation rings can be found in, e.g.,
[24, Theorem A.14].

In the above situation, the fraction field Lh
w of Oh

w is the henselization of L
with respect to w. That is, it is the unique (up to unique isomorphism) valued field
extension of L whose valuation is henselian and extends w, and which is universal
with these properties.

The rank of a valuation is the Krull dimension of its valuation ring. A valuation
is of rank one if and only if there is an order-preserving embedding of its value
group into R. In the situation of semi-global fields F , it follows from Abhyankar’s
inequality (see [1] or [10, Theorem 3.4.3]) that every valuation v ∈ ΩF has either
rank one or rank two. Moreover, the rank two valuations are of the form v = v2◦v1,
where v1 ∈ Ω1

F , where v2 is a rank one valuation of the residue field of v1, and where
composition is in the sense of valuations; cf. [23, Chapter I, §4]. (See [21, Appendix
A] for a classification of T -valuations on semi-global fields; although smoothness
was assumed there, it was not essential.)

In studying henselizations and completions of semi-global fields, we distinguish
between two cases, based on the rank of the valuation. For a rank one valuation
w on an arbitrary field L, the completion Lw of L with respect to w is henselian
(e.g., see [10, Proposition 1.2.2]), and the henselization of L with respect to w is
the separable closure of L in its completion (this follows via [25, Theorem 32.19]).
For valuations of rank two on a semi-global field, there is the following result.
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A COMPARISON BETWEEN OBSTRUCTIONS 139

Lemma 1.1. Let F be a semi-global field and let v ∈ ΩF have rank two. As
above, write v = v2 ◦ v1 as a composition of a valuation v1 of F of rank one, and a
valuation v2 of the residue field of v1. Then

(a) the completions Fv = Fv1 are equal; and
(b) the henselizations satisfy Fh

v1 ⊆ Fh
v .

Proof. Part (a) is proven in [3, Lemma 2.2.2 and Corollary 2.2.27]. By [24,
Proposition A.31], there is a henselian valuation v′1 on Fh

v that extends v1. Thus
Fh
v1 may be identified with the relative henselization of F in Fh

v , with respect to v1
and v′1, proving (b). �

In the situation of the introduction, Proposition 1.4 below will provide an
essential link between the fields Fv for v ∈ ΩF and the fields FP for P ∈ X. First
we state two lemmas.

Lemma 1.2. Let X be a regular model of a semi-global field F , and let Q be a

point of X . If I is an ideal of ÔX ,Q such that I ∩ OX ,Q = (0), then I = (0).

Proof. The assertion is trivial if Q is the generic point. It is also clear if Q
is a point of codimension one, since then OX ,Q is a discrete valuation ring, and

contraction induces a bijection between the ideals of the completion ÔX ,Q and the
ideals of OX ,Q. So we now assume that Q has codimension two; i.e., Q is a closed
point of X , lying on the closed fiber X of X .

First consider the case that X = P1
T and that Q is the origin on X = P1

k. Let

g be an element of the ideal I ⊂ ÔX ,Q. By the Weierstrass Preparation Theorem
(e.g., see [4, Proposition VII.3.9.6]), there exist an element f ∈ F and a unit

u ∈ Ô×
X ,Q such that g = fu. Thus f = gu−1 lies in ÔX ,Q ∩ F = OX ,Q and in I.

So f ∈ I ∩ OX ,Q is equal to 0 by hypothesis. Hence g = fu = 0, concluding the
proof of this case.

For a general X , there exists a finite morphism X → X ′ := P1
T that takesQ to

the origin P ∈ P1
k ⊂ X ′ (see [13, Proposition 6.6]). The inclusion OX ′,P ⊆ OX ,Q

induces a morphism ÔX ′,P → ÔX ,Q, which is finite since X → X ′ is finite,
and is injective because the mQ-adic topology on OX ,Q restricts to the mP -adic
topology on OX ′,P . The contraction of I to OX ′,P ⊂ OX ,Q is trivial, hence so is

the contraction to ÔX ′,P by the case of X = P1
T above. Since ÔX ,Q is finite over

ÔX ′,P , the ideal I itself is trivial. �

We note that as an alternative argument for a general X , we could use [15,
Proposition 3.4] to reduce to the case where the Weierstrass Preparation Theorem
[15, Theorem 3.1(c)] applies, and then use that result to prove Lemma 1.2.

Recall that the center of a valuation w on the function field of a separated
integral scheme Z is a point Q on Z such that Ow contains the local ring OZ ,Q,
and such that mZ ,Q = mv ∩ OZ ,Q. If a center exists on Z then it is unique, and
if w is non-trivial then the center is not the generic point of Z .

The next lemma is well known to experts, but there does not seem to be a good
reference for it in the literature. For the sake of completeness, we include a short
proof. (This lemma remains true more generally for proper integral schemes by the
valuative criterion for properness, but we do not need that stronger form here.)
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140 D. HARBATER ET AL.

Lemma 1.3. Let Z be a projective integral scheme over a ring A, and let w
be an A-valuation on the function field of Z (i.e., the valuation ring of w contains
A). Then w has a center on Z .

Proof. Write Z = ProjS, where S is a graded A-algebra generated by
finitely many elements x0, . . . , xn of degree one. Choose i such that w(xi/x0) =
minj>0 w(xj/x0). Thus w(xj/xi) ≥ 0 for all j. Hence R := A[xj/xi]0≤j≤n ⊂ Ow,
with Spec(R) = D+

xi
, the open subset of Z where xi �= 0. The prime ideal mw ∩R

of R defines a point Q ∈ D+
xi

⊂ Z such that OZ ,Q ⊂ Ow and mZ ,Q = mw ∩ OQ.
That is, Q is the center of w on Z . �

Proposition 1.4. Let F be a semi-global field over a complete discretely valued
field K, and let X be a regular model of F with closed fiber X. For every valuation
v ∈ ΩF there exists a point P ∈ X (not necessarily closed) such that FP ⊆ Fv.

Proof. First suppose that v is of rank one. By Lemma 1.3, v has a center Q
on X . Then c := min{v(f) | f ∈ mX ,Q} > 0 since mX ,Q is finitely generated; and

m
i
X ,Q ⊆ ai := {a ∈ Ov | v(a) ≥ ic}.

Since v(F ) ⊆ R, we have ∩iai = (0). Hence OX ,Q ↪→ Ov is a continuous map of

topological rings, and there is an induced map ÔX ,Q → Ôv between the respective
completions. This map is injective, as can be seen by applying Lemma 1.2 to the
kernel. Therefore it induces an inclusion of fraction fields FQ ↪→ Fv.

If Q lies on X, then P = Q satisfies the required condition. On the other hand,
if Q does not lie on X, then Q is a codimension one point of the generic fiber XK

of X , and there is a discrete valuation v on F corresponding to Q. The closure of
Q in X meets X at a closed point P , and the containment OX ,P ⊂ OX ,Q induces

an inclusion ÔX ,P ⊂ ÔX ,Q. Namely, this is clear if X is the projective line over
the valuation ring of K and P is the origin on the closed fiber, and one can reduce
to that case as in the proof of Lemma 1.2 above. Thus FP ⊂ FQ = Fv.

Next, suppose that v is of rank two, so that we may write v = v2 ◦ v1 as in the
discussion before Lemma 1.1, for some rank one valuation v1 ∈ Ω1

F . By the previous
case, Fv1 contains FP for some point P ∈ X. But Fv = Fv1 by Lemma 1.1(a), and
so Fv contains FP . �

2. Local points on F -varieties

In this section, we study varieties over a semi-global field F that have rational
points over field extensions Fv (for v ∈ ΩF ) or FP (for P in the closed fiber X of
a regular model X ). We begin by stating some consequences of the results in the
previous section.

Proposition 2.1. Let Z be an F -variety. Then Z(Fv) �= ∅ for all valuations
v ∈ ΩF , if and only if Z(Fv) �= ∅ for all valuations v ∈ Ω1

F .

Proof. The forward implication is immediate, so it suffices to prove the reverse
implication. As above, a valuation in ΩF that is not of rank one is a rank two
valuation v = v2 ◦ v1, with each vi of rank one. By Lemma 1.1(a), the completion
Fv at v is equal to the completion Fv1 at the rank one valuation v1. Hence Z(Fv) =
Z(Fv1) is nonempty. �
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A COMPARISON BETWEEN OBSTRUCTIONS 141

Proposition 2.2. Let X be a regular model of F with closed fiber X. Let Z
be an F -variety. If Z(FP ) �= ∅ for all P ∈ X, then Z(Fv) �= ∅ for all valuations
v ∈ ΩF .

Proof. If v is a valuation in ΩF , then Fv contains a field FP for some P ∈ X
by Proposition 1.4. Hence Z(FP ) ⊆ Z(Fv), and so Z(Fv) �= ∅. �

The next proposition allows us to deduce the existence of Fh
v -points on a variety

from Fv-points. This will be important in proving the main assertion in this section,
Theorem 2.5.

Proposition 2.3. Let Z be a smooth F -variety.

(a) Let v ∈ Ω1
F . If Z(Fv) �= ∅, then Z(Fh

v ) �= ∅.
(b) Let X be a regular model of F and let P be a closed point on its closed

fiber. If Z(FP ) �= ∅, then Z(Frac(Oh
X ,P )) �= ∅.

Proof. Part (a) of the proposition follows from [11, Proposition 3.5.2], in the
case of a smooth variety. (Equivalently, it follows from the generalized Implicit
Function Theorem (see [12, Theorem 9.2]), after choosing an étale morphism from
an affine open subset to some Ad

F , using smoothness.)

For part (b), recall that FP = Frac(ÔX ,P ), where ÔX ,P is the mP -adic com-
pletion of OX ,P . Let U = Spec(B) be an affine open neighborhood of P in X .
Then B is a T -algebra of finite type, with a maximal ideal m′

P corresponding to
P , and with fraction field F . The henselization of the localization of B at m′

P is
Oh

X ,P .
After replacing Z by an affine open subset that contains an FP -point, we may

assume that Z is an affine F -variety, say Spec(F [t1, t2, . . . , tk]/(f1, f2, . . . , fn)).

Since FP = ÔX ,P ⊗OX ,P
F by Lemma 1.2, after clearing denominators we may

assume that the coefficients of the polynomials fi lie in B; that the B-variety
W := Spec(B[t1, t2, . . . , tk]/(f1, f2, . . . , fn)) has generic fiber Z; and that W has

an ÔX ,P -point whose general fiber is the given FP -point of Z. By the existence

of this ÔX ,P -point, there is a solution in ÔX ,P to f1 = . . . = fn = 0. Since
the complete discrete valuation ring T is excellent, the Artin Approximation The-
orem (see [2, Theorem 1.10]) applies; and so there is also a solution in Oh

X ,P to

f1 = . . . = fn = 0. That is, W has an Oh
X ,P -point, so Z has a Frac(Oh

X ,P )-
point. �

The next lemma is the key ingredient to the main theorem of this section.

Lemma 2.4. Consider an infinite sequence of regular models of F

X = X0 ← X1 ← X2 ← . . .

and non-empty finite sets Pi of closed points on the respective closed fibers Xi of
the models Xi, where each Xi is obtained by blowing up Xi−1 at the ideal defined
by the set Pi−1. Let P0, P1, P2, . . . be an infinite sequence of points Pi ∈ Pi such
that Pi+1 maps to Pi for all i ≥ 0, and consider the direct limit O := lim−→i

OXi,Pi
.

Then O is a valuation ring on F , with valuation v ∈ ΩF (i.e., O = Ov). Moreover,

(1) Oh
v = lim−→

i

Oh
Xi,Pi

.

In particular, Fh
v = lim−→i

Frac(Oh
Xi,Pi

) ⊆ lim−→i
FPi

.
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Proof. We first prove that O is a valuation ring of F ; equivalently, for any
f ∈ F×, either f ∈ O or f−1 ∈ O. For this, it suffices to show that for any fixed
f ∈ F×, there exists an index i such that either f ∈ OXi,Pi

or f−1 ∈ OXi,Pi
. This

condition does in fact hold, by [18, Theorem 26.2], which states that there does
not exist an infinite sequence of points Pi ∈ Xi ⊆ Xi as in the hypothesis of this
lemma, for which each Pi is a point of indeterminacy for f . So O is a valuation
ring of F . Its valuation v lies in ΩF , because each local ring OX ,Pi

contains T by
definition, and hence so does O.

To prove (1), it suffices to show that R := lim−→i
Oh

Xi,Pi
satisfies the properties

that characterize the henselization of O with respect to v. This ring is henselian
because it is a direct limit of henselian rings. For each (Xi, Pi), the ring Oh

Xi,Pi
is

a direct limit of étale OXi,Pi
-algebras AXi,Pi,j , and so R is the direct limit of the

étale Ov-algebras OvAXi,Pi,j , as i, j vary. Since mOh
Xi,Pi

is the unique maximal

ideal of the henselization Oh
Xi,Pi

of OXi,Pi
for all i, it follows that mR is the unique

maximal ideal of R. Similarly, since Oh
Xi,Pi

/mOh
Xi,Pi

= O/m for all i, it follows

that R/mR = O/m. So (1) holds. The last statement follows since construction
of fraction fields commutes with direct limits and respects inclusions, and since

OXi,Pi
⊆ Oh

Xi,Pi
⊆ ÔXi,Pi

for all i. �
As above, F is a semi-global field over a complete discretely valued field K.

Theorem 2.5. Let Z be a smooth F -variety that has an Fv-point for all v ∈ Ω1
F .

Then there exists a regular model X of F such that Z(FP ) �= ∅ for all P in the
closed fiber X of X .

Proof. Fix a regular model X0 of F , and let X0 denote its closed fiber. Let
Y0 be an irreducible component of X0. Then the generic point η of Y0 corresponds
to a valuation v of rank one (centered on η). So by assumption, Z(Fv) = Z(Fη)
is nonempty. Let t be a uniformizer of K. For a nonempty affine open subset
U ⊆ Y0 that does not meet any other irreducible component of X0, let FU denote
the fraction field of the t-adic completion of the ring of rational functions on X0

that are regular along U (see [14, Notation 3.3]). By [17, Proposition 5.8], there
exists such an open subset U for which Z(FU ) �= ∅. (This could also be deduced
from Proposition 2.3(a) above.) If P ∈ U , then FU ⊆ FP (loc. cit.), and thus
Z(FP ) �= ∅ for such P . Since Y0 \ U is finite, there are at most finitely many
points P ∈ Y0 for which the set Z(FP ) is empty. Ranging over the finitely many
components of X0, we obtain a finite (possibly empty) set P0 ⊆ X0 consisting of
exactly those points P ∈ X0 for which Z(FP ) = ∅.

Let X1 be the blowup of X0 at all points of P0 and let X1 be its closed fiber.
By the same argument as above, there exists a finite (possibly empty) set P1 ⊆ X1

such that Z(FP ) = ∅ exactly for P ∈ P1. Let X2 be the blowup of X1 at all
points of P1, etc. This process yields a chain of models X0 ← X1 ← X2 ← . . .
and corresponding sets P0,P1,P2, . . . of closed points on their respective closed
fibers.

We claim that the disjoint union P :=
⋃

i≥0 Pi is finite. This claim immedi-
ately implies that the chain of models X0 ← X1 ← X2 ← . . . terminates in some
model XM =: X for which PM = ∅. That is, the model X satisfies Z(FP ) �= ∅
for all points P in its closed fiber X, as required.

It remains to prove the claim. Suppose to the contrary that P is infinite. For
j ≥ i, we say that a point Q on Xj lies over a point P on Xi if Q maps to P under
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the sequence of blowups Xi ← · · · ← Xj . Note that each point of P1 lies over
some point of P0, and similarly each point of Pi+1 lies over some point of Pi, for
all i ≥ 1. Since P is infinite and P0 is finite, there exists a point P0 ∈ P0 such
that infinitely many points in P lie over P0. Inductively, if Pi ∈ Pi is a point
such that infinitely many points in P lie over Pi, there is a point Pi+1 ∈ Pi+1

lying over Pi, such that infinitely many points in P lie over Pi+1. This defines an
infinite sequence of points P1, P2, . . ., since P is infinite. Here OXi,Pi

⊆ OXi+1,Pi+1
,

ÔXi,Pi
⊆ ÔXi+1,Pi+1

, and FPi
⊆ FPi+1

.
Consider the direct limit O := lim−→i

OXi,Pi
. By Lemma 2.4, the ring O is a

valuation ring with respect to some valuation v on F . If v has rank one, then
Z(Fv) �= ∅ by assumption, and consequently Z(Fh

v ) �= ∅ by Proposition 2.3(a). If
v has rank two, then Lemma 1.1 implies that there exists a rank one valuation v1
of v for which Fv = Fv1 and Fh

v1 ⊆ Fh
v , so again Z(Fv) = Z(Fv1) �= ∅, and hence

∅ �= Z(Fh
v1) ⊆ Z(Fh

v ) by Proposition 2.3(a). By Lemma 2.4, Fh
v ⊆ lim−→i

FPi
, and

thus

∅ �= Z(Fh
v ) ⊆ Z(lim−→

i

FPi
) = Z(∪iFPi

) = ∪iZ(FPi
) = ∅,

where the equalities hold because FPi
⊆ FPi+1

. This contradiction proves the
claim. �

Remark 2.6. (a) The model given by Theorem 2.5 also satisfies the a
priori stronger assertion that Z(Frac(Oh

X ,P )) �= ∅ for all points P in the

closed fiber X of X , by Proposition 2.3(b).
(b) In Theorem 2.5, instead of assuming that Z is smooth, we could assume

the existence of a smooth Fv-point for every v, since we could apply the
theorem to the smooth locus of Z.

3. Local-global principles for rational points

In this section, we use the results of Section 2 to deduce results on local-
global principles. Subsection 3.1 treats local-global principles for varieties, while
Subsection 3.2 concerns local-global principles for torsors.

As before, F is a semi-global field over a complete discretely valued field K
with ring of integers T . Let ΩF denote the set of valuations on F whose valuation
ring contains T , write Ω1

F for the subset of valuations of rank one whose valuation
ring contains T , and write Ωdvr

F for the subset of discrete valuations. For a regular
model X of F with closed fiber X, let ΩX denote the set of points P of X.

3.1. Local-global principles for F -varieties. The results in Section 2 im-
mediately give the following theorem:

Theorem 3.1. Let Z be a smooth variety over a semi-global field F . Then the
following are equivalent:

(a) There is a regular model X of F such that Z(FP ) �= ∅ for all points P in
its closed fiber X.

(b) Z(Fv) �= ∅ for all valuations v ∈ Ω1
F .

(c) Z(Fv) �= ∅ for all valuations v ∈ ΩF .

Proof. The assertion (a) implies (c) by Proposition 2.2. Trivially (c) im-
plies (b). The fact that (b) implies (a) holds by Theorem 2.5. �
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We say that a class C of F -varieties satisfies a local-global principle with respect
to a set {Fi}i of overfields of F if every Z in C has the property that if Z(Fi) �= ∅
for all Fi then Z(F ) �= ∅. In this language, Theorem 3.1 immediately yields the
following corollary.

Corollary 3.2. Let C be a class of smooth varieties over a semi-global field
F . Then C satisfies a local-global principle with respect to {Fv | v ∈ ΩF } (or
equivalently, with respect to {Fv | v ∈ Ω1

F }) if and only if C satisfies a local-global
principle with respect to {FP | P ∈ X} for every regular model X of F with closed
fiber X.

Example 3.3. Let G be a rational connected linear algebraic group over the
semi-global field F , and let C be the class of transitive homogeneous G-spaces Z
over F (i.e., G(E) acts transitively on Z(E) for every overfield E of F ). Then
for every regular model X of F , say with closed fiber X, the class C satisfies a
local-global principle with respect to {FP | P ∈ X} (see [17, Theorem 9.1]). As
a consequence of Corollary 3.2, it then follows that the class C also satisfies a
local-global principle with respect to the set {Fv | v ∈ Ω1

F }.

3.2. Local-global principles for torsors. Let G be a linear algebraic group
(i.e., a smooth affine group scheme of finite type) over F . We now define and
compare several obstruction sets to the existence of global F -points on torsors
under G.

Recall that each G-torsor over F is represented by a class in the pointed set
H1(F,G), and that this class is trivial if and only if the torsor has an F -point. As
discussed in the introduction, we have the following obstruction sets to local-global
principles:

XΩF
(F,G) = ker

(
H1(F,G) →

∏
v∈ΩF

H1(Fv, G)
)
,

XΩ1
F
(F,G) = ker

(
H1(F,G) →

∏
v∈Ω1

F

H1(Fv, G)
)
,

Xdvr(F,G) = ker
(
H1(F,G) →

∏
v∈Ωdvr

F

H1(Fv, G)
)
.

Here the kernel of a map of pointed sets is by definition the preimage of the trivial
element.

Since Ωdvr
F ⊆ Ω1

F ⊆ ΩF , the above obstruction sets are related by containments
as well:

XΩF
(F,G) ⊆ XΩ1

F
(F,G) ⊆ Xdvr(F,G).

Finally, for any regular model X of F with closed fiber X, we let

XX(F,G) = ker
(
H1(F,G) →

∏
P∈X

H1(FP , G)
)
.

By the previous subsection, we obtain:

Theorem 3.4. Let G be a linear algebraic group over a semi-global field F .
Then

XX(F,G) ⊆ XΩF
(F,G)
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for any regular model X of F . Moreover, taking the direct limit over all such
models X , we have

lim−→
X

XX(F,G) = XΩF
(F,G) = XΩ1

F
(F,G).

Proof. If Z is a G-torsor over F , then Z is smooth (because G is). Propo-
sition 2.2 shows that XX(F,G) ⊆ XΩF

(F,G) for any regular model X of F ,
and so lim−→X

XX(F,G) ⊆ XΩ1
F
(F,G). The asserted equalities follow by applying

Theorem 3.1 to Z. �

It is an interesting open problem to understand the relationship between
XΩ1

F
(F,G) and Xdvr(F,G); in particular, whether the inclusion is an equality.
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