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Does Herding Undermine the Trust Enhancing Effect
of Reputation? An Empirical Investigation with
Online-Auction Data

Wojtek Przepiorka, Utrecht University
Ozan Aksoy, University College London

In today’s online markets, the reputation mechanism undergoes its most successful
propagation in human history. Online reputation systems substitute informal sanc-
tioning mechanisms at work in close-knit groups and enable complete strangers to

trade with each other across large geographic distances. The organizational features
of online markets support actors in solving three problems that hamper mutually bene-
ficial market exchange: the value, competition, and cooperation problems. However,
due to the plethora of trading opportunities available online, actors face a problem
of excess, i.e., the difficulty of choosing a trading partner. Imitation of other actors’
choices of trading partners (i.e., herding) can solve the problem of excess but at the
same time lead to the neglect of information about these trading partners’ trustwor-
thiness. Using a large set of online-auction data (N ≈ 88 k), we investigate whether
herding as a strategy for solving the problem of excess undermines the reputation
mechanism in solving the cooperation problem. Our analysis shows that although
buyers follow others in their decisions of which offers to consider, they do not follow
others at any price and refer to sellers’ reputations to establish seller trustworthiness.
Our results corroborate that reputation systems are viable organizational features that
promote mutually beneficial exchanges in anonymous online markets.

Introduction
Economic exchange is often embedded in actors’ social networks through which
information about these actors’ deeds and misdeeds is transmitted and selective
incentives upheld (Granovetter 1992). In close-knit communities, being a trust-
worthy and reliable exchange partner is in one’s best interest (Hardin 2002);
actors are readily informed about each other’s past behavior, and sanctions
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1576 Social Forces 99(4)

are more effective as they also bear on these actors’ other social relations
(Weber 2002; Buskens and Raub 2013; Giardini and Wittek 2019). With
economic exchange taking place across longer geographical distances, the mech-
anisms promoting trust and cooperation in close-knit communities (Cook et al.
2007) have been substituted by more formal institutional arrangements. The
organizational features of today’s peer-to-peer online markets are a prime
example (Diekmann and Przepiorka 2019).

In online markets, thousands of anonymous buyers and sellers trade with each
other every day. By means of an electronic rating system, traders comment on
each other’s behavior after finished transactions with positive or negative ratings
and short texts (Kollock 1999; Resnick et al. 2000; Dellarocas 2003). These
ratings are aggregated to form these online traders’ reputations. Modern infor-
mation and communication technologies have reduced the costs of collecting and
sharing information to a minimum (Rifkin 2014), which allows online platforms
to leverage the reputation mechanism to promote cooperative market exchanges
on an unprecedented scale.

Using a large set of process data obtained from eBay, we investigate how the
organization of an online auction market structures market action to promote
cooperative market exchanges. Our analysis is guided by Beckert’s (2009) argu-
ment that social order in markets crucially depends on actors’ overcoming three
problems which emerge due to the uncertainties inherent in market exchange:

(1) The value problem refers to the difficulty of actors to determine and agree
on the value of a commodity. It arises because the multiplicity, heterogeneity,
and complexity of commodities make an immediate assessment of their
values difficult.

(2) The problem of competition refers to the difficulty of sellers and buyers to
generate profit and make a good bargain, respectively. It arises when sellers
compete for buyers by reducing prices and buyers compete for commodities
by raising their willingness to pay to an extent that undermines their
incentive to enter the market in the first place.

(3) The cooperation problem refers to the difficulty of actors to establish their
exchange partners’ intentions to abide by their agreements. It arises because
of pecuniary interests and sellers’ holding private information about their
intentions and quality of their products unknown to buyers.

According to Beckert (2009), these problems are solved when actors form
agreeing expectations about the course of action in market exchange (see also
Nee 2005). That is, for market exchange to take place, (1) agreement on the
value of a commodity must be reached, (2) both parties to the exchange must
expect to gain from it, and (3) buyers must expect sellers to be trustworthy while
sellers must meet these expectations. However, the abundance of opportunities
for market exchange that pour out of the Internet suggests a fourth problem
actors need to overcome: the problem of excess (Abbott 2014), aka overflow
(Pinch 2012). The problem of excess refers to the difficulty of actors to find and
choose a set of potential exchange partners. It is not particular to online markets
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(see Geertz 1978) but is emphasized by the availability of relevant market
information online (Graham 2018). It arises because actors face a plethora of
online market platforms with each opening access to countless offers of similar
commodities. For online market exchange to take place, sellers must choose
market platforms, and buyers must choose sellers (see also Einav et al. 2016).

Although we discuss throughout our paper how an online market structures
market action to solve all four problems, our theoretical and empirical analyses
focus on the problems of cooperation and excess (for comprehensive discussions
of the value and competition problems, see, Aspers 2009; Beckert 2009; Einav
et al. 2016). In particular, we address the question in how far herding as a strategy
of excess avoidance can undermine the trust and cooperation enhancing effect
of reputation in an online market.

Our theoretical approach is analytical. We assume boundedly rational yet
purposefully acting actors that respond to structural incentives, constrains, and
the consequences others’ actions can have for their ability to pursue their goals
(Coleman 1990; Gintis 2009; Hedström and Bearman 2009). Based on this
assumption, we argue that actors at once strive for a bargain and avoid excess
when shopping online. They do so by herding on offers that already attracted
bids and hence were scrutinized by others. However, we argue that there are
also market forces, such as price mechanisms and incentives, associated with
seller reputations that limit herding. We derive hypotheses from our theoretical
argument and test them with a large set of process-produced online-auction data.
This is where our empirical contribution lies. Our dataset enables us to identify
herding empirically, as it includes the entire bidding process as well as nearly all
attributes of an offer a buyer may consider when deciding to place a bid or not.
We lay out both our theoretical (section Theory and Hypotheses) and empirical
argument (section Results) in three steps:

(i) First we show how electronic reputation systems employed in online
markets structure actors’ actions to cope with the problem of coop-
eration. We argue that the extent to which the reputation mechanism
establishes a market structure that shields reputable actors from their
less reputable competitors is limited. The reputation mechanism deters
fraudulent actors without precluding well intended actors from entering
the market and building a good reputation.

(ii) We then go on demonstrating how the auction mechanism, by which
buyers can bid for a commodity offered by a seller, helps actors to cope
with the problem of excess. Although the primary function of commodity
markets is to handle excess demand or supply, we argue that buyers in
online markets face a problem of excess due to cognitive welter, which
they solve by herding.

(iii) Finally, we investigate in how far buyers’ need to overcome the problem
of excess undermines the reputation mechanisms’ efficacy to resolve
the cooperation problem. In other words, we test whether herding as
a strategy for reducing cognitive welter sidelines hierarchization as a
strategy for reducing uncertainty in market exchange.
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Previous research shows how herding affects, among others, book sales
(Keuschnigg 2012), movie sales (Moretti 2011), song popularity (Salganik et al.
2006), investments in financial assets (Pitluck 2014), microloan granting (Zhang
and Liu 2012), and item sales in online auction markets (Dholakia et al. 2002;
Simonsohn and Ariely 2008). This previous research focuses either on identifying
the effect of herding on product success (Salganik et al. 2006; Moretti 2011;
Keuschnigg 2012) or, as we do in this paper, on moderators of individuals’
herding behavior (Dholakia et al. 2002; Simonsohn and Ariely 2008; Zhang
and Liu 2012; Pitluck 2014). Our paper goes beyond previous research by
showing how the functioning of an online market is affected by the interplay of
herding with two other mechanisms: price formation and reputation formation.
Moreover, by conceiving herding as a strategy of excess avoidance, our paper
contributes to the literature that studies how online market platforms shape
the choices of their users (Pinch 2012; Graham 2018). We conclude our paper
with a discussion of whether the problem of excess is an inevitable coordination
problem that can be found in any market and that needs to be resolved for market
exchange to take place.

Theory and Hypotheses
Today’s online market platforms offer ample opportunities to investigate rep-
utation formation as a mechanism of informal social organization (Diekmann
et al. 2014; Przepiorka et al. 2017). However, reputation formation, although
a significant ingredient, is not the only mechanism promoting cooperative
exchanges in online markets; many online markets are purposefully organized
in a way that promotes mutually beneficial trade and maximizes the profit of
market platform providers (Ahrne et al. 2015). Online market platforms offer
different ways to engage in market exchange, impose a certain chronology on
actors’ moves, and display information about exchange partners in various ways
(see also Graham and Henman 2019). It is important to understand the interplay
of these market rules and platform design features to understand how they
structure market action. In the next two paragraphs, we first describe several
important features of the market context that we study that are unrelated to
aspects of reputation formation and then describe how reputation formation is
structured.

In online markets such as eBay, sellers offer their products for sale either
in auction or in fixed price format. Sellers can post their offers for a limited
time (e.g., 5 days) in which potential buyers can submit bids, if it is an auction,
or purchase the item directly, if it is a fixed price offer (Przepiorka 2013). In
auctions, at the end of the designated time period, the highest bidder wins the
item and is obliged to pay the second highest bid plus a small bid increment
(plus shipping costs). If nobody bids on an auction, the offer ends when the
time elapses. A fixed price offer ends if a buyer buys the item at the fixed
price or when the time elapses. It is a convention that the buyer first sends the
money to the seller and, upon receipt of the money, the seller ships the item
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(Diekmann et al. 2009). Depending on the online market, the provider charges a
fee for every offer put online and retains a small fraction of the final price if the
item is sold.

After the transaction, the buyer can rate the seller, and until May 2008 the
seller could rate the buyer by leaving positive, negative, or neutral feedback and
a short text comment (Dellarocas and Wood 2008; Bolton et al. 2013; Diekmann
et al. 2014). These ratings are then aggregated to form actors’ reputations in
the online market. All actors have the same metrics to assess other actors’
reputations: the number of positive ratings, the number of negative ratings, the
reputation score (the number of positive ratings minus the number of negative
ratings), and the percentage of positive ratings. Typically, this information can
be retrieved from every actor’s profile page, and the latter two metrics are dis-
played along with the sellers’ aliases on every offer page. This makes information
about actors’ reputations costly to fake, unambiguous, and comparable across
actors (Capraro et al. 2016).

In the next section, we outline how reputation systems employed in online
markets structure actors’ actions to cope with the problems of competition and
cooperation.

Reputation Formation
The sequential nature of online market exchange creates trust problems because
the seller could keep the buyer’s money without sending the merchandise or
send back a low-quality merchandise (Akerlof 1970; Güth and Ockenfels 2003;
Yamagishi et al. 2009). The feedback system commonly implemented in peer-
to-peer online markets mitigates this trust problem by creating incentives for
traders’ cooperative behavior (Kollock 1999; Resnick et al. 2000; Dellarocas
2003). It is in a seller’s best interest to ship the merchandise the buyer paid
for because a negative rating by the buyer may negatively affect the seller’s
future business. Since actors can rate each other after finished transactions only,
building a good reputation from fake ratings is too costly in terms of time and
money. Therefore, potential buyers can use information about sellers’ reputation
to infer these sellers’ trustworthiness and competence and pay higher prices to
trustworthy and competent sellers in exchange for a lower risk of being cheated
or in other ways dissatisfied.

Although building a good reputation is costly, the reputation mechanism does
not create barriers to market entry for sellers with long-term business interests
or honest intentions. New sellers, without a feedback history, have to offer their
products at reduced prices. Once these sellers build their reputations for being
honest and reliable, they can charge higher prices by which they will be compen-
sated for the initial investment in their reputation (Shapiro 1983; Friedman and
Resnick 2001; Przepiorka 2013).1 In other words, reputation systems in online
markets mitigate the cooperation problem by reducing incentives for fraudulent
actors to enter the market without aggravating the competition problem.

The above argument suggests that in an online market with a functioning
reputation system, sellers’ business success in terms of sales and prices will be
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positively correlated with their reputation. In line with this proposition, it has
been shown that sellers with a long record of positive ratings attain higher sales
and prices than sellers with a short record or many negative ratings (Bajari and
Hortacsu 2004; Resnick et al. 2006; Diekmann et al. 2014). What is more, several
studies show that the correlation between sellers’ reputations and their business
success is not merely spurious and that buyers indeed trade off sellers’ reputations
against the prices these sellers ask for their products (Resnick et al. 2006;
Snijders and Weesie 2009; Przepiorka 2013). We thus expect to replicate these
previous findings.

Hypothesis 1: A seller’s number of positive (negative) ratings increases
(decreases) the probability of a bid for an item auctioned by the seller.

Hypothesis 2: A seller’s number of positive (negative) ratings increases
(decreases) the amount of the highest bid for an item auctioned by the seller.

From the above, it follows that in online markets with a reputation system,
prices will not only depend on the estimated value of the offered commodity but
also on the properties of the seller and in particular on the seller’s reputation.2

In the next section, we describe how the auction mechanism structures actors’
actions to cope with the value problem and, as a side product, helps them solve
the problem of excess.

Herding and Bargain-Hunting
eBay started off as a peer-to-peer market in which collectables and secondhand
items could be sold in a convenient way online. In peer-to-peer markets,
most items are offered by amateur sellers who may lack the information and
knowledge to determine the value of these items. More importantly, an item’s
valuation can vary considerably across potential buyers. Under these conditions
it is most practical to employ an auction mechanism, by which potential
buyers submit bids to determine the value of the item (the working of eBay’s
auction mechanism is explained in more detail in the online appendix). Hence,
the value problem is solved by allowing the group of buyers most interested in
an item to bid for it. The auction mechanism ensures moreover that an item
is sold to the buyer with the highest valuation. In sum, online “auctions serve
as social processes for establishing socially acceptable definitions of value and
ownership” (Smith 1989, IX). However, in online peer-to-peer markets, there is
an abundance of similar goods that are offered by hundreds of different sellers
at the same time; buyers first have to select the offers they want to bid on.

When looking for a particular item, the search result displays a list of items
of the same type that are being auctioned. This list typically shows for each item
a thumbnail picture, a title, the time left until the auction ends, the highest bid
(i.e., current price), and the number of bids that have been submitted. To obtain
any information about the seller and detailed information about the offered
item, a buyer has first to click on the item and access the item page. Too many
similar offers to choose from present buyers with a problem of cognitive welter
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(Abbott 2014) or overflow (Pinch 2012; Graham 2018), which they need to
solve before they can start bidding. One possibility is for buyers to click through
all active offers of one type of item, selecting those with trustworthy sellers
promising a bargain. However, given how the reputation mechanism works,
buying from a seller with a good reputation and striving for a bargain are
opposing wants that buyers have to balance in their search and decision-making
process. For example, buyers need to sample a fair number of offers in a
short time to find a seller with an acceptable reputation offering the item at a
reasonable price. Such a strategy is cognitively demanding and time-consuming,
and by the time a buyer following this strategy has composed his/her set of
offers to bid on, these offers’ prices may have changed because other buyers
bid on them. An alternative strategy is for buyers to “follow the herd,” that
is, to consider an offer other buyers have considered already (Banerjee 1992;
Bikhchandani et al. 1992; Simonsohn and Ariely 2008).

We define herding as the imitation of other actors’ behavior.3 Imitation is
a strategy of excess avoidance (Abbott 2014), and imitating others can be
beneficial if the imitating actors lack the information on which the imitated
actors’ behavior is based (Banerjee 1992; Hedström 1998). In online auction
markets, the fact that an item has received a bid from someone else may be
perceived by buyers as a sign of the item’s quality and the seller’s good reputation
(Podolny 2005). Hence, following others may reduce search costs to a minimum.
Moreover, once a potential bidder made up their mind and decided to bid for the
same item, they too can obtain the information the previous bidders have already
and revisit their choice, even before placing a bid. Thus, the more bidders have
bid for the same item, the safer may the next bidder feel to assume that the
seller and the item have been scrutinized by previous bidders (Bikhchandani et al.
1992). For example, if there are already two bidders in the auction, the chance
that at least one of them checked the attractiveness of the offer is higher than if
there was only one. If buyers in online markets indeed use herding as a strategy
to cope with the problem of excess, we will observe it in our data.

Hypothesis 3: The more buyers have bid for an item, the more likely the item
will be bid for by another buyer.

Following others reduces cognitive welter and search costs, but at the same
time, one is competing against other buyers. As a matter of fact, the more
bidders join an auction, the less likely is a particular bidder’s valuation of the
item the highest one, and each bidders’ chance of winning it decreases. Larger
bidding competition also implies that the highest bidder, who wins the auction, is
more likely to pay their reservation price (Simonsohn and Ariely 2008). In other
words, buyers face a trade-off between reducing welter and saving search costs
by following others and making a good bargain by looking for items no one has
bid on. Thus, if buyers indeed make this trade-off, the herding effect hypothesized
in H3 will be hampered and even reversed with an increasing number of bidders.

D
ow

nloaded from
 https://academ

ic.oup.com
/sf/article/99/4/1575/5854785 by guest on 04 January 2022



1582 Social Forces 99(4)

Hypothesis 4: The likelihood of another buyer bidding for an item will first
increase and, after reaching a certain point, decrease with the number of buyers
who bid on the item.

Hypotheses 3 and 4 are competing hypotheses. While H3 predicts a mono-
tonically increasing relation between the likelihood of another buyer bidding on
an item and the number of buyers bidding on it already, H4 predicts an inversely
u-shaped relation. The number of existing buyers at which the likelihood of
another buyer joining an auction reaches its maximum depends on these buyers’
perceptions of sellers’ trustworthiness, their valuation of the item, their beliefs
about other buyers’ valuations of the item, and other factors (see Bajari and
Hortacsu 2003). Since our data does not contain this information, we abstain
from making more precise predictions about the exact turning point of the
inverse-u function predicted in H4. However, if buyers exhibit a certain degree
of rationality and do not follow others at any price, we expect to find support
for H4 rather than for H3 (Simonsohn and Ariely 2008).

Apart from facing larger competition, following others can have other adverse
consequences for buyers. If previous bidders have not taken a seller’s rating
history into account, then blindly bidding on the same item and winning it may
be more risky as the seller could be untrustworthy or unreliable. Next, we discuss
in how far buyers’ need to overcome the problem of excess and, in particular,
the herding they engage in as a consequence of that need could undermine the
reputation mechanisms’ efficacy to resolve the cooperation problem.

Resilience of Reputation Systems
Herding is known under different names (e.g., social learning) and can lead to
the so-called success-breeds-success dynamics and growing inequality on the
supply side (DiPrete and Eirich 2006; Salganik et al. 2006; van de Rijt et al.
2014). On the demand side, herding can lead to the so-called informational
cascades, which can occur when actors imitate others’ behavior disregarding
their own information about the best course of action (Bikhchandani et al. 1992).
In online auctions, informational cascades can occur if new bidders rely on
previous bidders’ judgments and follow them, disregarding the information they
can obtain about the seller (Frey and van de Rijt 2016). Buyers handing over
responsibility for assessing seller trustworthiness implies that seller reputation
will have a smaller bearing on these buyers’ decisions to join an auction. As a
result, the absolute effect of a seller’s reputation on the probability of another
bidder joining the auction should decrease with the number of existing bidders.

Hypothesis 5: The more buyers have bid for an item, the smaller will be the
absolute effect of the seller’s number of positive and negative ratings on the
probability of another buyer bidding for the item.

Informational cascades can lead to adverse outcomes because they can reduce
the reliability of reputation as a sign of a seller’s trustworthiness and competence
(Przepiorka and Berger 2017). What is more, untrustworthy sellers anticipating
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buyers’ herd behavior will induce informational cascades to “play the system.”
They could auction their items at low starting prices and/or let confederates
place bids on their items to attract more bidders and drive up prices. Such
behavior will eventually undermine the reputation mechanism because reputa-
tion will become a weaker sign of seller trustworthiness and buyers will rely
less on it. A better understanding of how herd behavior affects reputation
systems’ effectiveness to identify (un)trustworthy sellers will inform the design of
resilient online platforms for social and economic exchange (see Helbing 2013;
van de Rijt et al. 2014).

Data and Methods
The data was collected by means of a spider program on the market platform
eBay.de between October 30 and December 31, 2006 (see Przepiorka 2013 for
details of the data collection).4 During the 2 months, all offers in the category
“Foto & Camcorder > Speicherkarten > SD” were collected. This category
contained offers of new and used SD (Secure Digital) memory cards, which
also differed in their format, memory capacity, and brand. Figure 1 shows a
screenshot of an item page where the item was successfully auctioned (i.e., sold).
Items were offered for sale by sellers from all over the world and attained an
average selling price of about e15. The entire sample contains about 176 k
valid cases. About 91 k cases (52%) are auctions, whereas the reminder of the
sample is for fixed price (22%) and mixed format offers (26%). In what follows,
only the auctions are considered. The online appendix contains frequency tables
and descriptive statistics of all item, offer and seller characteristics that were
available online.

To test hypothesis H1, we fit a logistic regression model with the binary
outcome variable y indicating whether an auction has received at least one bid.
To test hypothesis H2, we fit an OLS regression model with the log of the
highest bid in EUR as the outcome variable. The logit is fitted based on sold
and unsold items, whereas the OLS model is fitted based on the subsample of
sold items only.5

In all our models, a seller’s reputation is operationalized by two variables,
the log number of positive ratings (+1) and the log number of negative ratings
(+1). The log transformation accounts for the assumption that the absolute
effect of the number of ratings on a seller’s business success is increasing at a
decreasing rate. For example, a seller with 100 positive ratings will be perceived
more favorably than a seller with 50 positive ratings, whereas a seller with 1,100
and a seller with 1,050 positive ratings will not make the same level of difference.

To test hypotheses H3 through H5, we model the probability of another bidder
joining an auction y’, conditional on the number of bidders who already placed a
bid in the same auction. For this purpose, we can use a logistic regression model,
but we first have to restructure our data to account for the conditionality of the
probability of another bidder joining an auction. Thus, for each auction i in our
data, we make mi additional instances, where mi is the number of unique bidders,
who had joined the auction by the time the auction ended. In the restructured
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Figure 1. Completed auction of a 1-GB SD memory card auctioned via eBay.

dataset, auctions which received no bids are represented only once, auctions
which received bids by one bidder are represented twice, and so on. Only for
auctions with mi = max(m), we make mi—1 additional instances, where max(m)
denotes the maximum number of unique bidders who joined an auction. In our
data, max(m) = 18. Since conditional on an auction already having 18 bidders
the probability of another bidder joining is zero, the auction has only 18 (rather
than 19) instances.6

In the reshaped data, the binary outcome variable y’ is one for the mi first
instances of an auction and zero for the last instance. The instances of an auction
vary moreover in the number of existing bidders, the time left until the auction
ends (in minutes), and the price (i.e., highest bid in EUR) since the last bid
was placed. All other variables are constant within-auction. We extract these
variables from the so-called bid lists, which are created for all auctions that
receive at least one bid (see the online appendix for an illustrative example).
Auctions which received no bids are thus represented only once in our data.
In these cases, the outcome variable y’ is zero, the current price corresponds to
the starting price, and the time to auction end corresponds to the total auction
duration.

Based on the restructured dataset, the probability of another bidder joining
an auction conditional on the number of bidders, the time left until the end of
the auction, the current price, the seller’s reputation, and control variables can
be estimated using logistic regression. A special variant of this model is also
known as continuation ratio model (Guisan and Harrell 2000; O’Connell 2006;
Agresti 2010) and can be conceived as the complement of a discrete time event
history model in which the baseline hazard is modelled by the set of max(m)
dummy variables. In all our models, we estimate robust standard errors to
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adjust for same-seller-clusters, rather than same-auction-clusters, for auctions
are nested in sellers (Fitzmaurice et al. 2004; Snijders and Bosker 2012).

Note that in the model we describe above, we conceptualize the effect of the
number of existing bidders on the likelihood of attracting a new bidder as an
indicator of herding.7 One could argue that a characteristic of an auction, such
as the quality of the item or seller, which is omitted from the model, could affect
both the number of existing bidders and the likelihood of attracting a new bidder.
In that case, the aforementioned effect would be the outcome of crowding, that is,
some exogenous aspect of the auction attracting new bidders. With observational
data alone, we cannot fully ensure what we observe is not due to crowding but
herding. However, we have strong reasons to believe that what we identify is
largely due to herding. This is because we have measures of all aspects of an
auction a potential bidder could see and control for those aspects in our model
(see Morgan and Winship 2015). Theoretically, there could still be some relevant
omitted variables, for instance, (higher-order) interactions between the aspects
of an auction that are controlled in our models. But the product we focus on
is rather standard, so we do not expect such complex interactions. Shortly, our
strategy to identify herding relies on extremely tight covariate control (for other
studies employing a similar identification strategy, see Hainmueller et al. 2015).

We restrict the reporting of our results to the variables most relevant to our
hypotheses: initial price, current price, number of bidders, selling price, and
sellers’ reputations. However, keep in mind that all our results are based on
analyses in which we also control for over 100 other (mostly dummy) variables.
Depending on the model, these include, for instance, the auction duration (5
factors), payment methods and shipping conditions offered by the seller (5
factors), the number of similar items offered for sale at the same time as an
auction ends (1 variable), whether an auction ends on the weekend (1 factor),
the hour of day at which an auction ends (23 factors), the memory capacity of
the cards (8 factors), a seller’s country of origin (15 factors), etc.

The online appendix provides a detailed description of all control variables
and contains the full versions of the regression tables shown in the Results
section. The online appendix also contains alternative model specifications
which we estimated to establish the robustness of our main results. We report
our main results next and refer to the robustness checks where appropriate.

Results
Reputation Formation
The first two models in Table 1 test hypotheses H1 and H2. In the first model
(M1), other things being equal, the odds of an auction receiving at least one
bid increase by 100 × [exp(0.333) − 1] = 40%, if a seller’s number of positive
ratings increase by a factor of 2.7. The odds of an auction receiving at least one
bid change by 100 × [exp(−0.213) − 1] = −19%, if a seller’s number of negative
ratings increase by a factor of 2.7. These changes in odds correspond to changes
of 6.6 percentage points and − 4.6 percentage points, respectively, if we take the
unconditional selling probability of 0.698 as a reference value.
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Table 1. Regression Models of Probability of Sale and Selling Price Testing Hypotheses
H1 and H2

M1 (logit) M2 (OLS)

Coef. SE Coef. SE

Const. 10.405∗∗∗ 1.434 3.322∗∗∗ 0.364

Main explanatory variables

log(# pos. ratings +1) 0.333∗∗∗ 0.075 0.093∗∗∗ 0.020

log(# neg. ratings +1) −0.213∗ 0.092 −0.084∗∗∗ 0.019

log(initial price in e) −1.005∗∗∗ 0.125 0.058∗∗∗ 0.015

. . . (the full table is shown in the online appendix)

N1 88,452 61,744

N2 3,248 3,051

pseudo R2 0.44

adj. R2 0.68

BIC (df ) 61,881 (109) 121,275 (108)

Notes: The table lists coefficient estimates and cluster-robust standard errors (∗∗∗p < 0.001,
∗∗p < 0.01, ∗p < 0.05, for two-sided tests) of logit and OLS regression models. The binary
outcome variable of model M1 is one if the auction received at least one bid and is zero
otherwise. The outcome variable of model M2 is the log transformed selling price (in EUR) of
auctions that received at least one bid. N1 denotes the number of cases (auctions) and N2
denotes the number of clusters (sellers).

We obtain corresponding results with model M2, where the log of the
selling price (in EUR) is the outcome variable. If a seller’s number of
positive ratings increase by a factor of 2.7, the highest bid increases by
100 × [exp(0.093) − 1] = 9.7%. Based on the average selling price of about
e15, the change due to the increase in a seller’s positive reputation amounts to
e1.46. Accordingly, an increase in the number of negative ratings by a factor of
2.7 changes the highest bid by 100 × [exp(−0.084) − 1] = −8.1% or by -e1.21
at the average selling price. These results provide clear support for our first two
hypotheses. There is a substantial premium for sellers’ good reputations in terms
of the probability of receiving at least one bid (H1) and in terms of the amount
of the highest bid (H2). The reputation premium establishes the main incentive
for new traders with long-term business interests and honest intentions to enter
the market.8 Next we look more closely at the auction mechanism and how it
structures actors’ actions in solving the value problem and the problem of excess.

Herding and Bargain-Hunting
In model M3 in Table 2, we include the log number of existing bidders (+1) as
a linear term. Recall that the analysis is now based on the restructured data, and
the probability of another bidder joining an auction is the dependent variable.
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Table 2. Logit Models of Probability of Additional Bidder Testing Hypotheses H3 Through H5

M3 M4 M5 M6

Constant 2.777∗∗ 1.988∗ 2.207∗∗ 2.191∗

(1.003) (0.857) (0.855) (1.038)

Main explanatory variables

log(# positive ratings +1) 0.131∗∗ 0.144∗∗∗ 0.147∗∗∗ 0.293∗

(0.043) (0.038) (0.037) (0.115)

log(# negative ratings +1) −0.102∗ −0.116∗∗ −0.115∗∗ −0.311∗

(0.050) (0.043) (0.043) (0.148)

log(current price in e) −1.154∗∗∗ −1.009∗∗∗ −1.023∗∗∗ −1.161∗∗∗

(0.246) (0.202) (0.202) (0.236)

log(# existing bidders +1) 1.447∗∗∗ 3.742∗∗∗ 1.872∗∗∗

(0.085) (0.201) (0.330)

× log(# existing bidders +1) −1.198∗∗∗

(0.094)

× log(# positive ratings +1) −0.121

(0.073)

× log(# negative ratings +1) 0.162

(0.099)

0 existing bidders (0/1) ref.

1 existing bidder (0/1) 1.580∗∗∗

(0.120)

2 existing bidders (0/1) 2.756∗∗∗

(0.179)

3 existing bidders (0/1) 3.043∗∗∗

(0.134)

4 existing bidders (0/1) 2.893∗∗∗

(0.129)

5 existing bidders (0/1) 2.756∗∗∗

(0.140)

6 existing bidders (0/1) 2.571∗∗∗

(0.156)

. . .

17 existing bidders (0/1) 1.487

(0.930)

(Continued)
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Table 2. Continued.

M3 M4 M5 M6

. . . (the full table is shown in the online appendix)

N1 356,374 356,374 356,373 356,374

N2 3,201 3,201 3,201 3,201

pseudo R2 0.37 0.39 0.40 0.37

BIC (df ) 253,386 (107) 242,600 (108) 241,866 (123) 252,838 (109)

Notes: The table lists coefficient estimates (∗∗∗p < 0.001, ∗∗p < 0.01, ∗p < 0.05, for two-sided
tests) of logit regression models and cluster-robust standard errors in parentheses. The binary
outcome variable of all models is one if the auction is joined by a/another bidder and is zero
otherwise. N1 denotes the number of cases (bidder-joins-auction events), and N2 denotes the
number of clusters (sellers).

Supporting our third hypothesis (H3), the positive coefficient estimate indicates
that the more bidders have joined an auction the larger is the probability that the
auction will be joined by yet another bidder. These results are in line with what
Simonsohn and Ariely (2008) find based on their analyses of eBay auctions of
DVDs. They use a probit model and estimate the herding effect in terms of the
number of previous bids rather than bidders (see models 1 and 2 on page 1,631
in their paper). In our case, other things kept constant, if an auction with no
bidder is joined by one bidder, the odds of the auction being joined by another
bidder increase by 100 × [exp(1.447 × ln(2)) − 1] = 172.6%. The change in
odds corresponds to a change in probability of 16.5 percentage points, if we
take the unconditional selling probability of 0.698 as a reference value. Once
the second bidder joins the auction, the odds of the auction being joined by
the third bidder increase by 100 × [exp(1.447 × ln(3/2)) − 1] = 79.8% or 5.6
percentage points in terms of probability if we now take 0.863 as the reference
value. The coefficient of the log number of existing bidders estimated in model
M3 suggests that the probability of another bidder joining an auction increases
with the number of existing bidders at a decreasing rate. This finding suggests
that some buyers are indeed more likely to follow others rather than searching
for good offers themselves. However, since with every new bidder joining an
auction the price of the auctioned item is increased and the probability that
a particular bidder wins the auction decreases, potential buyers face a trade-
off between following others to reduce cognitive welter and search costs and
winning an auction at a favorable price. As hypothesized in H4, such a trade-
off should be reflected in an inversely u-shaped functional form of the herding
effect. That is, the probability of another bidder joining an auction should first
increase and start decreasing as from a certain number of existing bidders. We
test this hypothesis with models M4 and M5 in Table 2.

Model M4 contains the log number of existing bidders (+1) and the log
number of existing bidders (+1) squared. Model M4 differs from model M3 only
by the quadratic term. In line with hypothesis H4, the linear term is positive,
the quadratic term is negative, and both coefficient estimates are statistically
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significant.9 What is more, the Bayesian information criterion (BIC) of M4 is
considerably smaller than the BIC of M3 indicating that the fit of M4 is better
than the fit of M3. Based on the coefficient estimates of the log number of
existing bidders (b1) and the log number of existing bidders squared (b2), we can
calculate the number of existing bidders (x) at which the probability of another
bidder joining an auction starts decreasing. In order to do this, we have to set
the first derivative to zero, i.e., y’ = b1/(x + 1)—b2[2ln(x + 1)/(x + 1)] = 0, and
rearrange the equation to get x = exp(b1/2b2)—1. Substituting b1 and b2 with
the actual coefficient estimates obtained with M4, we get x = 3.767. In other
words, the probability of another bidder joining increases up to four existing
bidders and starts decreasing with four existing bidders. These results are robust
across different model specifications and item price categories.10

Model M5 tests hypothesis H4 without putting any restrictions on the
functional form of the herding effect. The model is estimated with a full set
of dummy variables—one for each possible number of existing bidders. The
coefficient estimate for “1 existing bidder” indicates that the odds of a new
bidder joining an auction is 100 × [exp(1.580)—1] = 385.5% higher if the
auction has one bidder already, as compared to an auction without bidders.
Auctions with two existing bidders attract yet more bidders. The odds of a
new bidder joining an auction with two bidders is 100 × [exp(2.756–1.580)—
1] = 224.1% higher than for an auction with only one bidder. Auctions with
three existing bidders too tend to attract more bidders than auctions with only
two bidders; the odds are 100 × [exp(3.043–2.756)—1] = 33.2% higher. The
herding effect peaks at three existing bidders and starts gradually decreasing
thereafter (also see full regression table in the online appendix). Model M5 makes
the same prediction with regard to the functional form of the herding effect as
M4 and, despite the higher number of degrees of freedom, has a better fit than
M4.

Note that in M5, only at 12 existing bidders is the probability of another
bidder joining not significantly different from the case of one existing bidder,
and only at 17 existing bidders is the probability of another bidder joining not
significantly different from the case of zero existing bidders. These comparisons
are made under the implicit assumption that everything except for the number
of existing bidders stays constant. However, if we want to study a within-auction
dynamic, keeping everything but the number of existing bidders constant is not
possible, as with every bidder joining an auction the item price increases by at
least the minimum bid increment. To demonstrate a within-auction dynamic,
we construct the following example based on model M5: we estimate predicted
probabilities of another bidder joining and thereby vary the item price along
with the number of existing bidders. That is, with every bidder joining the
auction, we also increase the item price by e0.50, which is the minimum bid
increment (see the appendix for an explanation of eBay’s auction mechanism).
The predicted probabilities are estimated with all other variables held constant
either at their modal values or their means. Figure 2 presents the results of this
exercise.
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Figure 2. Probability of additional bidder joining an auction conditional on the number
of existing bidders and current item price.

Figure 2 shows the predicted probability of a new bidder joining an auction
conditional on the number of existing bidders and the current item price. We
observe the largest increase in the predicted probability of another bidder joining
when the first bidder joins the auction. Corroborating our results obtained based
on model M5, the predicted probability increases up until three existing bidders
and starts decreasing as from four existing bidders. These gradual changes in
the probability of another bidder joining an auction are now also affected by
the gradual increase in item price. At eight existing bidders and an item price
of e5.00, the probability of another bidder joining is not significantly different
from the probability at zero existing bidders and an auction starting price of
e1.00. These results once more support our hypothesis H4. Potential buyers
seem to trade off the costs they incur when looking for a trustworthy seller
against the likelihood of winning an auction at a good price. Given that the
presence of other bidders as well as the item’s current price are important deter-
minants of potential buyers’ decisions to enter an auction, the question arises
in how far herding buyers neglect sellers’ reputations. Answering this question
is important as the neglect of sellers’ reputations may lead to undermining the
reputation systems’ efficacy to deter fraudulent sellers from entering the market.

Resilience of Reputation Systems
Note first that in models M3 through M5, the coefficient estimates of the
log number of positive and negative seller ratings have remained statistically
and substantially significant, despite the fact that all these models account
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for buyers’ herd behavior in one way or another. For example, the coefficient
estimate for the log number of positive ratings in model M3 in Table 2
indicates that, everything else equal, the odds of a new bidder joining an auction
initiated by a seller with 2.7 times more positive ratings than another seller are
100 × [exp(0.131) − 1] = 14.0% higher. Correspondingly, the odds of a new
bidder joining an auction initiated by a seller with 2.7 times more negative ratings
than another seller are 100 × [exp(−0.102)—1] = (−)9.7% lower. These results,
however, do not tell us whether herding makes buyers more likely to disregard
information about sellers’ reputations. In order to test hypothesis H5, we include
interaction terms of the log number of existing bidders with the log number of
positive and the log number of negative seller ratings in model M6 in Table 2.

The coefficient estimate of the interaction term with the log number of positive
seller ratings is negative, and the coefficient estimate of the interaction term
with the log number of negative seller ratings is positive. This suggests that
the reputation effect decreases as the log number of existing bidders increases.
However, neither interaction term is statistically significant. We do not find
support for hypothesis H5 that buyers increasingly disregard information about
sellers’ reputations when following others in their judgment.11

Discussion and Conclusions
In online markets, traders provide feedback about their trading partners’ conduct
after finished transactions, and this information is collected, aggregated, and
made immediately available to everyone online (Kollock 1999; Resnick et al.
2000; Dellarocas 2003). This centralized information sharing system reduces
the necessity for traders to be embedded in offline social networks in order to
gain information about potential trading partners (Diekmann et al. 2014). At
the same time, it promotes cooperation as only sellers with long-term business
interests or honest intentions will find it worthwhile to enter the market and
build a good reputation. Our results corroborate that building a good reputation
is costly; market entrants have to accept lower prices for their items in order to
compensate potential buyers for the risk they take when trading with unknown
sellers. However, reputation systems as such do not establish market structures
that shield reputable actors from their less reputable competitors (Podolny
1993). For example, established sellers cannot simply reduce prices to drive
competitors out of the market as such a strategy would jeopardize their returns
on investment in reputation (Shapiro 1983).

In online markets, the search for a particular product produces a long list of
offers, which lacks any information about sellers and detailed information about
the listed items. Only after clicking on a particular offer can detailed seller and
item information be accessed. However, other information, as the number of
bids and the highest bid (i.e., current price), is often readily available and can
be used to infer something about the seller and the item (Simonsohn and Ariely
2008). In particular, the fact that others have bid on an item already might be a
sign of the item’s good quality and the seller’s trustworthiness and competence
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(Banerjee 1992; Hedström 1998). Thus, following others in online auctions can
be beneficial if it saves search costs and maintains a good chance of winning the
auction at a favorable price.

Our results show that buyers indeed follow others in their judgment on which
offer to bid, but not at any price. The more buyers have bid on an item, the
more likely is the auction joined by another buyer. However, the herding effect
increases up to three existing bidders and starts gradually declining with every
bidder who joins the auction thereafter. This finding suggests that potential
buyers regard it as increasingly unlikely to win an auction at a good price if
the number of other bidders increases beyond a certain number.

While this finding shows that herding buyers are aware of the direct costs of
their behavior, it does not reveal in how far these buyers are aware of potential
indirect costs of following others. If previous bidders have not taken the seller’s
rating history into account, then blindly bidding on the same item and winning
it may be riskier as the seller could be untrustworthy or unreliable. Moreover,
the reputation mechanism could be undermined by sellers with a bad reputation
submitting early bids on their own behalf (Helbing 2013; van de Rijt et al. 2014).
Fortunately, even after controlling for herding in our statistical analyses, we find
a significant and substantial effect of a seller’s reputation on the probability of
another buyer joining an auction. In other words, even though buyers herd, they
do not neglect the information about sellers’ reputations that is available to them
and place their bids accordingly.

Our paper contributes to the literature on the economic sociology of markets
by showing how the setup of an online market structures market action to
help actors cope with three problems that hamper mutually beneficial market
exchanges (Beckert 2009): the value problem, the competition problem, and
the cooperation problem (see also Nee 2005; Aspers 2009). In the light of the
abundance of opportunities for online market exchange, we have suggested to
extend this list with the problem of excess (Abbott 2014), that is, the difficulty
of selecting a set of potential trading partners from among the plethora of offers
(see also Pinch 2012; Einav et al. 2016; Graham 2018). Here too, we have shown
how actors use a feature of the online market platform to cope with the problem.
But is the problem of excess an inevitable coordination problem that must be
resolved in any market, as the other three coordination problems identified by
Beckert (2009)?

Markets are diverse, and the coordination problems market participants
encounter in each case vary in their salience and strength. Rather than being
present or absent, we conceive of the three coordination problems described
by Beckert (2009) as well as the problem of excess (Abbott 2014) as manifest
to various degrees across markets and within markets over time. For example,
the value problem may not exist in markets in which prices are determined
exogenously (e.g., by the state) or the problem of competition is less severe
in monopolies. Our analysis exemplifies how online markets provide technical
solutions to mitigate the three coordination problems identified by Beckert
(2009): the auction and reputation mechanisms contribute to solving the value
and cooperation problems, respectively, without preventing new traders from
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entering the market (i.e., without aggravating the competition problem). These
solutions are inherently (but not entirely) independent of the socio-structural,
institutional, and cultural embedding of market participants. In fact, the success
of online market platforms depends on their overcoming these coordination
problems in a generic way to allow market exchanges to take place across
geographic, cultural, and legal barriers. As a result—inevitably—the problem
of excess emerges.

In offline markets, habits, convenience, and other constraints, which result
from actors’ embeddedness (Granovetter 1992), preclude these actors from
perceiving the problem of excess or simply provide a solution to the problem
(although see Geertz 1978). However, the possibility of browsing thousands
of similar offers online dissolves actors’ proximate embeddedness constraints
and makes the problem of excess apparent and gain in strength. In our paper,
we demonstrate how market participants take advantage of an organizational
feature of the online market to cope with the problem: they consider bidding
on auctions others have bid on already. However, the auction mechanism, as
implemented on eBay at the time our data was collected, was, in all likelihood,
not intended as a solution to the problem of excess. Moreover, platform providers
may have sensed that the way in which eBay was designed and used at that time
could have unintended consequences of the sort we point out in this paper.

The organizational features of eBay (and other online markets) have changed
quite considerably in the last 10 years. For example, in 2008, eBay changed its
reputation system. Before the change, buyers could rate sellers and sellers could
rate buyers alike. This reciprocal rating system was found to lead to an inflation
of positive ratings (Bolton et al. 2013). After the change, buyers could rate sellers,
whereas sellers’ possibility to rate buyers was limited (see also Diekmann et al.
2014). More recently, eBay has been transforming its market platform from a
peer-to-peer auction site, a global flea market that is, to a B2C market with
fewer professional sellers offering consumption goods at a fixed price. Roth
(2015) attributes these changes to eBay’s need to become faster. While with fixed
price offers, buyers can purchase the items they want immediately, in auctions
they have to wait until the auction ends without knowing whether they will
end up winning it. Roth (2015) argues moreover that with a concentration on
fewer professional sellers, online market platforms are better able to monitor
and enforce these sellers’ cooperative business conduct, making the market even
more secure for buyers.

Markets are endogenous in that their organizational features are adapted
in response to market frictions, new technologies, rival platforms, and the
behaviors of buyers and sellers (see MacKenzie and Millo 2003). This dynamic
and endogenous nature of markets limits the generalizability of our findings to
other markets (or the same market at a different point in time). However, today’s
online market platforms offer the possibility to test theories of the interplay of
the organization of markets and human behavior rigorously by means of large
sets of process-produced data (Diekmann et al. 2014). In this article, we used
such data to show how the problem of excess accentuated by online auction
markets gives rise to herding and how potentially adverse effects of such herding
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on the effectiveness of the reputation mechanism to promote cooperation are
mitigated by the price mechanism. In this generic form, these findings can be
generalized to other product markets in which these three forces (reputation
formation among sellers, social influence among buyers, and competition among
buyers) are at work. Another potential limitation of our study is that it is based
on observational data, which always leaves the question unanswered whether
there could be a confounder unaccounted for in the analyses that produces
the described effects (e.g., herding in our case). We are confident that this is
less of an issue here because in our multiple regression analyses, we account
for a comprehensive set of variables a potential buyer could consider in their
decision to place a bid in a particular auction. However, future work should test
the interplay of the three mechanisms that we describe here (price formation,
reputation formation, and herding) in well-designed laboratory experiments (see
Frey and van de Rijt 2016).

Notes
1. Note how this is different from the status signaling argument put forward by

Podolny (1993): First, Podolny’s argument refers to producers and not sellers
of a product and construes the main source of uncertainty in the quality of a
producer’s product rather than in a seller’s trustworthiness. Podolny (1993:
830) defines “a producer’s status in the market as the perceived quality of
that producer’s products in relation to the perceived quality of that pro-
ducer’s competitors’ products.” Moreover, Podolny describes status as being
comprised of an opinion-based and a relational component. The opinion-
based component can be defined as the regard other market participants have
for a given producer and is thus closely related to the notion of reputation
we work with in this paper. The relational component is the social ties to
other market actors, whose high or low status, respectively, enhances or
diminishes the status of the producer and, more importantly, establishes a
constraint to both how the quality of the producer’s product is perceived
and competition. This relational component is lacking in anonymous online
markets. Finally, Podolny argues that status can be conceived as a costly
signal because high-status producers have lower advertising, transaction, and
financial costs and thus lower costs of producing high-quality products than
low-status producers (see also Podolny 2005). In contrast, we argue that
reputation can be conceived as a costly signal because it is costly to acquire,
which deters untrustworthy sellers to enter the market (see also Przepiorka
and Berger 2017).

2. Aspers (2009) calls markets in which commodity prices mainly depend on
the standards of their production standard markets (e.g., crude oil markets)
and markets in which commodity prices depend on the relative status of
market actors status markets (e.g., fashion markets). Although, as we will
show later in this paper, in online markets commodity prices depend on the
“rank order” of sellers as per these sellers’ reputations, online markets with
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a reputation system are generally better conceptualized as standard markets.
Seller reputations do not create commodity values as such but provide the
type of knowledge needed to establish the quality of the commodity and
service offered by the seller (Akerlof 1970).

3. Actors can engage in similar behaviors because of imitation but also
because they obtain information from the same sources or face similar
socio-structural conditions. If imitation (conscious or unconscious) induces
homogeneous behavior, it is called herding; if exogenous factors induce
homogeneous behavior, it is called crowding (Hedström 1998; Pitluck
2014). We will come back to this point in the Data and Methods
section.

4. In an attempt to improve the buyer experience, eBay introduced the so-called
“Best Match” algorithm in early 2008 (Netzloff 2008; see also Nash 2008).
The Best Match algorithm scores sellers based on information these sellers
provide on their profile pages and the offers they post; sellers with higher
scores appear higher up in buyers’ search results. It is important to note that
our data was collected before the introduction of Best Match; it therefore
reflects what buyers saw when they searched for a specific product on
eBay.de and when they decided which offers to bid for. This makes our data
better suited to test our hypotheses than eBay data collected after the Best
Match was introduced or any online market data scraped from platforms
that use matching algorithms. For a discussion on how website designs and
algorithms affect users’ choices, see, e.g., Graham and Henman (2019) and
Ziewitz (2017).

5. Unsold items constitute about 30% of the entire sample, and this may be
a nonrandom sample of all items. Fitting the OLS regression based on the
sample of sold items only may produce biased and inconsistent estimates. We
tackle this problem by also fitting a Heckman selection model (Heckman
1976). Our results are not affected by sample selection. These robustness
checks are presented in the online appendix.

6. Note that sometimes, bidders, after having joined an auction, revise their
reservation price (i.e., increase their highest bid) and thus appear more than
once on a bid list (a detailed description of eBay’s auction mechanism is
provided in the online appendix). For our analyses, such behavior is of lesser
importance because our unit of analysis is bidders and not bids. That is, we
explain why a new bidder joins an auction based on the characteristics of the
auction at the moment the new bidder decides to place his or her first bid. In
our data, an auction has 3.05 unique bidders and 4.68 bids on average (the
median is 3 and 3, respectively). An auction which has received at least one
bid has 4.36 unique bidders and 6.70 bids on average (the median is 4 and
6, respectively).

7. In the herding literature (e.g., Bikhchandani et al. 1992), imitation of
previous actors’ choices is often assumed to occur in the same situation. In
our case, the situation changes as with every bidder joining the auction the
item price increases. In our analysis, we control for the current item price
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to estimate the effect of the number of existing bidders on the likelihood of
attracting a new bidder.

8. One may argue that sellers’ number of positive and negative ratings may
have an S-shaped association with selling price. That is, for those with
very low or very high numbers of ratings, an additional rating has a small
effect; for those with moderate number of ratings, an additional rating has
a large effect. If this was the case, a log transformation of the number
of ratings and selling price is not appropriate. We test this by regressing
final selling price (without log transforming it) on third-order polynomial
specifications for the untransformed number of positive and negative ratings,
controlling for the same set of variables as in M2 in Table 1. The third-order
polynomial terms are insignificant for both positive (p = 0.883) and negative
(p = 0.263) ratings. Moreover, even with the third-order specification,
the predicted association between reputation and selling price is quadratic
(analyses available on request). We thus conclude that log-transforming
reputation scores do not distort a potential third-order effect. Note that
in logistic regressions of the probability of sale, the association between
reputation and probability is bound to be S-shaped due to the logit link
function.

9. We also applied Simonsohn’s (2018) two-line approach using the “Robin
Hood” algorithm to test the inverse u-shaped relation implied in hypothesis
H4. The results corroborate the results reported here and are described in
detail in the online appendix.

10. The inversely u-shaped herding effect remains even if the model is estimated
with seller fixed effects. Those fixed effects could only be included with a
linear probability specification. Logit/probit specifications did not converge
with seller fixed effects. This alternative model specification is described
in the online appendix in Table A10. The online appendix also shows
that the inversely u-shaped herding effect mainly appears for medium-
sized and large memory capacities, whereas for small memory sizes, the
herding effect is monotonically increasing. However, 98% of all auctioned
items are of medium or large memory size. Hence, the inverse u-shaped
association describes the vast majority of cases. Model estimations using
interaction terms with memory size are also reported in Table A10 in the
online appendix.

11. This result does not change even if we estimate the interaction terms
of sellers’ numbers of positive and negative ratings with the number of
existing bidders squared (i.e., based on model M4 rather than M3). These
robustness checks are described in more detail in Table A10 in the online
appendix.
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