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Abstract

We consider two preorder-enriched categories of ordered PCAs: OPCA, where the arrows are functional mor-

phisms, and PCA, where the arrows are applicative morphisms. We show that OPCA has small products and

finite biproducts, and that PCA has finite coproducts, all in a suitable 2-categorical sense. On the other hand,

PCA lacks all nontrivial binary products. We deduce from this that the pushout, over Set, of two nontrivial

realizability toposes is never a realizability topos.

1 Introduction

This paper is concerned with two categories of ordered partial combinatory algebras (OPCAs).
First, we study OPCA, introduced by J. van Oosten and P. Hofstra in [HvO03], where the
arrows are functional morphisms. Second, we consider the category PCA, where the arrows
are applicative morphisms. Restricting the latter to discrete, i.e., unordered OPCAs yields
the category of PCAs first introduced by J. Longley in [Lon94]. Even though this category
greatly facilitates the study of PCAs, not much is known about its categorical structure.
Indeed, the comprehensive monograph [vO08] (p. 28) states: ‘It should be stressed that the
category [of PCAs] is not very well understood at the moment of writing’. That moment
was more than a decade ago, and since then, progress has been made (see, e.g., the paper
[FvO14] by E. Faber and J. van Oosten). However, there is one construction available in this
category that, to my knowledge, has thus far escaped attention or at least publication in the
literature. It turns out that the category of PCAs has finite coproducts. Their construction,
in the slightly more general setting of ordered PCAs, is described in the current paper.

A more general version of this construction already appeared in the paper [Zoe19], which
discusses a category of generalized (but unordered) PCAs. The construction of coproducts in
PCA below (Section 5) is a special case of this more general setting. One reason for presenting
the construction here as well is to enable one to understand the construction of coproducts
of OPCAs without having to work their way through the generalized PCAs from [Zoe19].
Another reason is that, as we shall see below, coproducts of OPCAs interact in an interesting
way with products of OPCAs. In [Zoe19], the situation with products is quite different, and
requires one to work over other ‘base categories’ than the topos Set of sets. In this paper, we
will work exclusively over the base category Set. In the category of sets, we will freely assume
the Axiom of Choice (AC); we will indicate the occasions where it is used.

The categories OPCA and PCA are enriched over preorders, so they carry a (simple) 2-
categorical structure. Moreover, in the final section, we will briefly consider the 2-category of
regular categories, and the 2-category of toposes, so some remarks on 2-categorical terminol-
ogy are in order. In general, we will append the prefix ‘pseudo-’ to a term to indicate that
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we define this term in a ‘fully weak’ 2-categorical sense. Most importantly, a pseudolimit
will be a limit where cones need only commute up to (specified, coherent) isomorphism, and
whose universal property is expressed by an equivalence of categories, rather than an iso-
morphism. Of course, in the preorder-enriched case, the isomorphisms need not be specified,
since they are unique anyway. Observe that a pseudopullback officially specifies three pro-
jecion morphisms, rather than two; but this will not play an important role in this paper.
Pseudocolimits are defined completely analogously. It turns out that the pseudoproducts we
construct below are actually 2-products, meaning that their universal property is expressed
by an isomorphism of categories. Note that we do not use the adjective ‘strict’ here. We will
use the adjective ‘strict’ at another occasion, however: a strict pseudoinitial object will be a
pseudoinitial object 0 with the additional property that every arrow A→ 0 is an equivalence.
Similarly, we will use the term ‘strict pseudoterminal object’ for the dual notion. Another
important use of the prefix ‘pseudo-’ concerns monos and epis. A 1-cell f is called a pseu-
domono if postcomposition with f is fully faithful. In the preorder-enriched case, this simply
means that postcomposition with f reflects the order. For epis, a similar definition applies.

The paper is structured as follows. First of all, in Section 2, we define the category OPCA

and state some of its elementary properties. In Section 3, we show that OPCA has small
pseudoproducts (which are in fact 2-products) and finite pseudocoproducts, which also yield
finite pseudobiproducts. Next, in Section 4, we construct the category PCA from OPCA.
Section 5 shows that the finite pseudocoproducts in OPCA also yield finite pseudocoproducts
in PCA. On the other hand, nontrivial binary pseudoproducts (i.e., where both factors are
not the pseudoterminal object) never exist in PCA. Finally, in Section 6, we deduce from this
that the pushout, over Set, of two nontrivial realizability toposes is never itself a realizability
topos.

2 Ordered PCAs

In this section, we introduce ordered partial combinatory algebras and morphisms between
them. Since we will not state any new results here, we will describe the important construc-
tions, but omit most proofs.

A partial combinatory algebra is a nonempty set A equipped with a partial binary ap-
plication map (a, b) 7→ ab. We think of the elements of A simultaneously as inputs and as
(codes of) algorithms that act on these inputs. The element ab stands for the output, if any,
when the algorithm (with code) a is applied to b. Of course, in order to capture the intuition
that the application map is computation, this map will need to satisfy certain axioms, to be
specified below.

A useful generalization of partial combinatory algebras was introduced by P. Hofstra and
J. van Oosten [HvO03]. Here, a partial combinatory algebra A is also equipped with a partial
order ≤. We can think of the statement a′ ≤ a as expressing that a′ gives more information
than a, or that a′ is a specialization of a. Of course, this order will need to be compatible
with the application map. Let us make this explicit.

Definition 2.1. An ordered partial applicative structure (OPAS) is a poset A = (A,≤)
equipped with a partial binary map A×A ⇀ A, (a, b) 7→ ab satisfying the following axiom:

(0) if a′ ≤ a, b′ ≤ b and ab is defined, then a′b′ is also defined, and a′b′ ≤ ab. ♦

In other words, if a′ and b′ contain at least as much information as a and b, and ab is
already defined, then a′b′ must also be defined and give at least as much information as ab.
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Before we proceed to define ordered partial combinatory algebras, some remarks on no-
tation are in order. First of all, the application map will not be associative, meaning that
expressions involving application need to be bracketed properly. In order to prevent illegible
expressions, we adopt the convention that application associates to the left, writing abc as an
abbreviation for (ab)c. Moreover, we will sometimes write a ·b instead of ab if this is necessary
to avoid confusion.

Since the application map is partial, we also introduce some notation dealing with par-
tiality. If e is a possibly undefined expression, then we write e ↓ to indicate that e is in fact
defined. We take this to imply that all subexpressions of e are defined as well. If e and e′ are
two possibly undefined expressions, then we write e′ � e for the statement: if e ↓, then e′ ↓
and e′ ≤ e. On the other hand, e′ ≤ e always expresses the stronger statement that e′ and e
are defined and satisfy e′ ≤ e. Observe that axiom (0) can also be written as: if a′ ≤ a and
b′ ≤ b, then a′b′ � ab. Moreover, we write e ≃ e′ if both e′ � e and e � e′. In other words,
e ≃ e′ expresses the Kleene equality of e and e′, meaning that e ↓ iff e′ ↓, and in this case, e
and e′ denote the same value. On the other hand, e = e′ will always mean that e and e′ are
defined and equal to each other.

Definition 2.2. An OPAS A is an ordered partial combinatory algebra (OPCA) if there exist
k, s ∈ A satisfying:

(1) kab ≤ a;

(2) sab↓;

(3) sabc � ac(bc). ♦

OPCAs satisfy an abstract version of the Smn Theorem for Turing computability on the
natural numbers. In order to make this precise, we need the following definition.

Definition 2.3. Let A be an OPCA. The set of terms over A is defined recursively as follows:

(i) We assume given a countably infinite set of disinct variables, and these are all terms.

(ii) For every a ∈ A, we assume that we have a constant symbol for a, and this is a term.
The constant symbol for a is simply denoted by a.

(iii) If t0 and t1 are terms, then so is (t0t1). ♦

We omit brackets whenever possible, again subject to the convention that application
associates to the left. Moreover, we may write t0 · t1 if needed to avoid confusion.

Clearly, every closed term t can be assigned a (possibly undefined) interpretation in A,
which will also be denoted by t. If t(~x) is a term in n free variables, then this term defines
an obvious partial function An ⇀ A, which sends a tuple ~a ∈ An to (the interpretation of)
t(~a), if defined. The key fact about OPCAs is the all such functions are computable using an
algorithm present in A.

Proposition 2.4 (Combinatory completeness). Let A be an OPCA. There exists a map that
assigns, to each term t(~x, y) in n+ 1 variables, an element λ∗~xy.t of A, satisfying:

• (λ∗~xy.t)~a↓;

• (λ∗~xy.t)~ab � t(~a, b),

for all ~a ∈ An, b ∈ A.
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The proof is an easy adaptation of the proof of Theorem 1.1.3 in [vO08], and is omitted.
It is worth mentioning that the map t(~x, y) 7→ λ∗~xy.t can be constructed explicitly and only
requires a choice for k and s as in Definition 2.2.

The elements k and s are usually called combinators. Using k, s and Proposition 2.4,
we can construct additional useful combinators. For our purposes, the combinators i = skk,
k = ki, p = λ∗xyz.zxy, p0 = λ∗x.xk and p1 = λ∗x.xk will be relevant. These satisfy:

ia ≤ a, kab ≤ b, p0(pab) ≤ a and p1(pab) ≤ b.

The combinators k and k also serve as booleans, meaning that there exists a case combinator
C ∈ A satisfying Ckab ≤ a and Ckab ≤ b. Observe that we may simply take C = i.

Remark 2.5. Even though k and s are not part of the structure of an OPCA, we will assume
that, for each OPCA we discuss, we have made an explicit choice for k and s. Observe that
this also yields a choice for the other combinators constructed above. If one has a lot of
OPCAs, then this may require the Axiom of Choice; this situation will occur in the proof of
Proposition 3.5. ♦

Example 2.6. The prototypical example is the (discretely ordered) OPCA K1, known as
Kleene’s first model. Its underlying set is the set of natural numbers, and mn is the result, if
any, when the m-th partial recursive function is applied to n. ♦

Example 2.7. Any poset with binary meets is an OPCA, where application is given by meet.
These are examples of pseudotrivial OPCAs ([HvO03], Definition 2.3), i.e., OPCAs where any
two elements have a common lower bound. This notion will not play a large role in this paper;
we will need it only in Example 3.7 below. ♦

We now proceed to define maps between OPCAs.

Definition 2.8. Let A and B be OPCAs. A morphism of OPCAs is a function f : A → B
satisfying the following requirements:

• there exists a t ∈ B such that t · f(a) · f(a′) � f(aa′);

• there exists a u ∈ B such that u · f(a′) ≤ f(a) whenever a′ ≤ a.

We say that t tracks f and that f preserves the order up to u. ♦

Definition 2.9. Let A and B be OPCAs and consider two functions f, f ′ : A→ B. We say
that f ≤ f ′ if there exists an s ∈ B such that s · f(a) ≤ f ′(a) for all a ∈ A. Such an s ∈ B is
said to realize the inequality f ≤ f ′. Moreover, we write f ≃ f ′ if both f ≤ f ′ and f ′ ≤ f . ♦

Proposition 2.10. OPCAs, morphisms of OPCAs and inequalities between them form a
preorder-enriched category OPCA.

We will be espacially interested in morphisms with the following property, introduced in
[HvO03].

Definition 2.11. Let f : A→ B be a morphism of OPCAs. We say that f is computationally
dense (c.d.) if there exists an n ∈ B satisfying:

∀s ∈ B∃r ∈ A(n · f(r) ≤ s). (cd)

♦
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In Section 5, we will also need the following notion.

Definition 2.12. A morphism of OPCAs f : A → B is called discrete if, for any subset
X ⊆ A, we have: if f(X) = {f(a) | a ∈ X} has a lower bound in B, then X has a lower
bound in A. ♦

We list some elementary properties of computational density and discreteness, which we
leave to the reader to prove.

Proposition 2.13. Let A
f
−→ B

g
−→ C be morphisms of OPCAs.

(i) If f and g are c.d., then gf is c.d. as well.

(ii) If gf is c.d., then g is c.d. as well.

(iii) If gf is discrete, then f is discrete as well.

(iv) Computational density and discreteness are downwards closed. That is, if f is c.d. (resp.
discrete) and f ′ ≤ f is a morphism of OPCAs, then f ′ is also c.d. (resp. discrete).

In particular, left adjoints are c.d., and right adjoints are discrete.

The definition of computational density in Definition 2.11 is not the original definition
from [HvO03], but rather a simplified version introduced by P. Johnstone. The following
proposition provides the original definition from [HvO03], which we will need later on.

Proposition 2.14 ([Joh13], Lemma 2.3). A morphism of OPCAs f : A → B is c.d. if and
only if there exists an m ∈ B satisfying:

∀s ∈ B∃r ∈ A∀a ∈ A (m · f(ra) � s · f(a)). (cdm)

In fact, any m ∈ B satisfying (cdm) also satisfies (cd).

Proof. First of all, suppose that m ∈ B satisfies (cdm). If s ∈ B, then we know that ks is
defined, so by (cdm), there exists an r ∈ A such that m · f(ra) � ks · f(a) ≤ s for all a ∈ A.
In particular, we have m · f(ri) ≤ s, so m satisfies (cd).

Conversely, suppose that n ∈ B satisfies (cd). Let t ∈ B we a tracker of f and let f
preserve the order up to u ∈ B. We define

m = λ∗x.n(u(t · f(p0) · x))(u(t · f(p1) · x)).

Now let s ∈ B, and find an r ∈ A such that n · f(r) ≤ s. Now we compute

m · f(pra) � n(u(t · f(p0) · f(pra)))(u(t · f(p1) · f(pra)))

� n(u · f(p0(pra)))(u · f(p1(pra)))

� n · f(r) · f(a)

� s · f(a),

as desired.
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3 Products and coproducts in OPCA

In this section, we investigate the existence of pseudo(co)products in OPCA, and their in-
teraction with c.d. morphisms. We start with a result by J. Longley ([Lon94], Proposition
2.1.7).

Proposition 3.1. The category OPCA has a pseudozero object.

Proof. The required pseudozero object is the OPCA 1 = {∗}, where ∗∗ = ∗. For every OPCA
A, there is only one function ! : A→ 1, and this is clearly a morphism of OPCAs, so 1 is in fact
a 2-terminal object. Conversely, every element c ∈ A yields a morphism of OPCAs ¡ : 1→ A
with ¡(∗) = c. Clearly, these are all isomorphic, so 1 is also a pseudoinitial object.

The existence of a pseudozero object means that we also have zero morphisms.

Definition 3.2. A morphism of OCPAs A→ B is called a zero morphism if it factors, up to
isomorphism, through 1.

The following lemma provides two alternative characterizations of zero morphisms. We
leave the proof to the reader.

Lemma 3.3. For a morphism of OPCAs f : A→ B, the following are equivalent:

(i) f is a zero morphism;

(ii) f(A) = {f(a) | a ∈ A} has a lower bound;

(iii) f is a top element of OPCA(A,B).

It follows from (iii) that OPCA is even enriched over preorders with a top element. Before
we continue, we characterize the OPCA 1 up to equivalence in a number of ways.

Lemma 3.4. Let A be an OPCA. The following are equivalent:

(i) A is equivalent to 1;

(ii) A has a least element;

(iii) idA is a zero morphism;

(iv) ¡ : 1→ A is c.d.

An OPCA A satisfying the equivalent conditions of Lemma 3.4 will be called trivial.
If A is an OPCA, then ! ◦ ¡ is isomorphic to the identity id1. On the other hand, ¡◦! is,

by definition, a zero morpism, so we also have idA ≤ ¡◦!. This means that ! ⊣ ¡.
In [HvO03] (Remark (2) on p. 450), it is observed that OPCA has binary products. This

construction generalizes to products of arbitrary (small) size, given choice on the index set.

Proposition 3.5. The category OPCA has small pseudoproducts.

Proof. Suppose we have an I-indexed sequence of OPCAs (Ai)i∈I . We equip the product
A =

∏
i∈I Ai with an OPAS structure by defining the order and application coordinatewise.

That is, if a = (ai)i∈I and b = (bi)i∈I are elements of A, then we set

• a ≤ b iff ai ≤ bi for all i ∈ I;
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• ab↓ iff aibi ↓ for all i ∈ I, and in this case, ab = (aibi)i∈I .

Observe that A is nonempty by AC, and axiom (0) clearly holds for A, since it holds coordi-
natewise. For all i ∈ I, we may (using AC) pick suitable combinators ki and si for Ai. Then
it is not hard to check that k = (ki)i∈I and s = (si)i∈I are suitable combinators for A, so
A is an OPCA. Moreover, for each i ∈ I, the projection πi : A → Ai is easily seen to be a
morphism of OPCAs.

Now suppose we have an OPCA B and for all i ∈ I, a morphism fi : B → Ai. Then we
have the obvious amalgamation f = 〈fi〉i∈I : b 7→ (fi(b))i∈I . If, for each i ∈ I, we pick a tracker
ti ∈ Ai of fi, then t = (ti)i∈I tracks f . Similarly, f preserves the order up to u = (ui)i∈I ,
where each fi preserves the order up to ui ∈ Ai. This shows that f is a morphism of OPCAs,
and we clearly have πif = fi for all i ∈ I.

Finally, suppose we have g, g′ : B → A such that πig ≤ πig
′ for all i ∈ I. If we pick, for

each i ∈ I, a realizer si ∈ Ai of πig ≤ πig
′, then s = (si)i∈I realizes g ≤ g′. This concludes

the proof, and we see that
∏

i∈I Ai is even the 2-product of the Ai.

The projections πi are clearly c.d., so if an amalgamation f = 〈fi〉i∈I is c.d., then so are
all the fi. The converse only holds for finite products.

Proposition 3.6. If (Ai)i∈I is a finite sequence of OPCAs, and the morphisms fi : B → Ai

are c.d., then 〈fi〉i∈I : B →
∏

i∈I Ai is also c.d.

Proof. It suffices to treat the nullary and the binary case. The nullary case states that
! : B → 1 is always c.d., which follows from the adjunction ! ⊣ ¡.

For the binary case, suppose we have c.d. morphisms f0 : B → A0 and f1 : B → A1. Let
ti ∈ Ai track fi, let fi preserve the order up to ui ∈ Ai, and let the computational density
of fi be witnessed by ni ∈ Ai. We define n′

i = λ∗x.ni(ui(ti · fi(pi) · x)) ∈ Ai. We claim that
n = (n′

0, n
′
1) ∈ A0 ×A1 witnesses the computational density of f = 〈f0, f1〉 : B → A0 ×A1.

In order to prove this, let s = (s0, s1) ∈ A0 × A1. Then we know that there exist ri ∈ B
such that ni · fi(ri) ≤ si. Now define r = pr0r1 ∈ B. Then

n′
i · fi(r) � ni(ui(ti · fi(pi) · fi(r))) � ni(ui · fi(pir)) � ni · f(ri) ≤ si,

so n · f(r) ≤ s, as desired.

Example 3.7. Let A be an OPCA that is not pseudotrivial. Then in particular, k and k do
not have a common lower bound, for if u were a lower bound of k and k, then uab would be
a lower bound of a and b, for arbitrary a, b ∈ A. Let I be a set such that 2|I| > |A|. Then
a morphism f : A → AI is never c.d., where AI denotes the I-fold product of A. Indeed,
suppose for the sake of contradiction that f is c.d., witnessed by n ∈ AI . Then every element
of AI is bounded from below by an element of X = {n · f(r) | r ∈ A,n · f(r)↓}. This set X
has cardinality at most |A|. However, the subset {a ∈ AI | ∀i ∈ I (ai ∈ {k, k})} of A

I , which
has cardinality 2|I| > |A| ≥ |X|, has the property that every two distinct elements do not
have a common lower bound in AI : contradiction.

In particular, the diagonal δ : A→ AI is not c.d., which means that Proposition 3.6 does
not hold for infinite I. ♦

Just as the 2-terminal object 1 is also pseudoinitial, finite 2-products in OPCA also serve
as pseudocoproducts.

Theorem 3.8. The category OPCA has finite pseudocoproducts.
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Proof. It suffices to treat the binary case. Let A0 and A1 be OPCAs. Then there is a
morphism of OPCAs κ0 : A0 → A0×A1 given by κA(a) = (a, i). Similarly, we have κ1 : A1 →
A0 ×A1 given by κ1(a) = (i, a). We claim that this is a pseudocoproduct diagram.

First of all, suppose that we have morphisms of OPCAs f0 : A0 → B and f1 : A1 → B. Let
ti ∈ B track fi, and let fi preserve the order up to ui ∈ B. We define f = [f0, f1] : A0×A1 → B
by f(a0, a1) = p · f0(a0) · f1(a1). Then f is tracked by

λ∗xy.p(t0(p0x)(p0y))(t1(p1x)(p1y)) ∈ B,

as a straightforward calculation will show. Similarly, one can show that f preserves the order
up to λ∗x.p(u0(p0x))(u1(p1x)) ∈ B, so f is a morphism of OPCAs. We have f(κ0(a)) = pai,
so p0 ∈ B realizes fκ0 ≤ f0 and λ∗x.pxi realizes f0 ≤ fκ0. Similarly, one shows that fκ1 ≃ f1.

Now suppose we have morphisms g, g′ : A0×A1 → B such that gκ0 ≤ g′κ0 and gκ1 ≤ g′κ1.
Let si ∈ B realize gκi ≤ g′κi, let t, t

′ ∈ B track g resp. g′, and suppose that g and g′ preserve
the order up to u, u′ ∈ B respectively. We claim that g ≤ g′ is realized by:

s = λ∗x.u′(t′(t′ · g′(k, k) · (s0(u(t · g(i, ki) · x))))(s1(u(t · g(ki, i) · x)))) ∈ B.

Let (a0, a1) ∈ A0 ×A1. Then we have:

s0(u(t · g(i, ki) · g(a0, a1))) � s0(u · g(ia0, kia1))

� s0 · g(a0, i)

≃ s0 · g(κ0(a0))

≤ g′(κ0(a0))

= g′(a0, i),

and similarly, s1(u(t · g(ki, i) · g(a0, a1))) ≤ g′(i, a1). This yields:

s · g(a0, a1) � u′(t′(t′ · g′(k, k) · g′(a0, i)) · g
′(i, a1))

� u′(t′ · g′(ka0, ki) · g
′(i, a1))

� u′ · g(ka0i, kia1)

≤ g′(a0, a1),

as desired.

Corollary 3.9. The category OPCA has finite pseudobiproducts

Proof. The only thing left to check is that A0
κ0−→ A0×A1

π0−→ A0 is isomorphic to idA0
, and

that A0
κ0−→ A0 ×A1

π1−→ A1 is a zero morphism. Both are immediate.

Moreover, Proposition 2.13(ii) immediately yields the following relation between coprod-
ucts and computational density.

Corollary 3.10. If f0 : A0 → B and f1 : A1 → B are morphisms of OPCAs and f0 is c.d.,
then [f0, f1] : A0 ×A1 → B is also c.d.

In analogy with ordinary coproducts, we say that finite pseudocoproducts are disjoint if,
for every pseudocoproduct diagram A0 → A0⊔A1 ← A1, the coprojections are pseudomonos,
and

0 A1

A0 A0 ⊔A1

is a pseudopullback, where 0 denotes the pseudoinitial object.
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Proposition 3.11. The finite pseudocoproducts in OPCA are disjoint.

Proof. Since πiκi ≃ idAi
, it is immediate that the κi are pseudomonos. In order to establish

the required pseudopullback, we need to show the following: if we have morphisms f0 : B → A0

and f1 : B → A1 such that κ0f0 ≃ κ1f1, then f0 and f1 are both zero morphisms. Let
s = (s0, s1) ∈ A0 × A1 realize κ0f0 ≤ κ1f1. Then for all b ∈ B, we have (s0 · f0(b), s1i) ≃
s · κ0(f0(b)) ≤ κ1(f1(b)) = (i, f1(b)). In particular, we have s1i ≤ f1(b) for all b ∈ B, so f1 is
a zero morphism. The proof that f0 is a zero morphism proceeds analogously.

The ‘dual’ result to Proposition 3.11 also holds; this will be useful in Section 5.

Proposition 3.12. If A0 and A1 are OPCAs, then πi : A0 ×A1 → Ai is a pseudoepi and

A0 ×A1 A1

A0 1

is a pseudopushout diagram.

Proof. Since πiκi ≃ idAi
, we know that πi is indeed pseudoepi.

For the pseudopushout, we need to show the following: if f0 : A0 → B and f1 : A1 → B are
morphisms such that f0π0 ≃ f1π1, then f0 and g0 are both zero morphisms. If s ∈ B realizes
f0π0 ≤ f1π1, then we have s · f0(a0) ≤ f1(a1) for all a0 ∈ A0 and a1 ∈ A1. In particular, we
have s · f0(i) ≤ f1(a1) for all a1 ∈ A1, so f1 is a zero morphism. The proof that f0 is a zero
morphism again proceeds analogously.

We close this section by investigating coproducts in a category related to OPCA.

Definition 3.13. The preorder-enriched category OPCAadj is defined as follows.

• Its objects are OPCAs.

• An arrow f : A→ B is a pair of morphisms f∗ : B → A and f∗ : A→ B with f∗ ⊣ f∗.

• If f, g : A→ B, then we say that f ≤ g if f∗ ≤ g∗; equivalently, if g∗ ≤ f∗. ♦

Proposition 3.14. The category OPCAadj has finite pseudocoproducts. Moreover, the pseu-
doinitial object is strict, and pseudocoproducts are disjoint.

Proof. We have already seen that there are essentially unique morphisms ! : A → 1 and
¡ : 1→ A satisfying ! ⊣ ¡, yielding the (essentially) unique arrow 1→ A in OPCAadj. Moreover,
if we have an arrow A→ 1 in OPCAadj, then also ¡⊣ !, so ! and ¡ form an equivalence between
A and 1, meaning that 1 is indeed strict.

Now consider two OPCAs A and B. We have the product diagram A
πA←− A× B

πB−→ B
and the coproduct diagram A

κA−→ A×B
κB←− B. We have already remarked that πAκA ≃ idA.

Moreover, it is easily computed that κAπA ≥ idA×B, which means that πA ⊣ κA is an arrow
A → A × B of OPCAadj. Similarly, we have the arrow πB ⊣ κB : B → A × B. In order to
show that this yields a pseudocoproduct diagram in OPCAadj, we need to show the following:
if f : A → C and g : B → C are arrows of OPCAadj, then h∗ = 〈f∗, g∗〉 is left adjoint to
h∗ = [f∗, g∗]. First of all, we may easily compute that h∗(h

∗(c)) = p · f∗(f
∗(c)) · g∗(g

∗(c)).
So, if r, s ∈ C realize idC ≤ f∗f

∗ and idC ≤ g∗g
∗ respectively, then λ∗x.p(rx)(sx) realizes
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idC ≤ h∗h
∗. The other inequality can be obtained completely from universal properties. We

have:
πAh

∗h∗κA ≃ f∗f∗ ≤ idA ≃ πAκA and πAh
∗h∗κB ≃ f∗g∗ ≤ πAκB ,

so from the universal property of the coproduct A×B, it follows that πAh
∗h∗ ≤ πA. Similarly,

we obtain πBh
∗h∗ ≤ πB , and the universal property of the product A×B yields h∗h∗ ≤ idA×B ,

as desired.
For disjointness, we first note that πA ⊣ κA is a pseudomono because πAκA ≃ idA. Now

suppose we have arrows f : C → A and g : C → B of OPCAadj such that κAf∗ ≃ κBg∗. Then
we know from Proposition 3.11 that f∗ and g∗ are both zero morphisms. From idC ≥ f∗f∗, it
follows that idC is also a zero morphism, i.e., C is trivial. Now it is immediate that 1 is the
pseudopullback of A→ A×B ← B in OPCAadj.

In particular, we must have that the codiagonal ε : A × A → A is right adjoint to the
diagonal δ : A→ A×A. This means that we can view ε as an ‘internal binary meet map’ on
A (compare with the internal finite meets of BCOs in [Hof06], p. 246). Explicitly, this map
is given by ε(a, a′) = paa′. We can also deduce from this that OPCA is even enriched over
posets with finite meets, rather than posets with a top element.

4 Applicative morphisms

In this section, we introduce the category of ordered PCAs and applicative morphisms between
them. Applicative morphisms (between unordered PCAs) were the morphisms originally
considered by J. Longley in [Lon94]. Applicative morphisms are no longer functions between
the underlying sets, but total relations. In [HvO03], it is shown how to reconstruct the notion
of applicative morphism by introducting a certain pseudomonad on OPCA. This is also the
treatment we follow here.

Definition 4.1. Let A be an OPCA.

(i) We define a new OPCA TA as follows:

– TA is the set of all nonempty downsets of A, i.e.,

TA = {∅ 6= α ⊆ A | if a ∈ α and a′ ≤ a, then a′ ∈ α}.

– TA is ordered by inclusion.

– For α, β ∈ TA, we say that αβ ↓ iff ab↓ for all a ∈ α and b ∈ β; and in this case,

αβ = ↓{ab | a ∈ α, b ∈ β}.

(ii) For a morphism of OPCAs f : A→ B, we define Tf : TA→ TB by Tf(α) = ↓ f(α) =
↓{f(a) | a ∈ α}.

(iii) We define δA : A→ TA and
⋃

A : TTA→ TA by δA(a) = ↓{a} and
⋃

A(A) =
⋃
A. ♦

Observe that for the combinators in TA, we may simply take ↓{k} and ↓{s}.

Proposition 4.2. The triple (T, δ,
⋃
) is a KZ-pseudomonad on OPCA.

The proof is very similar to case of the nonempty downset monad on the category of
posets, but one has to insert some realizers at appropriate positions. We leave this to the
reader.
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Definition 4.3. The preorder-enriched category PCA is defined as the Kleisli category for
the pseudomonad T . An arrow of PCA will be called an applicative morphism, and will be
denoted by f : A ⊸ B. ♦

Let us consider for a moment what this means. The objects of PCA are still OPCAs. An
applicative morphism f : A ⊸ B is a morphism of OPCAs f : A → TB. This means that f
does not assign an element of B to a ∈ A, but rather a (nonempty and downwards closed)
set of elements. For this reason, we use the multimap sign ⊸ for applicative morphisms.
The identity on A is δA, and the composition of f : A ⊸ B and g : B ⊸ C is

⋃
C ◦Tg ◦ f ,

i.e., gf(c) =
⋃

b∈f(a) g(b). The requirements for an applicative morphism can be reformulated
completely in terms of elements of B (rather than TB). It is convenient to use the following
notation: if a ∈ A and α ∈ TA, then we write

a · α := ↓{a} · α = ↓{aa′ | a′ ∈ α}.

Now, a function f : A→ TB is an applicative morphism iff the following hold:

• There exists an r ∈ B such that r · f(a) · f(a′) ⊆ f(aa′) whenever aa′ ↓; such an r will
also be called a tracker of f (even though the tracker is really ↓{r} ∈ TB).

• There exists a u ∈ B such that u · f(a′) ⊆ f(a) whenever a′ ≤ a. We will say that f
preserves the order up to u

Similarly, if f, f ′ : A ⊸ B, then we have that f ≤ f ′ iff there exists an s ∈ B such that
s · f(a) ⊆ f ′(a) for all a ∈ A; and such an s will be called a realizer of f ≤ f ′.

It turns out for applicative morphisms, one can get rid of the realizer u above.

Lemma 4.4. Every applicative morphism is isomorphic to an order-preserving applicative
morphism.

Proof. Given f : A ⊸ B, define f ′ : A ⊸ B by f ′(a) =
⋃

a′≤a f(a
′). Clearly, i ∈ B realizes

f ≤ f ′, and if f preserves the order up to u ∈ B, then u realizes f ′ ≤ f . So we have f ≃ f ′,
which also implies that f ′ is, in fact, an applicative morphism. Clearly, f ′ preserves the order
on the nose.

If f : A ⊸ B is an applicative morphism, then there exists an essentially unique T -algebra
morphism f̃ : TA→ TB such that the diagram

A TB

TA

f

δA f̃

commutes. Explicitly, we have f̃ ≃
⋃

B ◦Tf . It is well known from the general theory of
(pseudo)monads that this yields an equivalence between PCA and the full subcategory of
T -Alg on the free T -algebras. Moreover, it is easy to show that δA is c.d., so Proposition 2.13
implies that f is c.d. iff f̃ is c.d. This means we have an unambiguous notion of computational
density for applicative morphisms. Explicitly, there should be an n ∈ B such that

∀s ∈ B∃r ∈ A(n · f(r) ⊆ ↓{s}).
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The results from Proposition 2.13 automatically hold for PCA as well. For example, suppose
that f : A ⊸ B and g : B ⊸ C are c.d. Then f̃ and g̃ are c.d., so by Proposition 2.13(i),

g̃f ≃ g̃f̃ is c.d., hence gf is c.d.
Moreover, there exists a pseudofunctor OPCA → PCA sending a morphism f : A → B

to δBf : A ⊸ B. Because δB is always a pseudomono, this pseudofunctor is fully faithful
on 2-cells. Furthermore, one easily shows that this pseudofunctor preserves and reflects
computational density.

Definition 4.5. An applicative morphism f : A ⊸ B is called projective if f belongs to the
essential image of OPCA→ PCA. Equivalently, if f̃ belongs to the essential image of T . ♦

In other words, f is projective iff there exists a morphism of OPCAs f0 : A → B such
that f ≃ δBf0, and in this case, we have f̃ ≃ Tf0. In fact, it suffices that there be a function
f0 : A→ B such that f ≃ δBf0; such an f0 will the automatically be a morphism of OPCAs.
At various occasions in the remainder of the paper, we will view morpismsm of OPCAs as
projective applicative morpisms.

The following result was obtained in [FvO14] (Corollary 1.15), using an analysis of the
corresponding realizability toposes (to be defined in Section 6 below), but it can also be
proved directly. It is worth noting that the proof uses the Axiom of Choice.

Theorem 4.6. An applicative morphism has a right adjoint in PCA if and only if it is both
projective and c.d.

Proof. First, suppose that f : A ⊸ B has a right adjoint g : B ⊸ A. We already know
from Proposition 2.13 that this implies that f is c.d. For projectivity, suppose that r ∈ A
realizes idA ≤ gf and s ∈ B realizes fg ≤ idB . Then for all a ∈ A, we have that ra ↓ and
ra ∈ gf(a) =

⋃
b∈f(a) g(b). By the Axiom of Choice, there exists a function f0 : A → B such

that f0(a) ∈ f(a) and ra ∈ g(f0(a)) for all a ∈ A. We claim that f ≃ δBf0. First of all,
we have that ↓{f0(a)} ⊆ f(a), so the identity combinator i realizes δBf0 ≤ f . The converse
inequality is realized by s′ := λ∗x.s(tr′x) ∈ B, where r′ is an element from f(r) and t ∈ B
tracks f . Indeed, if b ∈ f(a), then tr′b ∈ f(ra) ⊆

⋃
a′∈g(f0(a))

f(a′) = fg(f0(a)). So we see

that s′b � s(tr′b), which is defined and an element of idB(f0(a)) = ↓{f0(a)}, as desired.
For the converse, let f : A→ B be a c.d. morphism of OPCAs; we need to show that f ′ =

δBf : A ⊸ B has a right adjoint g : B ⊸ A. Let m ∈ B satisfy (cdm) from Proposition 2.14
for f . We define g : B ⊸ A by:

g(b) = ↓{a ∈ A | m · f(a) ≤ b}.

First, let us show that g is indeed an applicative morphism. Because m also satisfies (cd)
from Definition 2.11 for f , we know that g(b) is nonempty for every b ∈ B. Moreover, g
clearly preserves the order on the nose. In order to construct a tracker, let

s = λ∗x.m(u(t · f(p0) · x))(m(u(t · f(p1) · x))) ∈ B,

where t tracks f and f preserves the order up to u. Find r ∈ A such that m · f(ra) � s · f(a),
and define q = λ∗xy.r(pxy) ∈ A. We claim that q tracks g. We need to show that, if bb′ ↓,
then

q · g(b) · g(b′) = ↓{qaa′ | m · f(a) ≤ b and m · f(a′) ≤ b}
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is a subset of g(bb′). So suppose that m · f(a) ≤ b and m · f(a′) ≤ b. Then qaa′ � r(paa′)
and:

m · f(r(paa′)) � s · f(paa′)

� m(u(t · f(p0) · f(paa
′)))(m(u(t · f(p1) · f(paa

′))))

� m(u · f(p0(paa
′)))(m(u · f(p1(paa

′))))

� m · f(a)(m · f(a′))

� bb′,

so qaa′ ∈ g(bb′), as desired.
In order to establish the adjunction f ′ ⊣ g, we first note that

gf ′(a) =
⋃

b≤f(a)

g(b) = ↓{a′ ∈ A | m · f(a′) ≤ f(a)}.

According to (cdm), there exists an r ∈ A such that m · f(ra) � i · f(a) ≤ f(a) for all a ∈ A.
This immediately implies that ra ∈ gf ′(a) for all a ∈ A, so r realizes idA ≤ gf ′. Conversely,
we have

f ′(g(b)) =
⋃

a∈g(b)

↓{f(a)} = ↓{f(a) | m · f(a) ≤ b},

so it is immediate that m ∈ B realizes f ′g ≤ idB .

We observe that, as an immediate corollary of this, any two OPCAs that are equivalent
in PCA are already equivalent in OPCA. This means that we can speak unambiguously about
the equivalence of OPCAs.

5 Products and coproducts in PCA

In this section, we investigate to which extent the results from Section 3 carry over to the
category PCA. For pseudocoproducts, this is quite easy.

Corollary 5.1. The pseudofunctor OPCA → PCA preserves finite pseudocoproducts. In
particular, PCA has all finite pseudocoproducts.

Proof. For every OPCA A, we have PCA(1, A) ≃ OPCA(1, TA), which we know to be equiv-
alent to the one-element preorder. Similarly, if A0, A1 and B are OPCAs, then

PCA(A0 ×A1, B) ≃ OPCA(A0 ×A1, TB)

≃ OPCA(A0, TB)× OPCA(A1, TB)

≃ PCA(A0, B)× PCA(A1, B),

finishing the proof.

Explicitly, if f0 : A0 ⊸ B and f1 : A1 ⊸ B are applicative morphisms, then their amalga-
mation [f0, f1] : A0 ×A1 ⊸ B is given by:

[f0, f1](a0, a1) = ↓{pb0b1 | b0 ∈ f0(a0) and b1 ∈ f1(a1)}.

By Proposition 2.13(ii) (or rather, its counterpart for PCA), we immediately have the following
corollary.
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Corollary 5.2. If f0 : A0 ⊸ B and f1 : A1 ⊸ B are applicative morphisms and f0 is c.d.,
then [f0, f1] : A0 ×A1 ⊸ B is also c.d.

Since T1 ≃ 1, we have that 1 is not only pseudoinitial in PCA, but also pseudotermi-
nal. Therefore, we also define zero morphisms in PCA, by saying that f : A ⊸ B is a zero
morphism iff it factors (in PCA) through 1. This is in fact equivalent to f : A → TB being
a zero morphism in OPCA, which is equivalent to

⋂
a∈A f(a) 6= ∅. The proof of the follow-

ing proposition is now completely analogous to the proof Proposition 3.11, and is therefore
omitted.

Proposition 5.3. Pseudocoproducts in PCA are disjoint.

If we want to show that A0×A1 is also the pseudoproduct of A0 and A1 in PCA, then we
should show that T (A0 × A1) ≃ TA0 × TA1. However, it turns out that this is not true in
general, and that PCA does not have finite pseudoproducts. On the other hand, A0×A1 is still
a product of A0 and A1 in PCA in a weak sense. Explicitly, if f0 : B ⊸ A0 and f1 : B ⊸ A1,
then there exists a maximal mediating arrow f : B ⊸ A0 × A1. Using the theory developed
in Section 3, we can tie things together quite nicely.

Because T is a pseudofunctor, we have arrows Tπ0 ⊣ Tκ0 : TA0 → T (A0 × TA1) and
Tπ1 ⊣ Tκ1 : TA1 → T (A0 × TA1) of OPCAadj. By Proposition 3.14, there exists a mediating
arrow h∗ ⊣ h∗ : TA0 × TA1 → T (A0 × TA1). Explicitly, we have h∗(α0, α1) = α0 × α1 for
αi ∈ TAi, whereas

h∗(α) = (Tπ0(α), Tπ1(α))

= ({a0 ∈ A0 | ∃a1 ∈ A1 ((a0, a1) ∈ α)}, {a1 ∈ A1 | ∃a0 ∈ A0 ((a0, a1) ∈ α)})

for α ∈ T (A0×A1). One easily computes that h∗h∗ is in fact isomorphic to idTA0×TA1
. (This

also follows from the fact that Tπi ◦ Tκi ≃ idTAi
, whereas Tπj ◦ Tκi is a zero morphism for

i 6= j.) Now we see that

PCA(B,A0)× PCA(B,A1) ≃ OPCA(B,TA0)× OPCA(B,TA1)

≃ OPCA(B,TA0 × TA1)

⇆ OPCA(B,T (A0 ×A1))

≃ PCA(B,A0 ×A1),

where

OPCA(B,TA0 × TA1) OPCA(B,T (A0 × TA1))
h∗◦−

⊥
h∗◦−

is an adjunction whose counit is an isomorphism. In particular, if f0 : B ⊸ A0 and f1 : B ⊸

A1 are applicative morphisms, then

B TA0 × TA1 T (A0 ×A1)
〈f0,f1〉 h∗

is the maximal mediating applicative morphism B ⊸ A0×A1. Conversely, g : B ⊸ A0×A1 is
such a maximal mediating morphism iff g : B → T (A0×A1) factors through h∗; or equivalently,
h∗h

∗g ≃ g. Observe that this includes all projective g : B ⊸ A0×A1. Indeed if g ≃ δA0×A1
◦g0

with g0 : B → A0 ×A1, then we also have g ≃ δA0×A1
◦ g0 ≃ h∗ ◦ (δA0

× δA1
) ◦ g0.

The above shows that pseudoproducts exist in in PCA in a weak sense. Now let us turn
to the existence of actual pseudoproducts in PCA. Obviously, if A0 (resp. A1) is trivial, then
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the pseudoproduct of A0 and A1 exists in PCA, and it is equivalent to A1 (resp. A0). Using
the morphism h∗ above, we can show that this is the only situation in which A0 and A1 have
a product in PCA.

Theorem 5.4. If A0 and A1 are OPCAs that have a pseudoproduct in PCA, then at least
one of A0 and A1 is trivial.

Proof. The proof is divided into two parts.

1. First, we show that h∗ : T (A0 × A1) → TA0 × TA1 has a left adjoint, and is therefore
discrete.

2. Second, we show that h∗ cannot be discrete if A0 and A1 are both nontrivial.

For the first part, denote the pseudoproduct projections TA0 × TA1 → TAi by ρi; then h∗ is
the essentially unique morphism such that

T (A0 ×A1) TA0 × TA1

TAi

h∗

Tπi
ρi

commutes up to isomorphism, for i = 0, 1.
Suppose that C is a pseudoproduct of A0 and A1 in PCA, with projections σi : C ⊸

Ai. Then σ0 and σ1 induce a maximal mediating arrow f : C ⊸ A0 × A1. On the other
hand, π0 and π1, seen as projective applicative morphisms, induce a unique mediating map
g : A0 ×A1 ⊸ C. So for i = 0, 1 we get a diagram in PCA:

A0 ×A1 C

Ai

⊸g

πi

⊸ f

⊸

σi

(1)

where the triangles commute up to isomorphism. Since C is a pseudoproduct, we have
gf ≃ idC . Moreover, we have πifg ≃ σig ≃ πi ≃ πi ◦ idA0×A1

for i = 0, 1, and since idA0×A1

is certainly projective, this yields fg ≤ idA0×A1
. We can conclude that f ⊣ g.

For every OPCA B, we have natural equivalences

OPCA(B,TC) ≃ PCA(B,C)

≃ PCA(B,A0)× PCA(B,A1)

≃ OPCA(B,TA0)× PCA(B,TA1),

so TA0
σ̃0←− TC

σ̃1−→ TA1 is a product diagram in OPCA. This means there exists an
equivalence ι : TC → TA0 × TA1 such that the diagram

TC TA0 × TAi

TAi

ι

σ̃i ρi
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commutes up to isomorphism for i = 0, 1. Taking the image of the diagram (1) under the
equivalence between PCA and free T -algebras, we get the diagram

T (A0 ×A1) TC TA0 × TA1

TAi

Tπi

g̃

ι

σ̃i

f̃

ρi

in OPCA for i = 0, 1, where all triangles commute up to isomorpism. In particular, ρiιg̃ ≃
σ̃ig̃ ≃ Tπi, so ιg̃ must be isomorphic to h∗. Since f ⊣ g, we also have f̃ ⊣ g̃, hence also
f̃ ι−1 ⊣ ιg̃ ≃ h∗. We conclude that h∗ has a left adjoint, so by Proposition 2.13, h∗ is discrete.

For the second part, suppose that A0 and A1 are both nontrivial, and that h∗ is discrete.
Consider the set

X ⊆ {α ∈ T (A0 ×A1) | h
∗(α) = (A0, A1)}.

We claim that
⋂

X is empty. Let (a0, a1) ∈ A0 ×A1 be arbitrary, and consider the downset

α = {(b0, b1) ∈ A0 ×A1 | a0 � b0 or a1 � b1}

of A0×A1. Since a0 is, by assumption, not the least element of A0, there exists a b0 ∈ A0 such
that a0 � b0. This implies that {b0} × A1 ⊆ α, so α is nonempty and satisfies Tπ1(α) = A1.
Similarly, we show that Tπ0(α) = A0, so α ∈ X. On the other hand, we clearly do not have
(a0, a1) ∈ α, so (a0, a1) 6∈

⋂
X. Since this holds for all (a0, a1) ∈ A0 × A1, we can conclude

that
⋂

X = ∅.
But h∗(X) = {(A0, A1)} obviously has a lower bound in TA0×TA1, so since h∗ is discrete,

X should have a lower bound in T (A0 × A1). However, this is impossible given that
⋂

X is
empty, so we have reached a contradiction.

We close this section by investigating, in analogy with OPCAadj, the category PCAadj.

Definition 5.5. The preorder-enriched category PCAadj is defined as follows.

• Its objects are OPCAs.

• An arrow f : A → B is a pair of applicative morphisms f∗ : B ⊸ A and f∗ : A ⊸ B
with f∗ ⊣ f∗.

• If f, g : A→ B, then we say that f ≤ g if f∗ ≤ g∗; equivalently, if g∗ ≤ f∗. ♦

From Theorem 4.6, we know that PCAadj is actually equivalent to OPCA
op
cd , where OPCAcd

denotes the wide subcategory of OPCA on the c.d. morphisms, and (·)op indicates a reversal
of the 1-cells. The following result is now immediate.

Corollary 5.6. The category PCAadj has finite pseudocoproducts. Moreover, the pseudoinitial
object is strict, and pseudocoproducts are disjoint.

Proof. It suffices to prove the dual statements in OPCAcd. By Proposition 3.6, OPCAcd has
finite pseudoproducts. Moreover, by Lemma 3.4, the terminal object is strict in OPCAcd.
The final statement is Proposition 3.12.
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6 The realizability topos

In this final section, we briefly investigate what we can say about coproducts of the realizability
toposes associated to OPCAs; in particular, to which extent realizability toposes are closed
under coproducts. First, let us give the appropriate definitions.

Definition 6.1. Let A be an OPCA.

(i) An assembly over A is a pair X = (|X|, EX ), where |X| is a set, and EX is a function
|X| → TA.

(ii) A morphism of assemblies X → Y is a function f : X → Y for which there exists an
r ∈ A (called a tracker of f) such that r ·EX(x) ⊆ EY (f(x)) for all x ∈ |X|. ♦

Assemblies and morphisms between them form a quasitopos Asm(A). Moreover, there
is an obvious forgetful funtor ΓA : Asm(A) → Set sending X to |X|, and there is a functor
∇A : Set → Asm(A), sending a set Y to the assembly (Y, y 7→ A). These functors are both
regular, and they satisfy ΓA ⊣ ∇A with ΓA∇A

∼= idSet.
The ex/reg completion of Asm(A) turns out to be a topos, which is called the realizability

topos of A and denoted by RT(A). Since there is an inclusion Asm(A) →֒ RT(A), we can also
view ∇A as a functor Set→ RT(A). Moreover, since ΓA is regular and Set is exact, ΓA may
be lifted to a functor RT(A)→ Set, which we denote by Γ̂A. This yields an adjunction

Set RT(A)
∇A

Γ̂A

where Γ̂A∇A
∼= idSet and Γ̂A preserves finite limits. This means that Set is a subtopos

of RT(A), and in fact, this is precisely the inclusion of double negation sheaves. The ¬¬-
separated objects are precisely those objects that are isomorphic to an assembly.

The following result was first obtained by J. Longley for the unordered case ([Lon94],
Theorem 2.3.4), and generalized to OPCAs in [HvO03]. We denote by REG the 2-category
of regular categories, regular functors, and natural transformations. Moreover, REG/Set will
denote the pseudoslice of REG over Set, i.e., its objects are regular functors with codomain
Set, its 1-cells are triangles that commute up to specified isomorphism, and its 2-cells are
natural transformations that are compatible with these specified isomorphisms.

Theorem 6.2. The assignment A 7→ (ΓA : Asm(A)→ Set) may be extended to a local equiv-
alence PCA→ REG/Set.

Let A0 and A1 be OPCAs. The pseudocoproduct of RT(A0) and RT(A1), in the 2-category
of toposes and geometric morphisms, is the product category RT(A0)×RT(A1). In this topos,
the logic may be computed componentwise, which implies that its subtopos of double negation
sheaves is equivalent to Set2, rather than Set. This immediately tells us that RT(A0)×RT(A1)
is never equivalent to a realizability topos. It should be mentioned, however, that (A0, A1)
is an OPCA internal to the topos Set2, and that constructing RT(A0, A1) over the base Set2

rather than Set does yield RT(A0)× RT(A1). See also the treatment in [Zoe19].
If we want to keep working over the base Set, on the other hand, then it makes more sense

to take the pseudocoproduct over Set. That is, we consider the pseudopushout square

Set RT(A0)

RT(A1) E
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which always exists according to Proposition 4.26 from [Joh77]. This proposition also tells us
that the inverse image part of this diagram:

E RT(A0)

RT(A1) Set

Γ̂A0

Γ̂A1

is a pseudopullback of categories. Because all displayed functors are regular, this is also a
pseudopullback in REG, as is not difficult to show. This means that the inverse image part
E → Set is the pseudoproduct of Γ̂A0

and Γ̂A1
in REG/Set.

We finish the paper by determining when E above is itself a realizability topos. If A0

is trivial, then the inclusion Set → RT(A0) is an equivalence, so in that case, we will have
E ≃ RT(A1). Similarly, if A1 is trivial, then E will be equivalent to the realizability topos
over A0. It turns out that these are the only cases in which E is a realizability topos.

Proposition 6.3. Let A0 and A1 be OPCAs such that the pseudocoproduct of RT(A0) and
RT(A1) over Set is again a realizability topos. Then at least one of A0 and A1 is trivial.

Proof. Suppose that the E constructed above is equivalent to RT(C) for some OPCA C. By
Corollary 1.4 from [Joh13], there exists (up to isomorphism) at most one geometric morphism
Set → RT(C). In particular, Set →֒ E ≃ RT(C) is isomorphic to the inclusion of double
negation sheaves. This means that the inverse image part RT(C)→ Set is isomorphic to Γ̂C ,
so we have a pseudopullback

RT(C) RT(A0)

RT(A1) Set

p1

p0

Γ̂C Γ̂A0

Γ̂A1

of categories, where pi denotes the inverse image of RT(Ai) →֒ E ≃ RT(C). By [Joh13],
Lemma 2.4, such an inverse image functor always commutes with the constant object functors,
i.e., we have pi∇C ≃ ∇Ai

for i = 0, 1.
An object X of RT(C) is isomorphic to an assembly if and only if X → ∇C Γ̂CX is

a monomorphism. By the pseudopullback diagram above, this is the case iff and piX →
pi∇C Γ̂CX is mono for i = 0, 1. Since pi∇C Γ̂CX ∼= ∇Ai

Γ̂Ai
piX, this is equivalent to saying

that piX is isomorphic an assembly, for i = 0, 1. So we also have a pseudopullback

Asm(C) Asm(A0)

Asm(A1) Set

ΓC ΓA0

ΓA1

of categories. But again, all the displayed functors are regular, so this is also a pseudopullback
in REG, meaning that ΓC is a pseudoproduct of ΓA0

and ΓA1
in REG/Set.

This, together with Theorem 6.2, implies that for any OPCA B, we have natural equiva-
lences:

PCA(B,C) ≃ (REG/Set)(ΓB ,ΓC)

≃ (REG/Set)(ΓB ,ΓA0
)× (REG/Set)(ΓB ,ΓA1

)

≃ PCA(B,A0)× PCA(B,A1),
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so C is a pseudoproduct of A0 and A1 in PCA. Applying Theorem 5.4 finishes the proof.

Even though the pushout E constructed above is not a realizability topos, we can ask how
it is from being a realizability topos. The adjunctions πi ⊣ κi between Ai and A0 × A1 give
rise to geometric inclusions RT(Ai) →֒ RT(A0 × A1). The pushout diagram above then also
yields a geometric inclusion E →֒ RT(A0×A1), so E is a subtopos of a realizability topos. We
can wonder from which local operator on RT(A0×A1) this subtopos E arises. Local operators
on a realizability topos RT(B) arise from functions J : DB → DB where DB stands for the
set of all downsets of B (including ∅), and J should satisfy certain requirements analogous
to the axioms for a local operator. For details, we refer to [LvO13]. In this particular case,
the subtopos E arises from J : D(A0 ×A1)→ D(A0 ×A1) defined by

J(α) = {a0 ∈ A0 | ∃a1 ∈ A1 ((a0, a1) ∈ α)} × {a1 ∈ A1 | ∃a0 ∈ A0 ((a0, a1) ∈ α)},

i.e., J(α) is the smallest ‘rectangular’ subset of A0 × A1 containing α. We can also describe
this map by saying that J(α) = h∗(h

∗(α)) for α ∈ T (A0×A1) (with h∗ ⊣ h∗ as in the previous
section), and J(∅) = ∅.
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