
1.  Introduction
The use of (equilibrium) climate sensitivity to assess the impact of changes in atmospheric CO2 dates back 
at least a century (Arrhenius, 1896; Lapenis, 1998). First, estimations of its value were made with rudimen-
tary computations (Arrhenius, 1896; Charney et al., 1979); nowadays, improved knowledge of the climate 
system is used to infer climate sensitivity from observational data, proxy data, and global climate models 
(Knutti & Hegerl, 2008; Knutti et al., 2017; Lunt et al., 2010; Rohling et al., 2018; Von der Heydt et al., 2016). 
However, the reported values (still) vary much between studies (IPCC, 2013) and the current consensus is 
that climate sensitivity is between 2.3 and 4.7 K (5%–95% ranges, Sherwood et al., 2020). On top of that, 
recent results of the new generation of global climate models show even higher sensitivities, possibly due 
to better representation of cloud formation when using finer spatial grids (Andrews et al., 2019; Bacmeister 
et al., 2020; Bony et al., 2015; Duffy et al., 2003; Govindasamy et al., 2003; Haarsma et al., 2016; Zelinka 
et al., 2020). Still, even these state-of-the-art climate models report significantly different climate sensitiv-
ities (Flynn & Mauritsen, 2020; Forster et al., 2020; Zelinka et al., 2020); moreover, estimates for a single 
model tend to have large uncertainties further hampering accurate pinpointing of the climate sensitivity 
(Dai et al., 2020; Rugenstein et al., 2020).

For conceptual models and earth system models of intermediate complexity, it is possible to let a simulation 
run until the system is fully equilibrated (Holden et al., 2014). However, for more refined models, including 
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contemporary and future state-of-the-art global climate models, this is not viable (Rugenstein et al., 2019); 
equilibrating those models simply takes too much computing power. With the current trend—and need—to 
build models with higher temporal and spatial resolutions (Duffy et al., 2003; Eyring et al., 2016; Govin-
dasamy et al., 2003; Haarsma et al., 2016), this is not expected to resolve itself in the near future. Hence, 
the equilibrium climate sensitivity of these models is instead estimated by extrapolating transient warming 
simulations—way before these models have reached equilibrium (Dai et al., 2020; Knutti & Hegerl, 2008; 
Knutti et al., 2017; Rugenstein et al., 2020). There are several techniques to perform such extrapolation that 
use different physical and mathematical properties of the system to give sensible estimates for the true equi-
librium climate sensitivity of a model (Dai et al., 2020; Geoffroy et al., 2013a; Gregory et al., 2004; Knutti & 
Hegerl, 2008; Proistosescu & Huybers, 2017).

The main problem with equilibrium estimations lies with the abundance of feedbacks present in the cli-
mate system (Von der Heydt et al., 2016, 2020). These feedbacks are quite diverse and span a wide range of 
spatial and temporal scales; these include, for example, the very fast Planck feedback, the slower ice-albedo 
feedback and the even slower ocean circulation feedbacks. Estimation techniques deal differently with this 
problem, for instance by incorporating multiple time scales directly in the estimation method (Proistosescu 
& Huybers, 2017), by explicit modeling of long-term (ocean) heat uptake (Geoffroy et al., 2013a) or more 
indirectly by ignoring initial fast warming behavior (Dai et al., 2020; Rugenstein et al., 2020).

The most predominantly used estimation technique is the one developed by Gregory et al. (2004). In this 
technique, the top-of-atmosphere radiative imbalance (ΔN) is fitted using a linear regression against the 
temperature increase (ΔT). However, recently, it has become clear that ΔN and ΔT do not always adhere to 
such linear relationship (Andrews et al., 2015; Armour, 2017; Knutti & Rugenstein, 2015). Typically, there 
is an initial fast warming which is followed by one or several slower additional (less substantial) warming 
processes. Hence, estimates made by this method depend heavily on the time period used in the regression 
and typically underestimate the equilibrium warming. Most of the times, this problem is largely circum-
vented by ignoring the first part of a simulation that contains the initial fast processes; the regression is then 
applied only on the last part of the simulation.

The thus ignored data does, however, still contain information about the dynamics of the system—even 
beyond the initial fast warming. The issue here is that this information cannot be extracted using a one-di-
mensional linear regression; that kind of fit will only ever recover the one process (i.e., one eigenmode of 
decay to equilibrium) that is most dominantly present on the time scale of the regression data. In this study, 
we present an extension to this technique that is capable of capturing multiple eigenmodes by incorporat-
ing additional observables into a multicomponent linear regression (abbreviated as MC-LR) model. Subse-
quently, we show the potential efficiency of this technique using both low-dimensional conceptual models 
and modern global climate models.

2.  Method: A Multicomponent Linear Regression Model
In the linear regime of the decay to equilibrium, the evolution of any observable O (e.g., global mean tem-
perature increase or top-of-atmosphere radiative imbalance) is given by the sum of exponentials (i.e., the ei-
genvalue decomposition), capturing the behavior on different time scales based on the different eigenmodes 
of the system. Specifically, denoting the equilibrium value of an observable by O*, this evolution follows:

  
      

 
[ ] [ ]

* *( ) , (0)tO Oj
j j

j j
O t O e O O� (1)

where λj denote the eigenvalues and  [ ]O
j  the contributions of each eigenmode to the evolution of the ob-

servable O.

If only one eigenmode would be present (or relevant, as other eigenmodes are exponentially small on the 
time scale of the data), the evolution of the global mean surface temperature increase ΔT and the top-of-at-
mosphere radiative imbalance ΔN can be combined into the linear relation
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Since ΔN* = 0, this readily gives rise to the commonly used regression model by Gregory et al. (2004),
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�  and f := − aΔT* are to be determined from the used regression data. In this case, the equi-

librium warming is estimated by �T
a

fest
* :� �

1
.

If multiple eigenmodes are relevant, there no longer is such linear relationship between ΔN and ΔT (as time 
t cannot be eliminated from the equations anymore) and this technique breaks down. It is, however, pos-
sible to extend the technique by taking additional observables into account: if M eigenmodes are relevant, 
one must use two sets of M observables, denoted here by 


X  and 


Y ; using a similar procedure, the equations 

for their evolutions can be combined together (e.g., using basic matrix computations) to obtain the linear 
relation

   
   

* * ,Y Y A X X� (4)

where A is a M × M matrix. If the set of observables in 

Y  only contains observables that tend to zero in equi-

librium (i.e., Y* = 0), this gives rise to a new multicomponent linear regression model

 
  

,Y AX F� (5)

with A and 
 

F AX: *� �  to be determined by the regression data. Here, equilibrium estimates are given by 

the vector 
 

X A F* :est � � �1  and contain equilibrium estimates for all observables in 

X .

The method by Gregory et al. (2004) is a special example of this regression model, where M = 1, 


ΔX T  
and 


ΔY N . Here, this model is extended by adding one or two observables to the data vectors 


X  and 


Y  

(i.e., M = 2 or M = 3, lining up with previous studies by Caldeira and Myhrvold (2013), Tsutsui (2017), and 
Proistosescu and Huybers (2017)). Specifically, the mean global effective top-of-atmosphere short-wave al-
bedo α and long-wave emissivity ɛ are considered as additional observables. Their values are added to the 
data vector 


X  and the values of their (numerical) time-derivatives—that tend to zero in equilibrium—to 


Y . 

The fits in this study are all made using standard least squares regression.

A different and much more extensive take on the rationale behind the technique can be found in supporting 
information Text S1.

3.  Results: Conceptual Models
First, we present the results on a variant of the conceptual Budyko-Sellers energy balance model for global 
mean surface temperature (Budyko, 1969; Sellers, 1969). This model has been extended such that albedo 
and emissivity are no longer instantaneous processes, but will settle slowly over time. Moreover, white noise 
has been added to simulate climate variability. Thus, a three-component stochastic ordinary differential 
equation is created, which has been simulated in MATLAB with a Euler-Maruyama scheme. A more exten-
sive description of the model can be found in supporting information Text S2.

Output of this model has been analyzed using the previously described MC-LR technique with the use of 
some or all of the observables. The resulting estimates for the equilibrium climate increase est

*Δ ( )T t  are 
given in Figure 1 for simulation runs with moderate noise (figures for other noise levels can be found in 
Figures S3 and S4). These estimates are given as functions of model time: the value for time t indicates the 
estimate is made with model output up to time t only. To evaluate the various estimation techniques and 
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track their accuracy depending on the amount of data used, the remaining relative error is computed: the 
maximum in relative error of the estimates occurring after the current time (i.e., when more data points are 
used). This gives a better impression of the kind of error to expect when using data up to time t. Mathemat-
ically, the remaining error is defined as

   
 

 







est
rel
rem est

Δ Δ
: max

Δs t

T s T
e t

T s
� (6)

where ΔT* is the true equilibrium warming (determined numerically via Newton's method).

For this kind of low-dimensional models, it is clear that the multicomponent linear regression leads to 
better estimations of the real equilibrium warming than conventional techniques (Figure 1). Although the 
estimations for very short time series are not very accurate, estimations for slightly longer time series quick-
ly pick up and are much better compared to the linear “Gregory” fit (Figure 1a), because also the longer 
time dynamics are taken into account (and are accurately fitted; see supporting information Text S2 and 
Figure S5). It takes some tens of (arbitrary) time units for the new estimates to get within 0.1 K of the actual 
equilibrium value, whereas hundreds of time units are needed for the conventional technique (Figure 1b). 
Moreover, it also seems that the MC-LR technique still works reliable in case of noise.

4.  Results: LongRunMIP Models
The MC-LR technique has also been tested on more detailed global climate models. Specifically, data are 
taken from abrupt 4 × CO2 forcing experiments of models participating in LongRunMIP, a model intercom-
parison project that focuses on millennia-long simulation runs (Rugenstein et al., 2019). Because of these 
long time series, a relative accurate value for the true equilibrium temperature can be determined, which is 
needed to adequately assess the performance of the estimation techniques.
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Figure 1.  Results from various estimation techniques on a conceptual (three-component) global energy budget model with moderate noise (noise strength 
ν = 0.5—see supporting information Text S2 for details). (a) Estimates est

*Δ ( )T t  for a single model realization; the value at time t gives the estimation when 
only data up to time t is used. (b) Evolution of expected remaining error rel

rem ( )e t  over time based on an ensemble of one hundred runs; solid lines indicate mean 
values and dashed lines the 5% and 95% values. Results on models with different noise levels can be found in Figures S3 and S4.

(a) (b)
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For these climate models, global data on near-surface atmospheric temperature (T = “tas”) and top-of-atmos-
phere radiative fluxes (incoming short-wave, “rsdt,” outgoing short-wave, “rsut,” and outgoing long-wave, 
“rlut”) has been downloaded from the LongRunMIP data server (Rugenstein et al., 2019). These data sets 
have been used to compute top-of-atmosphere radiative imbalance (N = “rsdt” − “rsut” − “rlut”), effective 
short-wave albedo (α = “rsut”/“rsdt”) and effective long-wave emissivity (ɛσ = “rlut”/(“tas”)4; where σ is 
the Stefan–Boltzmann constant). Initial, nonforced values were defined as means of piControl runs and 
changes ΔT, ΔN, Δα, and Δɛσ were computed from the abrupt 4 × CO2 forcing runs. The real equilibrium 
warming ΔT* for these models was estimated from the last warming of the forcing experiments, following 
the approach taken in Rugenstein et al. (2020). A more detailed description of these procedures, including 
minor practical variants, can be found in supporting information Text S3.
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Figure 2.  Gregory plot of ΔN as function of ΔT for a 5,900 years abrupt CO2 quadrupling experiment in the 
CESM 1.0.4 model along with results of various common equilibrium estimation methods and the here introduced 
multicomponent linear regression (MC-LR) method when used on data up to model year 300. In the plot, red dots 
denote all data points (the later in the run, the smaller in size). The blue line shows the linear “Gregory” fit when all 
data from years 1 to 300 are used and the yellow line the Gregory fit when the first 20 years are ignored. The green 
line shows the three exponent fit (Proistosescu & Huybers, 2017). The cyan line indicates a fit to the EBM-ɛ model that 
includes ocean heat uptake (Geoffroy et al., 2013a). The magenta line visualizes the newly introduced multicomponent 
linear regression that, in this case, utilizes both albedo and emissivity (for this visualization only—and not for any 
of the fits in this study—averaged data from the experiment are used). The stars (⋆) are the estimated equilibrium 
warming values from the different methods. Finally, dotted and dashed black lines indicate linear Gregory fits for 
the first and last part of the simulation that can be used for comparison—and that show how the various estimation 
methods capture dynamics on multiple time scales.
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With the use of the model output, various techniques have been used to estimate equilibrium warming for 
all models. In Figure 2, a Gregory (ΔT, ΔN)-plot is given along with results of commonly used estimation 
techniques for one of the models (CESM 1.0.4) when applied on data up to model year 300. This illustrates 
the capabilities of the various techniques in capturing the behavior of the model system over different time 
scales. Clearly, the classical Gregory method mainly captures initial fast warming from the data. Hence, it 
is common practice to ignore an arbitrary number of years from the start of the simulation run—that show 
the initial fast warming—in a Gregory fit (Dai et al., 2020; Rugenstein et al., 2020). That technique has also 
been tested here, where the initial 20 years have been excluded. In contrast, the multicomponent linear re-
gression technique does not rely on such arbitrary choices for data selection and outperforms both of these 
classical methods. Certainly, there also exist other alternative estimation techniques that aim to extract long-
term behavior from short simulation runs (of which two have been added to Figure 2). However, these often 
amount to fitting an explicit low-dimensional model to transient simulations (e.g., Geoffroy et al., 2013a) 
and/or a nonlinear regression (e.g., Proistosescu & Huybers, 2017). The proposed MC-LR method does nei-
ther—and furthermore seems to perform similar or better than the mentioned other methods.

The results for other time frames are shown in Figure 3. Here, as before, estimates est
*Δ ( )T t  are functions of 

time, which only use data up to a given time t for the estimation, and remaining relative errors have been 
computed as well. These results show that the MC-LR method also performs better on other time frames; 
in particular, when data for more than 150 years is being used, a multicomponent linear regression that 
utilizes both albedo and emissivity leads to better estimates compared to the classical Gregory methods. 
Especially on a century time scale this leads to significant improvements. Detailed results for all models can 
be found in Figures S8–S18.

To further disseminate the results and to assess the effectiveness over the range of models, in Figure 4 the 
remaining errors are given for all considered models at given times t = 150 years (CMIP protocol, Eyring 
et al., 2016), t = 300 years and t = 500 years. These results indicate that the MC-LR method can lead to more 
accurate equilibrium warming estimates. This new approach also better captures the long-term dynamics 
than the classical Gregory method when used on all data (with the HadGEM2 model for t = 150 years being 
the exception, where performance is similar). Moreover, the MC-LR method also tends to outperform the 
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Figure 3.  Performance of equilibrium warming estimation techniques on the model CESM 1.0.4. (a) Estimated 
equilibrium temperature increase est

*Δ ( )T t  for various estimators as function of time t, where only model output data 
up to time t has been used. The shaded region indicates the range of likely values for the system's true equilibrium 
warming ΔT*, along with the best estimate for this (dashed line), based on end-of-simulation data (see the supporting 
information Text S3.4). Only the first 500 years of the 5,900 years simulation are shown. (b) Plot of the remaining 
relative error for estimation methods based on the whole simulation run. This shows the kind of error to expect when 
using a certain estimation technique on a given time scale. Full set of results for this and the other models can be found 
in Figures S8–S18.



Geophysical Research Letters

Gregory method that ignores the first 20 years of data when t > 150 years. For t = 150 years, results vary 
much per model. This is closely related to the difference in model behavior: if dynamics happen on two 
dominant time scales, and the Gregory plot has an inflection point around (the arbitrarily chosen) year 
20, this Gregory method works well (see e.g., the model MPI-ESM 1.1); otherwise, the MC-LR method will 
(eventually) outperform it. It is expected that this kind of result also holds for other variants of the Gregory 
method that ignore more years. A more in-depth discussion per model is included in supporting informa-
tion Text S3.5.

5.  Discussion
In this study, we have introduced a new equilibrium climate sensitivity estimation technique—the multi-
component linear regression (MC-LR)—that better captures the long-term behavior compared to conven-
tional techniques. This MC-LR method has one prime rationale: a perturbed climate system evolves ac-
cording to a linear system (given that the radiative perturbation is small). This linear evolution is recovered 
through the multicomponent linear regression (i.e., regression to  

  
Y AX F). Although, here, only data 

from one transient simulation is used in the fits, data from multiple runs (with the same radiative forcing) 
can also be put together—possibly leading to even better estimates. As the goal of the method is to recover 
the eigenmodes in the linear regime of the system, such combination of runs seems extremely beneficial if 
runs follow the evolution of different eigenmodes. Indeed, it seems plausible—and an interesting direction 
for further research—that a small ensemble of short runs, each with a different perturbation of the initial 
system state, will better estimate the coefficients of the fitted linear system (i.e., A and 


F) without compro-

mising in terms of total computing power.
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Figure 4.  Remaining relative error for various estimation techniques when used on model output up to t = 150y (lightly shaded), t = 300y (moderately shaded), 
and t = 500y (strongly shaded). Here, only the best MC-LR method is depicted for each model (because of differences in model dynamics, which observables 
yield the best estimates differs per model). A complete list for all variants of the estimation techniques can be found in Figure S6, and a scatter plot of the results 
in this figure can be found in Figure S5.



Geophysical Research Letters

The most difficult—and the most important—aspect of the MC-LR method is the choice of the observables 
used in the regression data. It is key that this data well-represents the different eigenmodes of the system. If 
too few are used, not all eigenmodes are found; if too many (or redundant ones) are used, estimates become 
unusable (as data becomes linearly dependent, which causes the fitted matrix A to become near singular). 
In this study, we have focused on the use of (effective top-of-atmosphere) albedo and/or emissivity—observ-
ables that can be computed from data sets that are already normally used for climate sensitivity (Gregory 
et al., 2004, 2013a; Proistosescu & Huybers, 2017). However, the use of other, more curated observables 
might—and probably will—work better. For instance, the very long-term ocean dynamics might be better 
represented in data on ocean heat uptake (Geoffroy et al., 2013a, 2013b; Li et al., 2013; Raper et al., 2002). 
It also seems natural to capture the known climate feedbacks, e.g., surface albedo, water vapor, and lapse 
rate (Von der Heydt et al., 2020). One should beware though that all these (feedback) processes together 
combine to the system's eigenmodes in nonstraightforward ways. For example, summing feedbacks—like is 
commonly done in climate literature—only makes sense in systems that only have one component; in sys-
tems with multiple components, processes, and eigenmodes are not linked directly like this. Nevertheless, a 
careful inclusion of these feedbacks might lead to even better estimates and may further shorten the needed 
length of simulation runs.

The method described in this study does not only lead to better estimates for the equilibrium climate sensi-
tivity, but can also be used to develop extensions of climate sensitivity, by incorporating other observables. 
Regression of the multicomponent model  

  
Y AX F  leads to equilibrium estimates for all the observables 

in 

X  as  

 est 1
*X A F. This estimate can be seen as a multivariate metric for climate sensitivity, in contrast 

to classical univariate metrics that focus only on changes in global temperature. Such multivariate metrics 
can better describe and quantify the changes that occur to the climate system due to changes in radiative 
forcing. In fact, many—if not all—climate subsystems and ecosystems do not depend critically on the glob-
al mean surface temperature, but on other observables such as the amount of precipitation or ocean heat 
transport (Lenton et al., 2008; Rockström et al., 2009; Scheffer et al., 2009). Estimating those directly—rath-
er than considering them enslaved to the global mean surface temperature—will possibly lead to better 
projections for those (sub)systems.

Accurate estimations of equilibrium climate sensitivity are hard to come by, mostly due to the lengthy 
computation times needed to fully equilibrate modern global climate models. Going forward, it seems the 
more and more realistic state-of-the-art models will only take longer and longer to equilibrate (even con-
sidering developments in computer hardware). In particular, for high-resolution simulations with ultrafine 
numerical grids such equilibration runs are just not a practical option. For these kinds of simulations, it is 
vital to have extrapolation techniques that only need relatively short transient simulations to estimate the 
system's long-term behavior. Once fully developed, such methods—the one introduced in this study being a 
first step toward them—can help to design the kind, amount, and length of the experiments performed with 
these high-resolution models, indicating an optimum between accurate (multivariate) climate sensitivity 
estimation and computing time.

Data Availability Statement
Simulation data from models in LongRunMIP can be accessed on data.iac.ethz.ch/longrunmip/. More in-
formation and details of the simulations can be found on longrunmip.org and in Rugenstein et al. (2019).
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