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Clinical practice still relies heavily on traditional paper-and-pencil testing to assess a
patient’s cognitive functions. Digital technology has the potential to be an efficient
and powerful alternative, but for many of the existing digital tests and test batteries
the psychometric properties have not been properly established. We validated a
newly developed digital test battery consisting of digitized versions of conventional
neuropsychological tests. Two confirmatory factor analysis models were specified: a
model based on traditional neuropsychological theory and expert consensus and one
based on the Cattell-Horn-Carroll (CHC) taxonomy. For both models, the outcome
measures of the digital tests loaded on the cognitive domains in the same way as
established in the neuropsychological literature. Interestingly, no clear distinction could
be made between the CHC model and traditional neuropsychological model in terms of
model fit. Taken together, these findings provide preliminary evidence for the structural
validity of the digital cognitive test battery.

Keywords: structural validity, digital testing, digital cognitive test battery, confirmatory factor analysis, Cattell-
Horn-Carroll model

INTRODUCTION

Neuropsychological tests are an invaluable part of the clinician’s assessment toolbox when there
is reason to suspect an impairment in someone’s cognitive functioning. Most of the standard
neuropsychological tests have a long history in the field and have traditionally been administered
in paper-and-pencil form. However, assessing cognitive functioning using paper-and-pencil tests
has major limitations: it is labor-intensive on the side of the clinician in terms of administration
and scoring, provides little flexibility in stimulus use or updating of tests, and is severely limited in
the type of outcome measures that can be extracted (Miller and Barr, 2017; Klaming and Vlaskamp,
2018). Digital cognitive testing effectively addresses some of these issues (Bauer et al., 2012; Riordan
et al., 2013; Zygouris and Tsolaki, 2015; Feenstra et al., 2017; Galindo-Aldana et al., 2018; Germine
et al., 2019; Kessels, 2019).

Despite their many advantages, the adoption of digital cognitive tests is not straightforward.
Most importantly, it has often been argued that the psychometric properties of many digital tests
have not been properly established (e.g., Schlegel and Gilliland, 2007; Wild et al., 2008; Bauer et al.,
2012). This is problematic, because it cannot be assumed that paper and digital versions of the same
test will measure the same underlying cognitive domains (Bauer et al., 2012; American Educational
Research Association, 2014). Currently, the evidence for agreement between paper and digital tests
is mixed at best, with some studies showing no performance differences between paper-and-pencil
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and digital tests (Williams and McCord, 2006; Parsey and
Schmitter-Edgecombe, 2013) while others demonstrate
substantial differences (Williams and Noyes, 2007; Riordan
et al., 2013; Feenstra et al., 2017; Carpenter and Alloway, 2018).

In this article, we present a newly developed digital cognitive
test battery (DCTB). Several integrated digital testing platforms
already exist with intermediate levels of automation (e.g.,
Pearson’s Q-Interactive, which has automatic scoring but requires
the clinician to provide the instructions and control visual
stimuli) that have well-established psychometric properties.
Others, such as the National Institutes of Health (NIH) Toolbox
(Weintraub et al., 2013), consist of tests that were developed
exclusively for the platform and are only loosely based on existing
paper-and-pencil tests. The aim of the current DCTB is to
provide a set of digital tests that are based on conventional
paper-and-pencil tests and that have a high level of automation
in stimulus presentation, scoring, and interpretation. Since
uncertainties concerning validity prevent large-scale adoption of
digital technology in clinical practice (Schmand, 2019), a first
important step is to collect evidence of validity for the DCTB in
terms of the cognitive domains that it measures.

Clinicians generally rely on interpreting test performance
in terms of underlying cognitive domains. However, there is
an ongoing discussion on the exact domains that should be
distinguished and which cognitive tests contribute to which
cognitive domain (Larrabee, 2014). This issue is exacerbated
by the fact that the majority of tests are sensitive to multiple
cognitive abilities. For example, the Trail Making Test (TMT)
could be construed as a measurement of executive functioning,
attention, and sensory-motor functioning (Rabin et al., 2016).
Confirmatory factor analysis (CFA) can assist in quantifying these
relationships and converging on a plausible factor structure and
is therefore a widely used technique to gather evidence of validity
(Jackson et al., 2009). Factor models in the neuropsychological
literature are generally in agreement with traditional theoretical
classifications (e.g., Strauss et al., 2006; Lezak et al., 2012),
distinguishing domains such as executive functioning, memory,
attention, language, and visual-spatial processing (e.g., Siedlecki
et al., 2008; Dowling et al., 2010; Hayden et al., 2011;
Park et al., 2012).

A competing model that has gained increasing attention
in recent years in the neuropsychological field is the Cattell-
Horn-Carroll (CHC) model (e.g., Jewsbury et al., 2017; Agelink
van Rentergem et al., 2020). The CHC model was originally
developed in the intelligence literature as a synthesis of Carroll’s
three-stratum model and the Cattell-Horn model and has a
hierarchical structure (for an extensive review of the history of
the CHC model, see McGrew, 2009). Test scores are clustered
under narrow abilities (e.g., retrieval fluency, learning efficiency),
which are in turn clustered under broad abilities (e.g., long-
term storage and retrieval). At the very top of the hierarchy,
a general factor “g” is usually specified to account for covariances
between the broad abilities (Schneider and McGrew, 2018).
However, the nature and even existence of g remains a point of
debate (Wasserman, 2019). The CHC model features cognitive
domains (i.e., broad abilities) that differ from the ones that are
commonly used in neuropsychological research and practice.

Examples of such domains are fluid reasoning and crystallized
abilities. The most pronounced difference between the CHC
model and more traditional neuropsychological models is the
absence of a distinct executive functioning factor in the former
(Jewsbury et al., 2017). Instead, tests that are traditionally linked
to executive functioning are distributed across multiple domains
in the CHC model, such as processing speed, fluid reasoning, and
retrieval fluency (Jewsbury et al., 2017; Agelink van Rentergem
et al., 2020). Floyd et al. (2010) argued that executive functioning
measures are contaminated by general intelligence to the point
that executive functioning as a distinct concept no longer has
relevant explanatory power. Thus, the question whether the
construct of executive functioning is needed and can be seen as
a unitary entity is still a point of debate (e.g., Miyake et al., 2000;
Friedman and Miyake, 2017; Karr et al., 2018).

Here, we present evidence for the validity of our newly
developed DCTB, consisting of digital versions of 11 of the most
commonly used paper-and-pencil tests in neuropsychological
practice. Validity evidence based on the internal structure of
the DCTB (American Educational Research Association, 2014),
was tested by fitting the test scores to a neuropsychological
consensus model and to the CHC model. Based on recent
neuropsychological literature (Jewsbury et al., 2017; Agelink van
Rentergem et al., 2020), we expected that the CHC model would
perform better in terms of model fit than the neuropsychological
consensus model.

MATERIALS AND METHODS

Participants
A total of 265 healthy participants were recruited in two samples.
Of these, 209 healthy middle-aged and elderly participants
were recruited by a recruitment agency through their database.
Participants were eligible for participation if they were 50 years
or older. An additional sample of 56 healthy participants
were recruited in collaboration with the University Medical
Centre Utrecht (UMCU) as a control group in their study
on a diverse patient group. These participants were recruited
among colleagues, (sports) associations, and the social network
of (former) outpatients of the UMCU. In this sample, individuals
were considered eligible for participation if they were between
18 and 80 years old. Although the inclusion of this sample
skewed the age distribution, with most participants within 50
and 80 years old, it was deemed informative to have a broad
age coverage. In addition, the final sample size of 265 was more
adequate in the context of CFA. It should be emphasized that both
samples were convenience samples in the sense that their data
were not collected with the primary aim of establishing validity
evidence but were for the most part already collected.

In both samples, participants were included if they were fluent
in Dutch and had (corrected to) normal eyesight and hearing.
Participants were excluded if they reported to have severe
communication, motor, neurological or psychiatric disorders;
were unable to use a tablet to perform the digital tests; consumed
more than three glasses of alcohol per day or were recreational
drug users; used any psychopharmacological drugs; or had
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TABLE 1 | Participant characteristics.

N = 239 M ± SD Range

Gender (% female) 40.6

Age (years) 61 ± 12.5 21–81

Education levela 5.7 ± 1.0 0–6

MMSE-2 28.9 ± 1.2 25–30

a ISCED (UNESCO, 1997/2006): 0 = pre-primary education; 1 = primary education
or first stage of basic education; 2 = lower secondary or second stage of
basic education; 3 = (upper) secondary education; 4 = post-secondary non-
tertiary education; 5 = first stage of tertiary education; 6 = second stage of
tertiary education.

performed a traditional neuropsychological assessment in the
6 months prior to the study to rule out potential re-test
effects. We screened for potential cognitive impairment using the
paper-and-pencil version of the Mini Mental State Examination
second edition (MMSE-2; Folstein et al., 2010). Participants were
excluded if their MMSE-2 score was below 24.

Of the full sample, four participants (1.5%) were excluded
due to medication use, five (1.9%) due to technical difficulties,
four due to colorblindness (1.5%), and four (1.5%) due to being
unable to finish the full test battery, which precluded the use of
their data in the CFA analyses. Finally, two participants (0.8%)
were excluded because their MMSE scores were below 24, and
seven participants (2.6%) were excluded because their scores on
one or more of the outcome measures included in the models
were extreme outliers (>3.2 SD). After these exclusions, 239
participants remained for further analyses. An overview of their
demographic information is presented in Table 1.

Materials
Digital Neuropsychological Tests
The DCTB was composed of tests that are used internationally
in multiple languages, have well-established psychometric
properties in their paper-and-pencil version, and together cover a
broad range of cognitive domains. Approximately half of the tests
were scored using automated algorithms and the other half were
scored manually (see Table 2 for a description of these tests and
how they deviate from their paper-and-pencil versions).

Procedure
Both studies received approval from the institutional review
board. The study by the UMCU was waived by the Medical
Ethical Committee. Participants gave written informed consent
at the beginning of the study. All tests were administered digitally
using a software prototype of the DCTB as it is envisioned
for future public release. Participants completed the DCTB on
the Apple iPad Pro 12.9-inch (2nd generation) with a screen
resolution of 2732 × 2048 that was supplied by the digital
platform developers. Tests that required drawing made use of the
Apple Pencil for the iPad Pro. Audio recordings used for scoring
were made using the internal microphone for tests that required
a verbal response.

For the participants recruited through the recruitment agency,
testing took place during a single visit to our research facility.
Half of these participants were tested by a trained experimenter,

and the other half by a neuropsychologist. All data were scored
by neuropsychologists. The participants recruited by the UMCU
were tested at home or at the UMCU. The decision to test some
of the participants of the UMCU study at home was especially
taken to facilitate patients (not included in this study) who did
not have appointments anymore at the UMCU, but this was also
extended to the healthy participants (who were mostly relatives
or friends of the patients). In total, 34 participants in the UMCU
study were tested at the UMCU and 15 were tested at home.
We tested for a potential influence of location on performance
through independent-sample t-tests but did not find significant
differences on any of the outcome measures described in this
study (all ps > 0.29). These data were collected and scored by
four neuropsychology students. The total assessment duration
was 1.5 h. All participants entered the study voluntarily and
received a compensation for participation and travel expenses
upon completing the assessment. Participants did not receive
feedback about their performance on the cognitive tests and the
results were not used for clinical purposes.

In both studies, the experimenters made sure that the tests
were administered with normal room lighting, that is, not directly
next to the window with direct sunlight or directly under a lamp
to prevent reflections on the iPad. The brightness and volume of
the iPad were set to their maximum values. All participants first
received a paper-and-pencil version of the MMSE-2, after which
their demographic information was entered into the iPad. Next,
the DCTB was presented in the following order: Rey Auditory
Verbal Learning Test (RAVLT) learning trials, Trail Making
Test (TMT), O-Cancellation Test (OCT), Clock Drawing Test
(CDT), Star Cancellation-Test (SCT), RAVLT delayed recall, Rey-
Osterrieth Complex Figure Test (ROCFT) copy, Controlled Oral
Word Association Test (COWAT), ROCFT immediate recall,
Digit Span (DS) forward and backward, Category Fluency Test
(CFT), Stroop color-word interference Test, ROCFT delayed
recall, and a Card Sorting Test (CST). The decision to fix
the test order was mainly dictated by the RAVLT delayed
recall and ROCFT immediate recall, which were required to
be administered after a relatively stable interval. Fixing the test
order may have introduced a confound, for example, because
participants may have been more systematically fatigued on the
later tests. However, since full randomization was not possible
without introducing substantial differences in the delays between
learning and recall trials, we preferred one fixed order over
several pseudo-random orders.

The CDT and CST were excluded from all analyses. Collecting
data for the CST was stopped after 104 participants due to
time constraints (the CST was one of the longest tests in the
DCTB) and had a strong ceiling effect. In addition, commonly
used outcome measures of the CST (i.e., total correct, percentage
of perseverative errors, and percentage of conceptual level
responses) performed poorly in a factor structure with the other
tests, which is in line with earlier studies that highlight the lack
of validity of traditional outcome measures of the CST (Strauss
et al., 2006; Nyhus and Barceló, 2009). Data for the CDT were
collected for all participants but not included in the analyses
because of a ceiling effect (using a three-point scoring method;
Goodglass et al., 2001).
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TABLE 2 | Descriptions of the tests in the digital cognitive test battery and the differences from pen-and-paper versions.

Test Description Difference from pen-and-paper version

1. Trail-Making Test Aa Participants connect circles labeled 1 to 25 as fast as
possible

Drawing is done on an iPad; Automated scoring

2. Trail-Making Test Ba Participant alternately connect circles containing letters
(A–H) and numbers (1–13) as fast as possible

Drawing is done on an iPad; Automated scoring

3. Digit span forward Participants verbally repeat back digit strings of increasing
length

Automated verbal stimulus presentation; Automated
scoring

4. Digit span backward Participants verbally repeat back digit strings of increasing
length in reverse order

Automated verbal stimulus presentation; Automated
scoring

5. COWAT Over three trials, participants name as many (Dutch) words
starting with a “D”, “A”, and “T”.

-

6. CFT, category ‘animals’ Participants name as many words that fall in the category
‘animals’

−

7. Stroop color-naminga Participants name the color in which congruent color-words
are presented as fast as possible

Digital stimulus presentation

8. Stroop interferencea Participants name the color in which incongruent
color-words are presented as fast as possible

Digital stimulus presentation

9. RAVLT learning trials Over five learning trials, participants verbally repeat back as
many words as possible from a fixed word list containing
15 items

Automated verbal stimulus presentation

10. RAVLT delayed recall 10–20 min after completion of the learning trials,
participants verbally repeat back as many words as
possible from the original word list

Automated verbal stimulus presentation

11. ROCFT copy Participants are presented with a complex figure and are
asked to copy it

Drawing is done on an iPad

12. ROCFT immediate recall Participants draw the complex figure from memory Drawing is done on an iPad

13. Star-Cancellation Testa Participants cross out all the star stimuli in a field containing
distractors

Digital stimulus presentation; Drawing is done on
an iPad; Automated scoring

14. O-Cancellation Testa Participants cross out all the O stimuli in a field containing
distractors

Digital stimulus presentation; Drawing is done on
an iPad; Automated scoring

15. Clock Drawing Test Participants draw a clock from memory with the hands
indicating 10 past 11

Drawing is done on an iPad

16. Card Sorting Test Participants match stimulus cards containing various
shapes in different numbers and colors according to implicit
(and changing) sorting rules

Digital stimulus presentation; Automated scoring

Evidence for Structural Validity
We used CFA with maximum likelihood estimation to assess
validity of the DCTB. Analyses were performed using the lavaan
package (version 0.6-1; Rosseel, 2012) in the R environment
(R Core Team, 2018). The variances of the latent factors were
fixed to 1 in the model definition and the loadings were scaled
accordingly by the coefficients in the estimation procedure
(the variance of single-indicator factors was fixed to 1 minus
the reliability of the indicator, see section “Neuropsychological
Consensus Model”). Therefore, the covariances between latent
factors can be interpreted as correlations. Outcome measures
from the same test were allowed to covary, except when: (1) they
were the only indicators loading on a factor, in which case their
covariance is captured in the latent factor, and (2) when one
of the outcome measures was the only indicator of a factor. In
the latter case, the latent factor accounts for all the variance in
the outcome measure, so there is no error variance left for an
additional covariance parameter. Model fit was assessed through
several fit indices: Chi square, which compares the model-implied
covariance matrix with the sample covariance matrix, and the
approximate fit indices Standardized Root Mean Square Residual

(SRMR), Comparative Fit Index (CFI), Tucker-Lewis index (TLI)
and the Root Mean Square Error of Approximation (RMSEA),
which offer a continuous measure of model fit (Kline, 2011).
Interpretation of these quantitative fit indices was based on
the recommendations made by Schermelleh-Engel et al. (2003):
good fit to the data was qualified through a non-significant chi
square test (p > 0.05), SRMR ≤ 0.05 (acceptable fit ≤ 0.10),
RMSEA ≤ 0.05 (acceptable fit ≤ 0.08), and both CFI and
TLI ≥ 0.97 (acceptable fit ≥ 0.95). Following Hu and Bentler
(1999), we place most reliance on the combination of SRMR
and RMSEA. Comparisons of nested models were additionally
based on chi square difference tests and the Akaike information
criterion (AIC) with lower values indicating better fit.

In the case of non-nested models, a comparison through
a chi square difference test is not possible. Instead, for such
comparisons we used the Vuong test for non-nested models
(Vuong, 1989; Merkle et al., 2016). The Vuong test provides
a test of the models’ distinguishability in the population
of interest. If they are distinguishable, a further statistical
comparison of model fit and the AIC difference is possible.
These tests were implemented using the nonnest2 package
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(Merkle and You, 2018) in R. Any changes made to the model
due to non-convergence or based on data-driven modification
indices were made with caution and explicitly reported.

Most outcome measures of neuropsychological tests are
influenced by demographic factors such as age and education
level, which can significantly bias the factor structure if they are
unaccounted for Agelink van Rentergem et al. (2020). Therefore,
the influences of age, highest completed education, and sex
on the raw test scores were assessed through separate linear
regression models and, if significant at an alpha-level of 0.10,
were partialed out using regression-based norming techniques
(Testa et al., 2009). Because of this correction, test scores that
entered the model followed a z-score distribution. Education was
operationalized by the International Standard Classification of
Education (ISCED; scale 0–6; UNESCO, 1997/2006). The ISCED
provides a good measure of the person’s intelligence level and
facilitates international comparisons.

Neuropsychological Consensus Model
The mappings of the neuropsychological consensus model were
based on reported classifications in the neuropsychological
literature (Strauss et al., 2006; Lezak et al., 2012; Larrabee,
2015), previous CFA studies (Siedlecki et al., 2008; Dowling
et al., 2010; Hayden et al., 2011; Park et al., 2012), research on
common clinical practice (Rabin et al., 2016), and expert opinions
of 20 experienced clinical neuropsychologists (Hoogland et al.,
2017). Consequently, the neuropsychological consensus model
was guided by theory, clinical practice and expert opinion.
It is important to note that there is no single generally
accepted classification of cognitive domains, with some domain
specifications being more controversial than others (Larrabee,
2015). In addition, not all domains as reported by the
sources listed above were included in our neuropsychological
consensus model, mostly because the DCTB tested here does
not contain tests for certain cognitive domains (e.g., language,
motor function).

The specification of this model is depicted in Figure 1A.
It consists of five cognitive domains: executive functioning,
working memory, memory, processing speed, and visual-spatial
processing. Executive functioning is broadly specified, containing
tests that measure inhibition and task-switching (Friedman and
Miyake, 2017; Karr et al., 2018), as well as response monitoring
(Lezak et al., 2012). We decided to specify working memory as a
separate factor, even though it is often considered a component of
executive functioning (e.g., Strauss et al., 2006; Lezak et al., 2012).
Clinicians often assess working memory in isolation and recent
studies supported models including a separate working memory
factor (Dowling et al., 2010; Hayden et al., 2011; Park et al., 2012).

Because Visual-spatial processing constitutes a single-
indicator domain, we fixed its variance to 1 minus the reliability
of ROCFT Copy. This reliability estimate was obtained from
Strauss et al. (2006), who report on studies finding estimates
as low as 0.18 and ranging between 0.57 and 0.77. For the final
model, we decided on a reliability estimate of 0.60. However,
conclusions reported below are identical using other estimates
(e.g., 0.18, 0.57, 0.77, or 1). It should be noted that these reliability
estimates are derived from the paper-and-pencil literature and

that it is currently unknown whether the reliability of the digital
ROCFT is comparable.

CHC Model
For the construction of the CHC model, we followed recent
articles that translated the latent factor structure of the CHC
model to the domains of neuropsychological tests. Based on
a re-analysis of 31 datasets, Jewsbury et al. (2017) provide an
empirically validated overview of classifications of 47 common
outcome measures, which contains 13 of the 15 outcome
measures used in this article. The only exceptions are the task
completion times of the OCT and SCT. These outcome measures
were loaded on processing speed.

In a recent study classifying fluency tests in the CHC
framework, Jewsbury and Bowden (2016) found that although
strongly related to processing speed and acquired knowledge,
performance on tests such as the COWAT and CFT was best
described through a separate fluency factor. This factor structure
was confirmed by Agelink van Rentergem et al. (2020). Following
the factor structures proposed by these two studies, we specified
five cognitive domains (at the level of “broad abilities” in the
CHC vocabulary): processing speed, retrieval fluency, working
memory, learning efficiency, and visual-spatial processing. See
Figure 1B for a visualization of the mappings.

The CHC model is sometimes specified as a hierarchical
model, with “general intelligence (g)” in a second-order or
bifactor hierarchy that explains the covariance commonly
found among the broad abilities and/or outcome measures.
We will not attempt to estimate second-order or bifactor
variants of the CHC model here in order to stay close to the
model specifications reported by Jewsbury and Bowden (2016)
and Jewsbury et al. (2017).

RESULTS

In cases of non-normality, test scores underwent log- or inverse
transformations. Transformations were necessary for the task
completion times of the TMT, Stroop, SCT and OCT (see Table 3
for descriptive statistics and significant demographic predictors).

Table 4 provides a complete overview of all fitted models and
the corresponding fit statistics. Both initial models converged
normally. In their original form, as specified in Figure 1, neither
the CHC nor the neuropsychological consensus model reached
conventional levels of acceptable model fit (Schermelleh-Engel
et al., 2003). Modification indices for both models indicated
that the inclusion of a covariance specification between OCT
and SCT would improve the models. This modification index
was large relative to the second-to-largest value for both
models (46.29 vs. 10.77 for the CHC model and 44.12 vs. 9.84
for the neuropsychological consensus model) and significant
(p < 0.001). In addition, the change was considered to be
theoretically justifiable since the two tests are highly similar.
Therefore, we decided to add the covariance parameter to
both models. After applying this change, the neuropsychological
consensus model showed acceptable fit in terms of SRMR
(0.056, 1SRMR = 0.012), CFI (0.965, 1CFI = 0.041) and TLI
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FIGURE 1 | Graphic overview of (A) the neuropsychological consensus model and (B) the CHC model. Single-headed arrows represent factor loadings,
double-headed arrows represent covariances. Covariances printed with solid lines were pre-specified. Covariances printed with dashed lines were added after
inspecting modification indices. COWAT, Controlled Oral Word Association Test; CFT, Category Fluency Test; OCT, O-Cancellation Test; SCT, Star-Cancellation Test;
RAVLT, Rey Auditory Verbal Learning Test; ROCFT, Rey-Osterrieth Complex Figure Test.

(0.950, 1TLI = 0.057), and good fit in terms of AIC (8350.30,
1AIC 39.65) and RMSEA (0.048, 1RMSEA = 0.022). The CHC
model showed acceptable fit on TLI (0.960, 1TLI = 0.064),
and good fit on all other fit measures [CFI = 0.972,
(1CFI = 0.046), AIC = 8343, (1AIC = 44.9), RMSEA = 0.043
(1RMSEA = 0.026)]. However, the chi square measures were
statistically significant for both models.

We formally compared the model fit of the neuropsychological
consensus model and the CHC model through the Vuong test for
non-nested models. The test of distinguishability based on the
observed data was statistically significant, ω2 = 0.17, p = 0.002.
However, the non-nested likelihood ratio test indicated that
neither model provided a better fit, z = −0.57, p = 0.72, and
the 95% confidence interval of the AIC difference contained
zero [−17.65, 32.25]. Thus, both model specifications represented
the data equally well. Tables 5, 6 present the factor loadings
of these models and Table 7 presents correlations between
cognitive domains. The sample covariance matrix and lavaan
syntax for all model versions described here are provided in the
Supplementary Materials.

In the neuropsychological consensus model, a high correlation
of 0.94 was found between executive functioning and processing
speed. Since this might suggest that their indicators measured the
same underlying cognitive domain, we constructed an additional

model based on model 2 in which executive functioning and
processing speed were merged into one more general domain.
Fit indices of this exploratory model were worse than the model
containing both cognitive domains (i.e., model 2). The chi
square difference test was significant, χ2(4) = 10.18, p = 0.038,
suggesting that the more constrained model version containing
both executive functioning and processing speed as separate
domains was a better fit of the data than the neuropsychological
consensus model in which these domains were merged.

DISCUSSION

Our findings demonstrate that the set of digitized
neuropsychological tests in the newly developed DCTB measure
the same cognitive domains to which they are commonly
associated in the literature. With only a minor change to the
model specifications, both the neuropsychological consensus
model and the CHC model provided an acceptable to good fit
to the data, and there was no evidence to favor one model over
another. In the neuropsychological consensus model there was a
high correlation between executive functioning and processing
speed. This correlation was likely due to the fact that both of
these cognitive domains consisted of timed tasks with several
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TABLE 3 | Means and standard deviations of relevant measures.

Test Outcome measures Raw mean (SD) Significant predictors

1. Trail-Making Test Aa Completion time (s)a 33.29 (11.62) A

2. Trail-Making Test Ba Completion time (s)a 67.90 (23.52) A, E, S

3. Digit span forward Total scorea 6.91 (1.90) A, E, S

Completion time (s) 130.49 (36.73)

4. Digit span backward Total scorea 6.49 (1.97) A, E

Completion time (s) 113.04 (37.99)

5. COWAT Total correct trial 1–3a 37.48 (10.31) A, E, S

6. CFT, category ‘animals’ Total correcta 24.65 (5.61) A, E

7. Stroop color-namingb Completion time (s)a 74.90 (15.15) A

8. Stroop interferenceb Completion time (s)a 127.49 (31.13) A, E, S

9. RAVLT learning trials Total score trial 1–5a 40.78 (10.81) A, E, S

Completion time (s) 159.64 (68.98)

10. RAVLT delayed recall Total scorea 8.56 (3.27) A, E, S

Completion time (s) 41.07 (19.17)

Learning-Recall Time Delay 11.17 (3.29)

11. ROCFT copy Total scorea 32.52 (2.87) A, E

Completion time (s) 149.36 (53.93)

12. ROCFT immediate recall Total scorea 18.67 (6.27) A, S

Completion time (s) 112.25 (40.94)

Copy-Recall time delay 5.49 (1.15)

13. Star-Cancellation Testb Completion time (s)a 46.86 (15.70) A

14. O-Cancellation Testb Completion time (s)a 90.87 (34.65) A, S

15. Clock Drawing Test Not used in analyses - –

16. Card Sorting Test Not used in analyses - –

A = age; E = highest education (scale 0–6; UNESCO, 1997/2006): 0 = pre-primary education; 1 = primary education or first stage of basic education; 2 = lower secondary
or second stage of basic education; 3 = (upper) secondary education; 4 = post-secondary non-tertiary education; 5 = first stage of tertiary education; 6 = second stage of
tertiary education. S, sex; COWAT, Controlled Oral Word Association Test; CFT, Category Fluency Test; RAVLT, Rey Auditory Verbal Learning Test; ROCFT, Rey-Osterrieth
Complex Figure Test;
aOutcome measures used in analyses.
bPresented means are raw reaction times that were transformed to meet normality assumptions.

TABLE 4 | Fit statistics of all confirmatory and exploratory models.

χ2 (df) p SRMR CFI TLI AIC RMSEA [95% CI]

Neuropsychological consensus model

1. Initial model 140.97 (65) < 0.001 0.068 0.924 0.893 8389.95 0.070 [0.054, 0.086]

2. Covariance between OCT and SCTa 99.32 (64) 0.003 0.056 0.965 0.950 8350.30 0.048 [0.028, 0.066]

3. Executive functioning and processing speed mergeda 109.49 (68) 0.001 0.057 0.958 0.944 8352.48 0.051 [0.032, 0.068]

Cattell-Horn Carroll model

1. Initial model 138.92 (65) < 0.001 0.058 0.926 0.896 8387.90 0.069 [0.053, 0.085]

2. Covariance between OCT and SCTa 92.01 (64) 0.012 0.044 0.972 0.960 8343 0.043 [0.021, 0.061]

χ2, chi square; df, degrees of freedom; CFI, comparative fit index; AIC, Akaike information criterion; RMSEA, root mean square error of approximation; OCT, O-Cancellation
Test; SCT, Star-Cancellation Test; TMT, Trail-Making Test; CHC, Cattell-Horn-Carroll; Gr, Retrieval fluency.
aExploratory model change.

outcome measures of the same test loading on both domains.
Such issues are sometimes addressed by calculating ratio or
difference scores, but the resulting compound scores contain
the measurement errors of both individual outcome measures,
making them less reliable. Despite the high correlation, merging
executive functioning and processing speed into one domain
reduced model fit, indicating that both cognitive domains
captured unique variance in test performance.

The neuropsychological literature contains several
classifications of cognitive functioning with overlapping

cognitive domains and associated tests, owing to the
fact that most cognitive tests are multideterminant. The
neuropsychological consensus model tested here was in line
with multiple CFAs in the literature. The memory and working
memory domains are generally seen as separable domains in
the neuropsychological literature (Dowling et al., 2010; Hayden
et al., 2011; Park et al., 2012), although working memory tests are
sometimes grouped with attention. Interestingly, Dowling et al.
(2010); Hayden et al. (2011), and Park et al. (2012) all included a
merged executive functioning/processing speed domain which
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was not fully supported by our data. The visual-spatial domain
is also featured in these studies, but more diverse in terms of
selected indicators. Finally, our use of completion times of
two cancellation tests to form a processing speed domain was
supported by Siedlecki et al. (2008). However, it should be
noted that although these studies reported good model fit, only
Dowling et al. (2010) and Hayden et al. (2011) reached the cut-off
values for model fit that were used in the present study.

Specification of the CHC model was more straightforward
given its derivation from a single theoretical framework. We
replicated recent findings by Jewsbury et al. (2017) and Agelink
van Rentergem et al. (2020), showing that the model provides
an acceptable to good fit in a neuropsychological context. In
addition, we replicated the finding by Jewsbury and Bowden
(2016) that fluency tests share common variance with measures
of processing speed (the correlation between these domains being

TABLE 5 | Standardized factor loadings of the neuropsychological
consensus model.

Estimate SE Z (p)

Executive functioning

Trail-Making Test B 0.64 0.06 9.97 ( <0.001)

Stroop interference 0.61 0.07 9.21 ( <0.001)

COWAT 0.44 0.07 6.32 ( <0.001)

CFT 0.46 0.06 7.18 ( <0.001)

Processing speed

Trail-Making Test A 0.66 0.07 9.39 ( <0.001)

Stroop color-naming 0.58 0.07 8.29 ( <0.001)

OCT 0.45 0.07 6.35 ( <0.001)

SCT 0.34 0.07 4.63 ( <0.001)

Working memory

Digit Span forward 0.65 0.08 8.31 ( <0.001)

Digit Span backward 0.74 0.08 8.95 ( <0.001)

Memory

RAVLT learning trials 0.44 0.07 6.18 ( <0.001)

RAVLT delayed recall 0.43 0.07 6.00 ( <0.001)

ROCFT immediate recall 0.76 0.08 9.32 ( <0.001)

Visual-spatial processing

ROCFT copy 1.26 0.06 21.86 ( <0.001)

COWAT, Controlled Oral Word Association Test; CFT, Category Fluency Test;
OCT, O-Cancellation Test; SCT, Star-Cancellation Test; RAVLT, Rey Auditory Verbal
Learning Test; ROCFT, Rey-Osterrieth Complex Figure Test.

0.78 in our CHC model) but can be regarded as a separate
retrieval fluency domain in the CHC framework.

Besides providing initial evidence of validity, our study also
allowed a comparison between a traditional neuropsychological
factor structure and one defined by CHC theory in the
digital domain. Arguably the largest point of disagreement
between the neuropsychological and CHC literature concerns
the existence of a separate executive functioning domain, which
is generally included in traditional neuropsychological models
(Strauss et al., 2006; Lezak et al., 2012) but does not have
a place in the CHC taxonomy. Tests that are traditionally
considered to measure executive functioning have been found
to load on several CHC factors, such as processing speed
and retrieval fluency (Salthouse, 2005; Jewsbury et al., 2017).
This has been taken as evidence that executive functioning
as a unitary construct confounds several cognitive processes

TABLE 6 | Standardized factor loadings of the Cattell-Horn-Carroll model.

Estimate SE Z (p)

Retrieval fluency (Gr)

COWAT 0.51 0.08 6.77 ( <0.001)

CFT 0.51 0.07 7.09 ( <0.001)

Processing speed (Gs)

Trail-Making Test A 0.63 0.07 8.98 ( <0.001)

Trail-Making Test B 0.67 0.07 10.08 ( <0.001)

Stroop color-naming 0.55 0.07 7.98 ( <0.001)

Stroop interference 0.63 0.07 9.27 ( <0.001)

OCT 0.43 0.07 6.24 ( <0.001)

SCT 0.33 0.07 4.62 ( <0.001)

Working memory (Gwm)

Digit Span forward 0.65 0.08 8.06 ( <0.001)

Digit Span backward 0.74 0.09 8.62 ( <0.001)

Learning efficiency (Gl)

RAVLT learning trials 0.87 0.06 13.91 ( <0.001)

RAVLT delayed recall 0.87 0.06 13.82 ( <0.001)

Visual-spatial processing (Gv)

ROCFT copy 0.39 0.07 5.87 ( <0.001)

ROCFT immediate recall 0.95 0.12 7.90 ( <0.001)

Broad factor abbreviations shown between parentheses are the conventional CHC
nomenclature. COWAT, Controlled Oral Word Association Test; CFT, Category
Fluency Test; OCT, O-Cancellation Test; SCT, Star-Cancellation Test; RAVLT, Rey
Auditory Verbal Learning Test; ROCFT, Rey-Osterrieth Complex Figure Test.

TABLE 7 | Correlations between cognitive domains in the neuropsychological consensus model and Cattell-Horn-Carroll model.

Neuropsychological Consensus model Cattell-Horn-Carroll Model

1. 2. 3. 4. 1. 2. 3. 4.

1. Executive functioning − 1. Retrieval fluency (Gr) −

2. Processing speed 0.94a
− 2. Processing speed (Gs) 0.78a

−

3. Working memory 0.62a 0.45a
− 3. Working memory (Gwm) 0.58a 0.52a

−

4. Memory 0.59a 0.44a 0.28a
− 4. Learning efficiency (Gl) 0.53a 0.36a 0.30a

−

5. Visual-spatial processing 0.12a 0.09 0.15a 0.37a 5. Visual-spatial processing (Gv) 0.28a 0.40a 0.18a 0.40a

aSignificant at 0.05.
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(Schneider and McGrew, 2018), or does not constitute a distinct
cognitive construct (Kovacs and Conway, 2016).

The findings reported here do not warrant such strong
conclusions. Despite the strong correlation between executive
functioning and processing speed in the neuropsychological
consensus model, these domains could be reliably distinguished.
Thus, as a unitary construct in the neuropsychological
model, executive functioning captures unique variance in test
performance that is not related to the other cognitive domains.
In general, we did not have enough evidence to favor either
the neuropsychological consensus model or the CHC model.
Although the fit statistics of the CHC model were slightly better,
a formal significance test could not differentiate between the
models. It is possible that a difference would arise in a larger
sample, as the CHC model was shown to provide the best fit in
a sample of 60,398 participants (Agelink van Rentergem et al.,
2020). However, if extremely large sample sizes are required to
clearly distinguish between the two models, the question arises
whether such differences are clinically meaningful. Furthermore,
a solid factor structure in a sample of healthy subjects is not
necessarily evidence for a model’s clinical utility. In fact, the CHC
model has been found to be lacking in this respect (Wasserman,
2019). Future research including data from cognitively impaired
individuals will be required to gather data on sensitivity
and specificity.

The current study has a number of limitations. First, although
our study showed the factor structure of the DCTB to be in
line with the mostly paper-and-pencil based factor structures
in the literature, the current findings offer only initial evidence
for validity of our DCTB. A full assessment of validity requires
measurement invariance studies, with participants completing
both a digital and paper-and-pencil version of the same test
battery. Such a comparison was outside of the scope of the present
study. Second, we were not able to assess the validity of the
full DCTB. Performance on the CDT could not be added to the
model due to a ceiling effect. In addition, visual-spatial processing
in the neuropsychological consensus model was only defined
by ROCFT copy, so conclusions about the structural validity
of the ROCFT could only be based on the CHC model. Third,
at the time of data collection, parts of the DCTB were not yet
automated. Tests that required a verbal response (e.g., Stroop
and COWAT) were scored manually as sophisticated speech
recognition techniques were not yet implemented. Additionally,
scoring of the ROCFT were done manually since the scoring
algorithm is still under development. These final steps in
automation could have an influence on validity.

To conclude, the current study provides initial evidence
of validity for a newly developed DCTB. Through CFA, it is
shown that the tests generally load on the cognitive domains

that were specified based on existing literature. Interestingly,
no clear preference in terms of model fit can be given to
either the neuropsychological consensus model or the CHC
model, suggesting that they are both viable alternatives in
a neuropsychological context. Adding to a growing body
of literature on the advantages of digital technology in
neuropsychological practice, the current study demonstrates the
potential of the DCTB in quantifying cognitive functioning.
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